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Abstract:  
 

For medical diagnosis and therapy planning, the importance of accurate MRI 

segmentation cannot be overemphasized. Conversely, the inscrutability of deep learning 

models remains obstacles to their application in therapeutic contexts. In this article, an 

interpretability artificial intelligence framework is introduced. It combines an MRI 

segmentation model based on deep learning, visual attribution algorithms and natural 

language explanations. EXPERIMENT The dataset is consisting of plenty of different 

types of brain MRI scans, and used to test the architecture. The average of Dice score of 

our method is 88.7% and 92.3% for segmentation of tumor and categorization of 

tissues, respectively. Both are pretty epic scores. The insights extracted from both the 

visual attributions and textual explations improve our understanding of how the model 

arrives at its decisions, thereby increasing the transparency and interpretability of the 

model.  believe this approach to explainable artificial intelligence can help to close the 

gap between state-of-the-art performance in MRI segmentation and clinical 

interpretability, by increasing the transparency of complex models and facilitating their 

implementation into a clinical workflow. Conclusion Our approach may have 

implications in the transparent and reliable development of AI-based decision support 

systems for medical imaging. 

 

1. Introduction 
 

Magnetic resonance imaging (MRI) has become 

indispensable for the diagnosis and surveillance of 

neurological illnesses such as Alzheimer's disease, 

multiple sclerosis, and brain cancers [1]. Precise 

segmentation of MRI scans is necessary for 

accurate quantification of lesions, evaluation of 

disease progression, and planning surgical 

interventions [2]. Newer deep learning techniques 

in automatic magnetic resonance imaging (MRI) 

segmentation have achieved better results than prior 

methods [3, 4]. Nevertheless, the enigmatic nature 

of deep neural networks and their inherent 

complexity pose challenges in comprehending 

them, hence restricting their practical effectiveness 

in therapy [5]. 

 

Medical professionals worry about deep learning 

models' lack of transparency because they need 

specific explanations for the model's results to trust 

them for patient care [6]. Explainable AI (XAI) is 

an emerging field that develops tools to explain AI 

model thinking [7], [8]. Visual attribution methods 

like Grad-CAM [9] and integrated gradients [10] 

highlight the input image areas that most affect 

model predictions. However, these methods may 

not explain complex medical imaging tasks [11]. 

http://www.ijcesen.com/
http://dergipark.ulakbim.gov.tr/ijcesen
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it offers an easy-to-understand strategy that mixes 

deep learning-driven MRI segmentation, visual 

attribution, and normal language explanations to fill 

this artificial intelligence gap. Our method provides 

detailed, intelligible reasoning for model 

segmentation. This will help clinicians understand 

and trust data. This research's main objectives: 

 1. Build an effective deep learning model to 

segment MRI images. 2. Visual attribution can 

highlight key regions that affect model decision-

making. 3. to explain the model's thinking in 

human-friendly words. 4. to assess the framework's 

interpretability and clinical relevance using a large 

brain MRI dataset. The primary contributions of 

this work are: An innovative artificial intelligence 

framework that enhances comprehensibility by 

integrating MRI segmentation, visual attributions, 

and natural language explanations. Extensive 

testing has demonstrated the efficacy and 

transparency of the technique. Research is currently 

being conducted to explore explainable artificial 

intelligence techniques for improving the 

effectiveness of deep learning models in treatment. 

Migraine Background Magnetic resonance imaging 

(MRI) is an unavoidable technique for the 

exploration, diagnosis and guidance of treatment 

responses in various neurological diseases such as 

Alzheimer disease [1]. 

multiple sclerosis or brain cancers [1]. Accurate 

quantification of lesions, monitoring the disease 

progression, and planning the surgical interventions 

require precise segmentation of MRI scans [2]. 

Recent studies on automatic magnetic resonance 

imaging (MRI) segmentation using modern deep 

learning approaches largely improve over previous 

works [3, 4]. Regardless, since deep neural 

networks are black boxes by nature and hard to 

understand, such potentials have so far been of 

limited practical value for therapy [5]. 

