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Abstract:

Secondary neutrons produced by proton-target interactions in high-energy proton
accelerator facilities present a major shielding challenge due to their high penetrability
and broad energy spectra. In this study, neutron dose attenuation in B,C- and FeB-
enhanced concretes containing 5%, 10%, and 15% additives was investigated at a proton
energy of 1000 MeV using FLUKA-based Monte Carlo (MC) simulations coupled with
Machine-learning (ML) surrogate models.MC-generated dose data were used to train log-
linear Linear Regression (log-linear LR), K-Nearest Neighbors (KNN), Random Forest
(RF), and Gradient Boosting Regressor (GBR) models to enable rapid dose prediction.
The results show that RF and GBR achieve the highest predictive accuracy under all
configurations, with test-set R? values of approximately 0.98-0.99 in tunnel air and 0.99-
0.996 in concrete shielding. In contrast, the LR model performs poorly in shielding
regions due to strong nonlinearity, while KNN also provides high predictive accuracy
exceeding 90%, albeit with lower performance compared to RF and GBR. A comparative
analysis reveals that FeB-enhanced concrete exhibits more complex attenuation behavior
due to the combined effects of iron-induced scattering and boron absorption. Overall, the
validated hybrid MC-ML framework demonstrates that RF- and GBR-based surrogate
models provide a fast, reliable, and computationally efficient approach for neutron dose
estimation and shielding optimization in high-energy proton accelerator facilities.

1. Introduction

governed by the interaction mechanisms of gamma
rays and neutrons within the material. For gamma
radiation, concrete density and effective atomic

The steadily increasing use of ionizing radiation in
nuclear facilities, medical applications, and
industrial systems necessitates the development of
effective, reliable, and sustainable shielding
solutions against these radiation types. In particular,
the high dose levels encountered in particle
accelerators, research reactors, and radiation-
producing industrial facilities render shielding
design one of the most critical components of facility
safety. In this context, concrete stands out as one of
the most widely used construction materials for
radiation shielding owing to its high mechanical
strength, cost-effectiveness, wide availability, and
the possibility of tailoring its properties through the
incorporation of various additives [1-3]. The
radiation shielding performance of concrete is

number are among the primary determining factors,
whereas neutron shielding represents a more
complex process that requires the joint optimization
of moderation and absorption mechanisms. The
concrete matrix, due to its hydrogen content, acts as
an effective moderator for fast neutrons; however, a
shielding strategy based solely on moderation is
insufficient, particularly in high-energy neutron
fields [4-6].

In high-energy proton accelerators, especially under
proton—target interactions at energies on the order of
1000 MeV, secondary neutrons produced over a
broad energy spectrum pose a significant
engineering challenge in shielding design because of
their high penetration capability. Compared to
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thermal or low-energy neutrons, these high-energy
neutrons penetrate much deeper into shielding
materials, often necessitating very thick shielding
structures to achieve effective attenuation.
Numerous studies have reported that, in shielding
systems relying solely on standard concrete, the
required thicknesses may exceed practical and
economic limits. This issue further complicates
shielding design in tunnel-type accelerator facilities,
where spatial, economic, and structural constraints
are particularly restrictive [7-13].

In response to these challenges, recent years have
witnessed growing interest in additive-enhanced
concrete approaches aimed at improving shielding
performance. While heavy aggregates such as barite,
hematite, and magnetite are effective in enhancing
gamma-ray shielding, the incorporation of boron-
based additives into concrete has emerged as a
promising strategy for neutron shielding. Compared
to standard concrete, additive-enhanced concrete
systems provide higher attenuation efficiency,
enabling a reduction in the required shielding
thickness and facilitating more compact shielding
designs [5-9, 10,12].

Within this framework, concretes incorporating
boron carbide (B,C) and ferroboron-based additives
have attracted particular attention for high-energy
neutron shielding applications. B,C supports the
efficient absorption of moderated neutrons owing to
its high neutron capture cross-section, while
ferroboron (FeB, Fe,B) additives offer a synergistic
shielding mechanism by combining the scattering
properties of iron with the absorption capability of
boron. The combined action of neutron moderation
provided by the concrete matrix and neutron
absorption induced by boron-based additives
constitutes a critical advantage in attenuating
secondary neutrons generated in high-energy proton
accelerators. As a result, overall neutron dose levels
can be reduced while simultaneously optimizing
shielding thickness [1,6-10,12,14].

