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Abstract:  
 

The economic operation of electrical systems is very crucial. Efficient energy 

management can lower operating costs, improve grid stability, and optimize resource 

allocation. This paper proposes a novel technique based on the walrus optimizer (WaO) 

algorithm for solving the optimal energy management (OEM) of a microgrid (MG) based 

on the IEEE 33-bus system topology. The investigated system incorporates several 

distributed energy resources (DERs), such as photovoltaic (PV) and wind turbine (WT) 

units, micro-turbine (MT), diesel generator (DG), and battery energy storage system 

(BESS). To assess the robustness of the proposed strategy, three separate pricing 

situations are simulated: stable, moderate volatility, and high volatility. The results show 

the algorithm's capacity to perform optimal energy arbitrage and peak shaving, ensuring 

power balance and lowering grid reliance during high-price periods. 

 

1. Introduction 
 

The increased use of renewable energy sources 

(RESs) in distribution networks has hastened the 

development of microgrids (MGs). Modern MGs are 

self-managed electrical systems that can operate in 

either grid-connected or islanded modes, 

incorporating distributed energy resources (DERs) 

such as renewable generators, traditional fossil-fuel 

units, and energy storage devices. An energy 

management system (EMS) is necessary for efficient 

DER scheduling to ensure economic efficiency, 

environmental sustainability, and reliable operation 

[1], [2].However, the intermittent nature of RES and 

the unpredictability of energy market prices provide 

substantial obstacles for EMS. Traditional 

optimization methods, such as linear programming 

and dynamic programming, frequently fail to 

identify the global optimum in such complicated, 

multi-modal search spaces [3]. To solve these 

difficulties, the MG idea has emerged as a feasible 

option, enabling localized coordination of DEGs, 

storage systems, and loads.The optimal energy 

management (OEM) is a nonlinear optimization 

problem with constraints. The fundamental goal of 

an OEM within a MG is to establish each source's 

optimal output in order to reduce global operational 

costs while meeting technical limits. This problem 

has traditionally been addressed using classical 

optimization methods; however, the non-linear and 

non-convex character of modern MGs lends itself to 

the application of bio-inspired metaheuristic 

algorithms [4], [5].Several metaheuristic methods 

have been utilized to address OEM, such as: genetic 

algorithms (GA) [6], gravitational search algorithm 

(GSA) [7], differential evolution (DE) [8], cuckoo 

search [9], Particle swarm optimization (PSO) [10], 

Backtracking search optimization (BTA) [11], 

bacterial foraging [12], artificial bee colony (ABC) 

[13], grey wolf optimization [14], Moth-swarm 

algorithm [15]…etc. In this work, the walrus 

optimizer (WaO) approach is used to solve the OEM 

problem. The study is applied on a modified IEEE 

33-bus test system over a 24-hour period. The key 

contribution of this paper is a comparison 

examination of the system's performance under three 
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realistic pricing scenarios, which shows the 

economic benefits of intelligent storage 

management and demand response. 

2. Problem formulation 

The OEM problem is an optimization problem. Its 

main objective is to minimize the operational costs 

of the MG, although further objectives may be 

added. The OEM problem can typically be 

articulated as: 

𝐶 = ∑  𝑁𝑇

𝑇=1 [𝐶𝐷𝐸𝐺𝑖

𝑇 (𝑃𝐷𝐸𝐺𝑖

𝑇 ). φ𝑖𝑖
𝑇 + 𝐶BESS

𝑇 + 𝐶Gr
𝑇 ⋅ 𝑃Gr

𝑇 ]      (1) 

Where 𝐶 represents the cost function over the entire 

planning horizon. 𝑃Gr
𝑇  is the active power that is 

exchanged with the grid at time T.  NT represents the 

overall tally of time. 𝑃𝐷𝐸𝐺𝑖

𝑇 , 𝐶𝐷𝐸𝐺𝑖

𝑇 , 𝐶BESS
𝑇 , and 𝐶Gr

𝑇  

refer to the active power output of the ith DEG, cost 

function of the ith DEG, cost function of the battery, 

and the electricity exchange price between of the 

grid at time T [16]. φ𝑖𝑖
𝑇  is either 1 or 0, depending on 

whether the ith power supply is operational or not.  