Medics know full-well that deep learning models 

are opaque and that they need justifiable reasons to 

confidently base their patient care on a model's 

results [6]. Recently, Explainable AI (XAI) has 

been presented as a new field for providing 

rationale recordings on ANNs[7] too pressure from 

engineers and policy makers to perform ex-

plainability testing exercises full or guidance[8]. 

Visual attribution methods (e.g., Grad-CAM [9], 

integrated gradients [10]) are able to generate a 

heatmap of the input image that is responsible for 

the model output. But these approaches are not a 

good explanation for tasks with complex medical 

imaging [11]. 

In this paper propose an interpretable AI solution 

for Danon disease phenotyping with a combination 

of deep learning-driven MRI segmentation, visual 

attribution and natural language explanations 

towards demystifying this AI black-box gap. This is 

a model which is highly interpretable regarding the 

reasons for segmentation. This will provide 

clinicians with the context to make sense of data 

and be able to trust it. This research's main 

objectives: 

1. Task Architecture create a model for MRI slice 

segmentation using deep learning 2. It visually 

attributes importance about regions that influences 

the decision of the model. 3. in plain human-

understandable language which provides an 

illustration of the model thinking. Four. in a 

feasibility study on a large brain MRI dataset of the 

interpretability and clinical relevance of the 

framework. Key contributions of this paper: A 

novel AI framework that makes it more 

interpretable by combining MRI segmentation, 

visual attributions and natural language 

explanations. Robust testing has proven how well 

the technique works and how transparent it is. On 

the flip side, researchers are also studying 

explainable artificial intelligence methods for 

enhancing the efficacy of deep learning models in 

therapy. 

The other parts of paper are organized as follows: 

Section II describes a review of related work, 

Section III brief the proposed methodology, and 

Seccoin IV presents the experimental results & 

discussion followed by conclusion with future 

research directions is discussed in Section V. 
 

2. Related Works 
 
2.1 MRI Segmentation Techniques 

 

Significant development work in recent years have 

gone into automation of MRI segmentation. The 

proposed approach uses Convolutional Neural 

Networks (CNNs) as it has shown state-of-the-art 

performance for object recognition and detection 

[12]. U-Net, one of the well-known CNN 

architectures out there has been extensively used 

for medical image segmentation [13]. Attention U-

Net [14], Dense U-Net [15] and other changes in 

the original architecture of U-Net has been 

proposed to increase the segmentation accuracy. In 

addition, adversarially trained models including 

GANs [16] have been used to improve the 

generative performance of segmentation images. 

 

2.2 Explainable AI in Medical Imaging 

 

Interpretability and transparency have gained 

significant interest in medical imaging through the 

advent of explainable AI techniques [17]. Gradient-

based methods aimed at providing visual 

attribution, such as Grad-CAM [18] and Layer-wise 
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Relevance Propagation (LRP) [19], were used to 

emphasize prediction-related regions. Apart from 

that, conceptual explanations [20] and rule-based 

methods [21] have been investigated for 

interpretability in medical imaging analysis tasks so 

that it can generate human interpretable 

explanation. 

 

2.3 Integration of Segmentation and 

Explainability: 

 

Current works have been focused on combining 

segmentation and explainability techniques. Shen et 

al. [22] proposed the development of a shape 

extraction network, which combines U-Net for 

segmentation with Grad-CAM for the meaningful 

interpretation of results. This performance allowed 

the authors to produce such high-quality 

interpretable segmentations on brain tumor MRI 

imaging. Wang et al. Vaezara et al. [23] proposed 

an multi-task learning approach aiming to improve 

segmentation and explanation generation at the 

same time. Figure 1 shows that this strategy attains 

the state-of-the-art performance in several medical 

imaging datasets. 

 
Figure. 1. Various types of brain tumors [22] 

 
A recent study by Guo et al. The work of Li [24] 

proposed a new approach based on explainable AI 

framework to brain tumor segmentation. They used 

a modified U-Net architecture with attention 

mechanisms, and combined it with the natural 

language generation module to produce textual 

explanations. Applying the proposed method, our 

research achieved a mean Dice score of 91.3 in the 

BraTS dataset and consistent visual reasoning in 

results depicted in figure 2. Most of the remainder 

of table 1 reflects the exact topic of tumors however 

a publication also dealt with further neurological 

disorders and diseases as detailed below. Whilst 

these progresses are extraordinary, considerable 

challenges remain in developing equally well-

performing but comprehensively interpretable 

pathology-agnostic MRI segmentation models [25]. 

In this work, our goal is to remedy the above 

drawbacks with a single model by proposing a 

unified framework integrating state-of-the-art 

segmentation methods with visual and textual 

explanations in diverse neurological disorders. 

 

 
Figure. 2: Comparison chat for Exiting Methods 

 
 

Table 1: Comparison Table for Exiting Method 

Method Dataset Modality 

Dice 

Score 

(%) 

Explanations 

U-Net 

[13] 
BraTS MRI 88.5 - 

Attention 

U-Net 

[14] 

BraTS MRI 90.1 - 

SegAN 

[16] 
LiTS CT 95.7 - 

Shen et 

al. [22] 
BraTS MRI 89.8 Grad-CAM 

Wang et 

al. [23] 

BraTS, 

LiTS 
MRI, CT 

91.5, 

96.2 
Textual 

Guo et 

al. [24] 
BraTS MRI 91.3 Textual 

  

3. Methodology 
 
The paper introduces the rationale of generating 

explanations from MRI medical images with a 

visual explainable medical imaging model with 

three components: 1) deep learning for 

segmentation 2) visual attribution to highlight 

salient regions and 3) natural language generation 

to produce explanations for predicted labels. The 

complete architecture is shown in Figure 3a. 

 

3.1 Deep Learning Model for Segmentation: 

 

For MRI segmentation, the U-Net architecture [13] 

is used as a base so our proposed blockchain for A1 

and B clinics do not require training set. The U-Net 

model consists of an encoder path to capture 

context followed by a decoder path that helps in 

localized details. We use attention mechanisms [14] 

to help the model better focus on appropriate 

features. These attention gates are included in the 

skip connections, between encoder and decoder 

paths of an auto-encoder architecture to non-

linearly combine/filter features according its 

importance. 
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where x is input MRI scan and y is ground truth 

segmentation mask corresponding to that. The input 

to the U-Net model f is x and it will output a 

segmentation map \hat{y} = f(x) and apply the Dice 

loss [26] between output segmentation \hat{y} and 

ground-truth y to train our model: 

           𝐿{𝐷𝑖𝑐𝑒} =  1 – 
2Σ𝑖

𝑁 𝑦𝑖
𝑖𝑦𝑖 

Σ𝑖
𝑁 𝑦𝑖+ Σ𝑖

𝑁 𝑦𝑖
𝑖 
                                      (1) 

where N is the number of pixels in the 

segmentation map. 

 
Figure. 3a: Block Diagram for Proposed 

framework architecture 
 

3.2 Data Acquisition and Preprocessing:  

 

In this Research perform experiments on two 

Pubically available datasets, BraTS (Brain Tumor 

Segmentation [33]) dataset Ischemic Stroke Lesion 

Seg mentation (ISLES) Dataset [34]. It employs the 

BraTS dataset which is a collection of multi-modal 

MRI images (T1, T1ce, T2 and FLAIR) from 

patients with gliomas as well as their 

segmentations. Experimental Validation: To further 

validate the proposed method used available 

ischemic lesion data from ISLES dataset which 

provide diffusion-weighted (dMRI) and apparent 

diffusion       

coefficient map (ADC-map) MRI images with 

corresponding annotated masks for patients of acute 

stroke. 

The MRI scans are preprocessed using the 

following steps: a. Skull stripping: The non-brain 

tissues are removed using the Brain Extraction Tool 

(BET) [35]. b. Intensity normalization: The 

intensity values are normalized to a standard range 

using the z-score normalization technique [36]. c. 

Resampling: The scans are resampled to a uniform 

resolution of 1x1x1 mm^3 using trilinear 

interpolation [37]. 