2.1. Micro-turbine (MT)  

The MT cost function is presented as: 

𝐶MT = 𝑎𝑀𝑇𝑃𝑀𝑇
2 + 𝑏𝑀𝑇𝑃MT + 𝑐𝑀𝑇                (2) 

Where 𝑎𝑀𝑇 , 𝑏𝑀𝑇 , and 𝑐𝑀𝑇  are the coefficients of 

MT cost function. 𝑃MT represents MT output power. 

2.2. Diesel generators (DG) 

The cost function of the DG can be represented as: 

       C𝐷𝐺 = 𝑎𝑑𝑃𝐷𝐺
2 + 𝑏𝑑𝑃𝐷𝐺 + 𝑐𝐷𝐺              (3) 

Where 𝑎𝑑 , 𝑏𝑑 , and 𝑐𝑑  are the coefficients of  DG 

cost function. 𝑃𝐷𝐺 represents DG output power.  

2.3. Battery storage  

The cost of the battery is an operational cost based 

on the power exchanged. It can be defined as: 

  C𝐵𝐸𝑆𝑆 = 𝑏𝐵𝐸𝑆𝑆 . 𝑃𝐵𝐸𝑆𝑆                            (4) 

2.4. PV and wind turbine (WT)  

The output power of the solar PV system is 

influenced by solar irradiation, the site's ambient 

temperature, and the module's characteristics. The 

PV output power can be calculated using the 

following equation [17]: 

    PPV(t) = N.δPV.APV.S(t)                      (5) 

Where PPV, δPV, APV, N and S represent the output 

power of the PV arrays, efficiency of power 

generation, total covered area (m2), total count of PV 

modules, and solar irradiance (W/m2), respectively.  

The cost of PV is modeled by a simple linear 

equation: 

      C𝑃𝑉 = 𝐾𝑃𝑉 . 𝑃𝑃𝑉                                       (6) 

The output power of WT can be modeled as: 

𝑃𝑊𝑇 = {

0 if 𝑣 ≤ 𝑣𝑐𝑖  and  𝑣 ≥ 𝑣𝑐𝑜

𝑣2−𝑣𝑐𝑖
2

𝑣𝑟
2−𝑣𝑐𝑖

2 𝑃𝑊𝑇r if 𝑣𝑐𝑖 < 𝑣 ≤ 𝑣𝑟

𝑃WTr if 𝑣𝑟 < 𝑣 ≤ 𝑣𝑐𝑜

    (7) 

𝑃𝑊𝑇r and 𝑃𝑊𝑇 denote the rated power and output 

power of WT, respectively. 𝑣r, 𝑣𝑐𝑖 and 𝑣𝑐𝑜 are the 

rated wind speed, cut-in wind speed, and cut-on 

wind speed of WT, respectively.  

The cost of WT is modeled by: 

C𝑊𝑇 = 𝐾𝑊𝑇 . 𝑃𝑊𝑇                                                      (8) 

2.5.  Electric grid  

Market energy costs ($/h) can be represented by a 

quadratic function as follows:  

      𝐶𝐺𝑟 = 𝑎 + 𝑏. 𝑃𝐺𝑟 + 𝑐. 𝑃𝐺𝑟
2                                        (9) 

2.6.  Constraints 

A. Power balance constraints  

The constraint for power balance can be illustrated 

as: 

∑  
𝑁𝐺
𝑖=1 𝑃𝐷𝐸𝐺𝑖

𝑇 + 𝑃Gr
𝑇 = ∑  

𝑁𝑑
𝑑=1 𝑃𝑙𝑑

𝑇                                      (10) 

𝑃𝑙𝑑
𝑇  and Nd are the quantity and the total number of 

the loads.  