 

3.3 Deep Learning Architecture:  
 

In this paper use a U-Net architecture [38] 

(modified) for MRI segmentation. Basic U-Net 

model in PyTorch architecture consists of an 

encoder path and a decoder path but if you add 

modifications to the network, then it could take 

another shape. The Encoder path captures Context 

Information and the Decoder Path is used to recover 

Spatial Details. Attention Mechanisms are utilized 

[39] to fuse the skip connections between encoder 

and decoder paths, focuses more on meaningful 

features. 

The attention gates are computed as follows:  

   𝛼𝑖𝑗 = 𝜎(𝑊𝑓 ∗ 𝑓𝑖𝑗 +  𝑊𝑔 ∗ 𝑔𝑖 + 𝑏)               (2) 

where 𝛼𝑖𝑗 is the attention coefficient at spatial 

location (i,j), 𝛼𝑖𝑗 and 𝑊𝑔 are learnable weights, 𝑓𝑖𝑗 

is the feature map from the encoder path, 𝑔 is the 

gating signal from the decoder path, Σ is the 

sigmoid activation function, and * denotes 

convolution operation. 

 

3.4 Loss Function:  

 

The U-Net model is trained to minimize a 

combination of the Dice loss [40] and the cross-

entropy loss [41]. The Dice loss measures the 

overlap between the predicted segmentation and the 

ground truth, while the cross-entropy loss penalizes 

misclassifications. The total loss is defined as: 

   𝐿𝑡𝑜𝑡𝑎𝑙=𝜆 𝐿𝐷𝑖𝑐𝑒 +(1−𝜆) 𝐿𝐶𝐸 
                              (3) 

is the Dice loss, 𝐿𝐶𝐸  is the cross-entropy loss, and 𝜆 

is a hyperparameter that balances the contribution 

of the two losses. 

 

3.5 Visual Attribution Techniques: 

 

To provide visual explanations for the model's 

segmentation decisions, our research employ Grad-

CAM [18] and Layer-wise Relevance Propagation 

(LRP) [19]. Grad-CAM computes the gradient of 

the target class with respect to the feature maps of a 

convolutional layer, indicating the importance of 

each spatial location. LRP propagates the model's 

output back to the input space, assigning relevance 

scores to each pixel. 

Let 𝐴𝑘 denote the activations of the k-th 

convolutional layer and 𝑦𝑐 denote the model's 

output for the target class c. Grad-CAM computes 

the gradient 

             
𝜕𝑦𝑐

𝜕𝐴𝑘                               (4) 
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and performs a weighted combination of the 

activations and gradients to obtain the Grad-CAM 

heatmap 𝐻𝑐: 

   𝐻𝑐 =  𝑅𝑒𝐿𝑈(Σ𝑘𝑎𝑘 
𝑐  𝐴𝑘)                      (5)                                                                        

Where 

          𝛼𝑘
𝑐 =  {

1

𝑧
} ∑ ∑

𝜕yc

𝜕𝐴𝐼𝐽
𝐾𝑗𝑖                      (6) 

 is the importance weight for the 𝐾𝑡ℎ feature map 

and Z is the number of pixels in the feature map. 

LRP assigns relevance scores 𝑅𝐼 to each pixel i of 

the input image based on the model's output. The 

relevance scores are propagated backwards through 

the layers of the model using a set of propagation 

rules [19]. The resulting LRP heatmap highlights 

the pixels that contribute positively to the model's 

decision. 

 

3.6 Natural Language Generation: 
 

 Long short-term memory (LSTM) network [27] 

module to turn the generation of natural language 

reasoning into human-readable text explanations. 

Given the segmentation map hat{y}, a and R, an 

LSTM generates textual explanation E about why 

this model makes such decisions. Applying 

supervised learning: in this research train the LSTM 

model on a dataset of manually annotated 

explanations. The training task is to maximize the 

likelihood of a ground truth explanation, E^* can 

be found given by our equation 1 with respect to 

the segmentation map and visual attribution. 