B. Power generation constraints 

The active power limits for each DEG in the MG are 

shown as:  

 𝑃𝐷𝐸𝐺𝑖-𝑚𝑖𝑛
𝑇 ≤ 𝑃𝐷𝐸𝐺𝑖

𝑇 ≤ 𝑃𝐷𝐸𝐺𝑖-𝑚𝑎𝑥
𝑇                                  (11)     

𝑃Gr-𝑚𝑖𝑛
𝑇 ≤ 𝑃Gr

𝑇 ≤ 𝑃Gr-𝑚𝑎𝑥
𝑇                (12) 

Where 𝑃𝐷𝐸𝐺𝑖-𝑚𝑖𝑛
𝑇 , 𝑃T 

𝐺𝑟-𝑚𝑖𝑛, 𝑃𝐷𝐸𝐺𝑖-𝑚𝑎𝑥
𝑇 , and 𝑃T 

𝐺𝑟-𝑚𝑎𝑥 

are the ith DEG and the utility active power limits at 

time T. 

C. Spinning reserve constraints  

These constraints play a crucial role in ensuring the 

reliability of the system amidst variations [18]: 

  𝑃𝐺𝑖-𝑚𝑖𝑛
𝑇 − 𝑃𝐺𝑖-𝑚𝑎𝑥

𝑇 = ∑  
𝑁𝑑
𝑑=1 𝑃𝑙𝑑

𝑇 + 𝑅𝑆
𝑇              (13) 

Where 𝑅𝑆
𝑇 is the reserve spinning at time T. 

D. Energy storage constraints  

The energy storage limits can be articulated as [19]: 

𝑊Bess,𝑇 = 𝑊Bess,𝑇−1 + 𝜂char𝑃char,𝑇Δ𝑇 −

                                
1

𝜂disch
𝑃disch,𝑇Δ𝑇                     (14) 

               𝑊Bess,min ≤ 𝑊Bess,𝑇 ≤ 𝑊Bess,max     (15) 

      𝑃char,𝑇 ≤ 𝑃char−max  and  𝑃disch,𝑇 ≤ 𝑃disch−max  (16) 
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Where 𝑊Bess,𝑇  and 𝑊Bess,𝑇−1  represent the energy 

stored in the battery at times T and T-1, respectively. 

The charge and discharge rate for 𝛥𝑡 is 𝑃𝑐ℎ𝑎𝑟 and 

𝑃𝑑is𝑐ℎ, while 𝑊Bess,min , and 𝑊Bess,max  denote the 

battery's energy storage limits. The ηchar and ηdisch 

indicates the battery's efficiency while charging and 

discharging. 𝑃char−max  and 𝑃disch−max  represent the 

highest rate of charge and discharge for the battery 

within each time interval 𝛥T. 

E. Active power calculation for grid exchange  

Active power exchange is considered a dependent 

variable, with grid power defined by:  

      𝑃Gr
𝑇 = ∑  

𝑁𝑑
𝑑=1 𝑃𝑙𝑑

𝑇 − ∑  
𝑁𝐺
𝑖=1 𝑃𝐺𝑖

𝑇                         (17) 

3. Walrus Optimizer Algorithm (WaO) 

WaO is a meta-heuristic algorithm inspired by the 

social behavior and migration patterns of walruses. 

The algorithm considers the social structures and 

hierarchies within their communities [20]. The 

process of WaO optimization starts with the random 

generation of an initial population of candidate 

solutions. During the WaO iterations, these solutions 

move based on social and environmental signals, 

continually focusing on the best possible solutions. 

 The WaO algorithm mimics walruses' 

environmental responses through "safety" and 

"danger" signals. These signals affect the actions of 

every agent, thereby directing the population toward 

regions where optimal solutions are likely to be 

discovered.  In this section, the key ideas behind the 

WaO algorithm are described.  

3.1. Initialization 

During the initial phase, the WaO generates a set of 

potential solutions (X) through a random selection 

method. This can be expressed mathematically as: 

        𝑋 = 𝐿lim + r. (𝑈lim – 𝐿lim)                              (18) 

where 𝐿lim and 𝑈lim denote the lower and upper 

limits. r is a uniform random vector that falls 

between 0 and 1. 

The agents carrying out the optimization process are 

called “walrus.” Throughout the iterations, they are 

in a constant state of positional change. 

𝑋 =

[
 
 
 

𝑋1,1 𝑋1,2 ⋯ 𝑋1,𝑑𝑚

𝑋2,1 𝑋2,2 ⋯ 𝑋2,𝑑𝑚

⋮ ⋮ ⋱ ⋮
𝑋𝑛𝑝𝑜𝑝,1 𝑋𝑛𝑝𝑜𝑝,2 ⋯ 𝑋𝑛𝑝𝑜𝑝,𝑑𝑚]

 
 
 

𝑛𝑝𝑜𝑝×𝑑𝑚

(19)  

where 𝑛pop and 𝑑m are the size of population and 

the variables dimension, respectively. 

The fitness values that correspond to each search 

agent are kept as: 

𝐹𝑓 =

[
 
 
 

𝑓f1,1 𝑓f1,2 ⋯ 𝑓f1,𝑑𝑚

𝑓f2,1 𝑓f2,2 ⋯ 𝑓f2,𝑑𝑚

⋮ ⋮ ⋱ ⋮
𝑓f𝑛𝑝𝑜𝑝,1 𝑓f𝑛𝑝𝑜𝑝,2 ⋯ 𝑓f𝑛𝑝𝑜𝑝,𝑑𝑚]

 
 
 

𝑛𝑝𝑜𝑝×𝑑𝑚

  (20) 

Adults make up 90% of the walrus population, while 

juveniles account for 10%. The proportion of adult 

males to females is 1:1. 

3.2. Safety and danger signals 

Walruses exhibit heightened vigilance concerning 

food-seeking and resting. In general, there are 1 to 2 

walrus seeking beings that closely monitor the area. 

When there is a threat, these guards issue a warning 

and at the same time produce danger signals. The 

shape of the danger signal is illustrated below [21]: 

𝐷𝑠 = 𝐴s . G                                        (21) 

μ = 1 − 𝑡/𝑇                                     (22) 

𝐴s = 2 .μ                                        (23) 

Gs = 2 . 𝑟d1 − 1                               (24) 

As the number of iterations t increases, μ decreases 

from 1 to 0. T represents the maximum iteration, 

while As and Gs are danger factors. 

In WaO, the safety signal that corresponds to the 

danger signal is defined as: 

       𝑆𝑎f-𝑠𝑖𝑔𝑛𝑎𝑙 = 𝑟d2                  (25) 

where 𝑟d1 and 𝑟d2 are values chosen randomly within 

the range (0,1). 

3.3. Migration 

Walrus herds will move to areas that are more 

conducive to population survival when risks become 

too great. During this phase, the walrus's position is 

updated as follows [22]: 

             𝑋𝑖,𝑘
𝑡+1 = 𝑋𝑖,𝑘

𝑡 + mig-step                     (26) 

         mig-step = (𝑋𝑠
𝑡 − 𝑋𝑧

𝑡) ⋅ 𝜑 ⋅ 𝑟d3
2                (27) 

           𝜑 = 1 −
1

1+exp (−(𝑡−(
𝑇

2
)/𝑇×10)

                (28) 

Where 𝑋𝑖,𝑘
𝑡  indicates the current position of the ith 

walrus on the k thension, and 𝑋𝑖,𝑘
𝑡+1 denotes its new 

position. The walrus movement has a step size 

referred to as mig-step, two vigilantes are chosen at 

random from the population to match positions 𝑋𝑠
𝑡 

and 𝑋𝑧
𝑡, the migration steps control factor is called 𝜑 

and evolves iteratively as a smooth curve, and 𝑟d3 is 

a random value ranging from 0 to 1. 

3.4. Reproduction 

Walrus herds typically do not migrate; rather, they 

reproduce in currents when threats are at their 
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lowest. The positional changes of female walruses 

suggest that the lead walrus (𝑋b
𝑡) and the male walrus 

( 𝑀𝑎i,k
𝑡 ) influence females during reproduction. 