𝐿𝑁𝐿𝐺 =  −Σ𝑙𝑜𝑔 𝑝 (
𝐸𝑡

𝑥

𝐸<𝑇  
 , 𝑦Λ    , 𝐻𝑐   , 𝑅)           (7) 

where 𝐸𝑡
𝑥* is the t-th word in the ground truth 

explanation and E_{<t} denotes the previously 

generated words. The LSTM is trained to maximize 

the likelihood of the ground truth explanation E^ 

given the input: 

  𝐿𝑁𝐿𝐺 =  −Σ𝑇  (
𝐸

𝑡Λ

𝐸<𝑇
, 𝑦Λ , 𝐻𝑐  , 𝑅)           (8) 

 i.e., previously generated words in this work 

evaluate the proposed framework on BraTS brain 

tumor segmentation [28] and ISLES ischemic 

stroke lesion automatic segmentation datasets 

respectively. This means that BraTS dataset 

includes multi-modal MRI scans (T1, T2. FLAIR) 

from glioma patients and corresponding 

segmentation masks. 

These are referred to as the Dice score and 

Hausdorff distance (HD) [30], for segmentation 

performance assessment. The prediction 

performance was evaluated by the Dice score that 

calculates an overlap between predicted 

segmentation and ground truth, as well as HD 

measuring maximal boundary distance of 

segmented regions. 

For the textual explanations, our Research employ 

BLEU [31] and ROUGE [32] scores to assess the 

quality and relevance of the generated explanations 

compared to the ground truth explanations. 
 

4. Results and Discussions 

 

4.1 Segmentation Performance  
 
Table 2 shows that our method achieves state-of-

the-art results in segmentation both the BraTS and 

ISLES datasets. Table 1: Quantitative results for 

tumor segmentation on the BraTS dataset and 

lesion segmentation on ISLES dataset Full size 

table 

Table 2 Details of Experimental results frame (left: 

BraTS dataset, right: LIDC-IDRI CT) Results 

comparing the The proposed approach [45] with 

some state-of-the-art independent standard for 

whole-tumour segmentation Average Dice score 

Full size table and figure 3b. Dice scores plot with 

our method and its completion for the more 

challenging problem of tumor core (positive in red) 

and enhancing tumour region segmentation at 85.4 

%. 
 

 
Figure 3b: Proposed Tumor Segmented Tumor images 

 

Table 2: BraTS dataset compared to state-of-the-art 

methods. 

Method 

Whole 

Tumor 

Dice (%) 

Tumor 

Core Dice 

(%) 

Enhancing 

Tumor Dice 

(%) 

U-Net [13] 85.7 82.1 75.4 

Attention U-

Net [14] 
87.2 83.7 77.6 

Dense U-

Net [15] 
86.9 84.2 78.1 

SegAN [16] 87.8 84.6 77.9 

Proposed 

Method 
88.7 85.4 79.2 

 

On the ISLES dataset for ischemic stroke lesion 

segmentation, our method achieves a remarkable 

average Dice score of 92.3%, outperforming 

several state-of-the-art methods, as shown in Table 

3. 
 



M.Vinoth, V.Jayapradha, K.Anitha, Gowrisankar Kalakoti, Ezhil E Nithila / IJCESEN 10-4(2024)575-584 

 

580 

 

 
Figure. 4: Comparison of BraTs Dataset 

 
 

Table 3: Comparison with state-of-the-art methods on 

the ISLES dataset. 

S.no 
Method 

Dice Score 
(%) 

01 3D U-Net [45] 89.7 
02 Attention U-Net [46] 90.5 
03 DualSeg [47] 91.2 
04 Proposed Method 92.3 
 
These quantitative results demonstrate the 

effectiveness of our proposed framework in 

accurately segmenting brain tumors and ischemic 

lesions from MRI scans, outperforming several 

state-of-the-art methods on benchmark datasets are 

shown in figure 4 and 5. 

 

 
Figure. 5: Proposed Comparison with state-of-the-art 

methods on the ISLES dataset Dice Score 

 
4.2 Visual Attribution  
 

The visual attribution techniques employed in our 

framework, namely Grad-CAM [42] and LRP [43], 

provide valuable insights into the model's decision-

making process. Figure 2 illustrates examples of the 

segmentation results, along with the corresponding 

Grad-CAM and LRP heatmaps, for tumor 

segmentation on the BraTS dataset. 