Throughout the iteration, the female walrus 

increasingly depends on the leader and less on her 

mate. 

𝐹𝑒𝑚i,k
𝑡+1 = 𝐹𝑒𝑚i,k

𝑡 + μ . (𝑀𝑎i,k
𝑡 −𝐹𝑒𝑚i,k

𝑡 ) +

                        (1 − μ ). (𝑋b
𝑡−𝐹𝑒𝑚i,k

𝑡 )            (29) 

where 𝑀𝑎i,k
𝑡  and 𝐹𝑒𝑚i,k

𝑡  are the positions of the 𝑖th 

male and female walruses on the kth dimension. 

𝐹𝑒𝑚i,k
𝑡+1 denotes the new position of the 𝑖th female 

walrus along the kth dimension. 

Polar bears and killer whales often hunt juvenile 

walruses near the edge of the population. As a result, 

juvenile walruses must acclimatize to their new 

environment to evade predators. 

Juv𝑖,𝑘
𝑡+1 = (𝑂sp − Juv𝑖,𝑘

𝑡 ) ⋅ 𝐽                    (30) 

 𝑂sp = 𝑋b
𝑡 + Juv𝑖,𝑘

𝑡 ⋅ 𝐿𝐹                          (31) 

Where 𝑂sp  is the reference safety position, Juv𝑖,𝑘
𝑡  

indicates the new position of the ith juvenile walrus 

on the kth dimension, and 𝐽 is the juvenile walrus’s 

distress coefficient, which is a random value 

between 0 and 1. Figure 1 shows the pseudo-code of 

WaO algorithm. 

4. Results and Discussion 

In this work, the tested system is based on a modified 

IEEE 33-bus system to evaluate the EMO using the 

WaO algorithm over a 24-hour period. The test 

system is t depicted in Figure 2. The system consists 

of four DERs: PV is linked via bus 13, WT linked 

via bus 25, MT is linked via bus 8, and DG is linked 

via bus 30. A BESS has been set up at Bus 18. Table 

1 and table 2 provide a detailed description of the 

specific parameters, cost coefficients, and 

operational limits of the DEGs and BESS. The cost 

coefficient KPV and KWT are 0.001 $/kWh and 0.002 

$/kWh, respectively. 

Table 1. Power limits of DEGs 

Units Pmin (MW) Pmax (MW) 

MT 0 0.8 

DG 0 0.6 

PV 0 2.5 

WT 0 1.5 

BESS -0.5 0.5 

 

Table 2. Coefficients of cost function 

Units a b c 

MT 0.004 0.18 0.5 

DG 0.006 0.25 1.2 

BESS 0 0.05 0 

 
Figure 1. Pseudo-code of WaO algorithm. 

  

 

Figure 2. One line diagram of test system 

 

 

 

Figure 3. Daily load demand profile 
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Figure 4. Wind power availability 

 

Figure 5. PV power availability 

 

With a population size of 50 individuals and a 

maximum iteration of  200, the WaO algorithm was 

set up to achieve an optimal balance between 

exploring the search space and exploiting the best 

solutions. The main aim is to minimize the 

operational cost. To evaluate the robustness of the 

EMS in the face of market volatility, three case 

studies were designed: 

Case 1: Stable and low pricing.  

Case2: Moderate volatility. 

Case 3: Extreme peaks and high volatility.  

The daily load demand profile and renewable power 

availability are presented in figure 3-5. 

 

4.1. Case 1 

In this case, the market pricing is still competitive in 

relation to the cost of internal thermal generation. As 

a result, energy imports are given priority by the 

EMS, which minimizes the use of DG, which is more 

expensive to operate. The obtained results indicate 

that the DG operates only at certain intervals in order 

to flatten the profile. Figures 6–8 illustrate the MT 

and DG generation, PV and WT dispatch, and grid 

import and BESS of this case, respectively. A 

summary of the obtained results of this case is 

presented in Table 3. 

Table 3.  Simulation results (Case 1) 

 

Figure 6. MT and DG generation (Case1) 

  

Figure 7. PV and WT dispatch (Case 1) 

H     

(h)    

PGrid  

(MW) 

PMT 

(MW) 

PDG 

(MW) 

PBESS 

(MW) 

PPV 

(MW) 

  PWT 

(MW) 

1 0.86 0.35 0.03 0.36 0 0.25 

2 0.41 0.32 0.05 0.02 0 0.9 

3 0.58 0.27 0.03 0.18 0 0.59 

4 0.09 0.17 0.02 0.12 0 1.04 

5 0.45 0.05 0.1 0.08 0 0.97 

6 1.62 0.05 0.01 -0.46 0.15 0.9 

7 1.14 0.01 0.02 0.4 0.49 0.47 

8 1.7 0.08 0.01 0.11 0.71 0.5 

9 0.87 0.13 0.14 0.49 1.14 0.4 

10 0.47 0.23 0.18 0.44 1.49 0.5 

11 0.54 0.1 0.01 0.49 1.79 0.58 

12 0.61 0.33 0.17 0 1.85 0.45 

13 1.19 0.74 0.09 0.42 0.31 0.93 

14 0.73 0.66 0.05 -0.36 1.11 1.16 

15 0.05 0.44 0.06 0.2 1.17 1.1 

16 1.07 0.55 0.17 0.15 0.41 0.89 

17 2.71 0.39 0.05 0.42 0.39 0.75 

18 3.23 0.32 0.08 0.49 0.09 0.7 

19 2.2 0.07 0.23 0.5 0 0.77 

20 2.21 0.03 0.07 0.46 0 0.99 

21 1.56 0.25 0.44 -0.02 0 1.1 

22 0.99 0.02 0.01 0.48 0 0.95 

23 1.18 0.27 0.04 0.42 0 0.27 

24 1.23 0.01 0.13 -0.05 0 0.67 
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Figure 8. Grid import and BESS (Case 1) 

 

4.2. Case 2 

In this case, the algorithm engages in economic 

arbitrage as price volatility rises. The EMS increases 

the DEGs when grid prices beyond the cost of local 

generation. From the results, we can see a substantial 

rise in the amount of thermal generation produced 

locally. Figures 9–11present the MT and DG 

generation, PV and WT dispatch, and grid import 

and BESS of this case, respectively. The obtained 

results of this case are presented in Table 4. 

 

Figure 9. MT and DG generation (Case 2) 

 

Figure 10. PV and WT dispatch (Case 2) 

 

Table 4. Simulation results (Case 2) 

 

Figure 11. Grid import and BESS (Case 2) 

4.3. Case 3 

 

This case represents a critical stress test with prices 

peaking. The EMS strategy shifts drastically to 

minimize grid dependency during peak hours (Hours 

16-19). The DEGs use their maximum power during 

times of medium and high lead levels when the 

market price is brought to its true worth. 

Additionally, the MG exports excess energy to the 

utility for the majority of the day. Figures 12–14 

show the MT and DG generation, PV and WT 

dispatch, and grid import and BESS of this case, 

respectively. The obtained results of this case are 

presented in Table 5. Figure 15 and figure 16 present 

the convergence of the total cost and the energy 

market price of the three 

H     

(h)    

PGrid  

(MW) 

PMT 

(MW) 

PDG 

(MW) 

PBESS 

(MW) 

PPV 

(MW) 

  PWT 

(MW) 