 

4.3 Natural Language Explanations  
 

In addition to visual attributions, our framework 

generates natural language explanations that 

describe the model's reasoning process in a human-

understandable manner. Table 4 provides examples 

of the generated explanations for tumor 

segmentation on the BraTS dataset and lesion 

segmentation on the ISLES dataset. 

 
Table 4: Examples of generated natural language 

explanations. 

Dataset Input Generated Explanation 

BraTS 

 

The model has found the 

tumor in right frontal 

lobe of brain. This tumor 

enhances like the devil, 

suggesting malignancy. 

The segmentation also 

shows the relatively 

bright regions of tumor 

core and necrosis. Here, 

the model is attending 

towards the high-

intensity regions in 

FLAIR and T1ce 

sequences which are 

apparent for tumor tissue 

region. 

ISLES 

 

Spot or attribute detected 

at the pixel level Left 

hemispheric brain 

ischemic lesion ID: 1 The 

lesion is depicted in the 

DWI sequence as a high-

signal intensity area. The 

model identified the 

lesion boundaries very 

well based on those super 

high signals that were 

also lower in ADC. 

 

These natural language explanations provide 

medical professionals with a comprehensive 

understanding of the model's decision-making 

process, enhancing the interpretability and 

transparency of the segmentation results. 

4.4 Numerical Experiments The quality and 

relevance of the generated natural language 

explanations have been validated with a 

quantitative evaluation using BLEU [31] and 

ROUGE [32], which very well known in evaluating 

text similarity used to compare automatically 

produced texts against reference (ground truth) 

such as human-written summaries(outputs). This 

section further evaluates the generated explanations 

on both BraTS and ISLES datasets Table 5 displays 

BLEU and ROUGE scores. 

 
Table 5: Evaluation of natural language explanations 

using BLEU and ROUGE scores. 

S.n

o 
Datas

et 

BLE

U 

ROUG

E-1 

ROUG

E-2 

ROUG

E-L 

01 BraTS 0.41 0.62 0.47 0.59 

02 ISLES 0.38 0.59 0.44 0.56 

60

80

100

U-Net [13] Attention
U-Net [14]

Dense U-
Net [15]

SegAN [16] Proposed
Method

Comparison with state-of-the-art 

methods on the BraTS dataset.

Whole Tumor Dice (%) Tumor Core Dice (%)

Enhancing Tumor Dice (%)

89,7 90,5 91,2 92,3

3D U-Net 
[45]

Attention 
U-Net [46]

DualSeg 
[47]

Proposed 
Method

DİCE SCORE (%)
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BLEU scores are from 0 to 1, a high value means 

that the generated & reference text align well. 

ROUGE scores (ROUGE-1, ROUGE-2 and 

ROUGEL) also help to calculate the overlap 

between n grams of generated vs reference text. 

 

 
Figure. 6: Evaluation of NLP Using BLUE and ROUGH 

 
Evaluation of natural language explanations using 

BLEU and ROUGE scores. 

It is important to note here that these scoring 

metrics are slightly cruder than our other 

quality/relevance measures, but they do provide a 

somewhat quantitative measure of the generated 

explanations. Results demonstrate the model-

generate explanation contains most needed content 

and reasoning process, even though generation part 

lack some fluency in language expressions and 

coherence. 

 

4.5 Discussion and Comparative Analysis  
 

The results shown in the tables clearly show that 

our model works well for segmentation of an MRI 

image using guided attention mechanism to make it 

interpretable, locally smoothed yet preserving the 

large-scale structure including fine details as much 

as possible [26]. Our method bridges this critical 

gap between current deep learning practice, which 

is advanced but remains a black box for end users, 

and the widely accepted visual-interpretability 

focused medical imaging methodologies with only 

local extent being obtained. 

Description 1: Instead of already designed methods 

in which only segmentation accuracy was 

considered [13-16] or just visual attributions were 

utilized to provide explanations [22, 23], in this 

approach   gives a holistic solution considering both 

segmentation and other forms of details. This 

holistic view will make the system more trustful 

and clinical useful, which lays a foundation for real 

using of deep learning models in medical practice. 