1 0.96 0.36 0.04 -0.11 0 0.66 

2 1.14 0.01 0.15 0.15 0 0.33 

3 0.35 0.38 0.27 -0.38 0 0.92 

4 0.11 0.65 0 -0.17 0 0.96 

5 0 0.21 0.38 -0.15 0 0.97 

6 0.31 0.31 0.09 0.49 0.17 0.81 

7 0.51 0.74 0.58 0.11 0.48 0.65 

8 0.46 0.57 0.51 0.5 0.8 0.5 

9 0.22 0.62 0.57 0.49 1.14 0.39 

10 1.01 0.54 0.14 0.43 1.49 0.5 

11 1.15 0.39 0.46 -0.12 1.8 0.59 

12 0.52 0.05 0.1 0.39 1.93 0.71 

13 0.05 0.64 0.1 0.04 1.78 0.86 

14 0.3 0.61 0.02 -0.22 1.21 1.01 

15 1.39 0.26 0.14 0.3 1.2 0.03 

16 0 0.59 0.4 0.49 0.77 0.88 

17 0.62 0.78 0.54 0.44 0.4 0.8 

18 1.61 0.46 0.58 0.49 0.09 0.7 

19 1.28 0.69 0.56 0.5 0 0.8 

20 1.51 0.46 0.22 0.48 0 0.81 

21 2.73 0.42 0.01 -0.15 0 0.27 

22 1.04 0.01 0.5 -0.04 0 1.14 

23 2.07 0.13 0.06 -0.35 0 0.3 

24 0.64 0.11 0.22 0.36 0 0.57 
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Table 5. Simulation results (Case 3) 

 

 

Figure 12. MT and DG generation (Case 3) 

 

Figure 13.  PV and WT dispatch (Case 3) 

 

Figure 14. Grid import and BESS (Case 3) 

case studies, respectively. WaO algorithm 

demonstrate consistent convergence properties in 

every case. According to the computational results, 

taking renewable sources into account as 

dispatchable enables accurate power balance and 

lessens the need for costly penalty infractions.  

 

Figure 15.  Convergence of the total cost. 

 

Figure 16. Energy market price.  

5. Conclusion 

This paper presents an OEM based on the WaO 

algorithm for MG that is linked to numerous DEGs 

and a BESS. The study showed that the proposed 

algorithm effectively reduces operational costs and 

H     

(h)    

PGrid  

(MW) 

PMT 

(MW) 

PDG 

(MW) 

PBESS 

(MW) 

PPV 

(MW) 

  PWT 

(MW) 

1 0.42 0.03 0.5 0.36 0 0.73 

2 1.41 0.57 0.2 -0.44 0 0.09 

3 0.48 0.66 0.26 0.09 0 0.15 

4 0.54 0.05 0.12 0.17 0 0.48 

5 0.01 0.27 0.49 -0.04 0 0.91 

6 0.05 0.09 0.46 0.41 0.17 0.8 

7 0.11 0.58 0.56 0.48 0.47 0.69 

8 0.11 0.66 0.52 0.21 0.76 0.49 

9 0.25 0.36 0.54 0.5 1.16 0.38 

10 1.2 0.2 0.46 0.49 1.5 0.5 

11 1.65 0.25 0.29 0.43 1.13 0.25 

12 0.24 0.62 0.58 -0.47 1.91 0.8 

13 1.96 0.17 0.11 0.01 0.96 0.46 

14 0.01 0.65 0.09 0.48 1.26 0.12 

15 0.27 0.34 0.39 0.36 0.98 1.06 

16 0.56 0.8 0.56 0.01 0.77 0.9 

17 1.29 0.8 0.55 0.49 0.35 0.8 

18 1.37 0.67 0.59 0.49 0.1 0.7 

19 2.01 0.25 0.31 0.49 0 0.68 

20 1.43 0.58 0.5 0.02 0 0.94 

21 1.02 0.68 0.54 -0.09 0 1.09 

22 0.61 0.61 0.04 0.43 0 1.16 

23 0.91 0.03 0.08 -0.12 0 0.95 

24 1.32 0.03 0.13 0.49 0 0.01 
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achieves significant savings by optimizing the 

scheduling of DEGs and storage through simulations 

of the IEEE 33-bus system under three different 

pricing scenarios. In volatile markets, the system 

demonstrates robust resilience by optimizing the use 

of DEGs and BESS to minimize operational 

expenses and lessen the effects of elevated electricity 

costs. The proposed method guarantees technical 

reliability and ensures that the supply-demand 

balance is maintained at all times. 
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