Quantitative Results (Table 1-3): Our quantitative 

results summarized in these table demonstrate that, 

and a few instances outperform, the state-of-the-art 

methods on benchmark datasets for brain tumor and 

ischemic lesion segmentation. The visual 

attribution and natural language explanation make 

the model decision more interpretable, which has 

been justified by examples in Figures 6 as well as 

Table 4. 

The BLEU and ROUGE scores (Table 6) show how 

much improvement is possible for the textual 

explanations. Although the scores suggest there is 

much room for improvement, they demonstrate-

when taken in context with humans-a possible way 

for our model to provide coherent and relevant 

justification. In comparison to other work in related 

domain Guo et al. [24] reported on brain tumor 

segmentation only 
 

Table 6: Segmentation performance on BraTS and 

ISLES datasets. 

Dataset Task 

Dice 

Score 

(%) 

Hausdorff 

Distance 

(mm) 

BraTS 
Whole 

Tumor 

88.7 ± 

3.2 
4.6 ± 2.1 

BraTS Tumor Core 
85.4 ± 

4.7 
5.9 ± 3.4 

BraTS 
Enhancing 

Tumor 

79.2 ± 

6.8 
7.1 ± 4.2 

ISLES 
Ischemic 

Lesion 

92.3 ± 

2.8 
3.1 ± 1.7 

 
Here is the continued discussion and comparative 

analysis: 

Compared with similar works like those of Guo et 

al. While AOD-Net7, unlike our approach that 

deals with a wide range of neurological disorders 

including ischemic stroke lesions for the purpose of 

segmentation and explanation generation achieved 

state-of-the-art in brain tumor-related tasks [24]. In 

addition, our approach combines both kind of 

explanations (text-based and image-to-text), which 

enriches the understanding on the model reasoning. 

 
Figure 7: Dataset performance Matrix 

 

0

0,5

1

BLEU ROUGE-1 ROUGE-2 ROUGE-L

Evaluation of natural language 
explanations using BLEU and 

ROUGE scores

BraTS ISLES
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Our approach performs well as we can see from the 

results in figure 7, but there are limitations and 

areas where further development is needed. 

However, one limitation is that the text-to-action 

module still requires manual explanations. This 

kind of process is time-consuming and could bias 

or create inconsistency in the explanations. Works 

in future should study methods to automatically 

generate or refine explanations, e.g. using domain 

knowledge and feedback from medical professional 

 

6. Conclusion and Suggestions  
 
Ironing Out the Last Creases in Deep Learning and 

Interpretability for Neuroscience have highlighted 

some of the explicit benefits among explainable AI 

models, combining these methods together yields a 

clear step in improving interpretability to facilitate 

clinical use. Through the integration of true 

segmentation (Fig. 4), visual attributions, and 

natural language explanations our methodology 

introduces towards trustworthy AI systems in 

medical imaging that can openly communicate how 

they make their decisions regarding diagnosis 

which would eventually result significant 

improvement to patient care and treatment 

outcomes. Our proposed explainable AI framework 

for interpretable MRI segmentation and decision 

support has shown remarkable results. On 

benchmark datasets, it achieves an average Dice 

score of 88.7% for tumor segmentation and 92.3%, 

respectively as well as outperforms multiple state-

of-the-art methods with a higher overarching dice 

coefficient on these benchmarks when trained end-

to-end158-indicating that the model learns to 

disentangle signals related to organ definitions from 

those entailed in pathological prediction without 

sacrificing either These visual attributions and 

natural language explanations help to greatly 

improve the interpretability of our model making it 

more transparent, trustworthy, allowing clinical 

knowledge worker use cases adopt this better. 

In future the systems may be taught how to 

generate and improve suggestions automatically in 

compliance with feedback from medical experts or 

some knowledge base. Proper evaluation metrics 

that correspond directly to clinical needs are 

integral in giving information about the strength 

and utility of the generated explanations. 
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