In the literature, in addition to comprehensive review
and experimental studies on concrete-based
radiation shielding, several investigations have
addressed the neutron shielding performance of
B4C- and ferroboron-enhanced concretes. Studies
conducted by Sartyer et al. and other researchers
have demonstrated that additive-enhanced concrete
systems offer significant advantages over standard
concrete in reducing neutron dose. Nevertheless, a
substantial portion of existing studies has focused on
low- and intermediate-energy neutron fields or
specific geometric configurations. Consequently,
systematic and direct comparisons of the
performance of B,C- and ferroboron-enhanced
concretes under identical geometric and physical
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conditions in high-energy neutron fields remain
limited in the literature [1,6-10,12,14].

Most studies on high-energy neutron shielding rely
on Monte Carlo (MC)-based simulation codes,
which can model radiation transport processes in a
detailed and physically accurate manner [1,3,4,7-
14]. Although MC methods can represent the
behavior of secondary neutrons generated by
proton—target interactions with high fidelity, their
computational cost—particularly for accelerator
applications at energies around 1000 MeV—
significantly limits extensive parameter space
exploration, multi-scenario analyses, and rapid
optimization studies. Consequently, in recent years,
the integration of high-dimensional datasets
generated by MC simulations with machine learning
(ML)-based surrogate models has emerged as a
complementary approach to alleviate computational
burdens [15,16].

ML is a data-driven approach that aims to predict
complex and nonlinear system behavior by
automatically learning patterns and relationships
from data, offering significant advantages in multi-
parameter problems where classical deterministic or
analytical  methods are  inadequate. In
computationally intensive applications such as
radiation  shielding-where geometry, material
composition, energy, and interaction processes
jointly influence system behavior-ML enables the
development of low-fidelity surrogate models that
learn from high-dimensional datasets generated by
physics-based MC simulations and provide rapid,
low-cost predictions. The primary objective of such
ML-based models is not to replace high-fidelity
calculations, but rather to deliver reasonably
accurate estimates that support rapid preliminary
assessments,  parameter  screening,  design
optimization, and uncertainty analysis. Their most
notable advantages include low computational cost,
limited resource requirements, and the ability to
explore large parameter spaces efficiently.
Nevertheless, it must be emphasized that ML
approaches do not explicitly represent the
underlying physical processes and therefore cannot
substitute physics-based MC simulations. From the
perspective of reliable and practical shielding
design, the critical framework is a validation-driven
hybrid (MC-ML) approach, in which ML-based
predictions are systematically verified against high-
accuracy MC calculations before being used in final
design decisions. In this way, ML accelerates the
design process, while MC methods ensure the
necessary physical accuracy and reliability [15-24].
Within this context, the literature contains a limited
but noteworthy number of studies based on MC-ML
integration. Chen et al. (2023) simulated 200
shielding configurations using MCNP to optimize
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neutron beam shutters in a cyclotron-based neutron
production system; using the resulting data, they
trained a fully connected artificial neural network
(ANN), applied it to 1,000 randomly generated
shielding structures, and subsequently validated the
top 20 configurations with MCNP. This approach
demonstrated that ML-based methods can jointly
achieve accuracy and computational efficiency in
neutron shielding optimization [17]. Edelen et al.
(2016) investigated the contribution of ANN-based
methods to modeling nonlinear and complex
processes in particle accelerator control systems,
showing—through an experimental ANN-assisted
resonance control application at FAST/Fermilab—
that classical control approaches are insufficient due
to multi-subsystem interactions and long-term
stability  requirements, whereas ANN-based
techniques provide substantial benefits in predicting
system dynamics and enabling adaptive control [22].
Rajarshi Pal Chowdhury et al. (2023) developed a
1D-CNN capable of rapidly predicting differential
neutron flux to reduce the high computational cost
of PHITS-based MC calculations in the FRIB case;
they reported that the model, trained over the 1-250
MeV energy range, could reproduce neutron spectra
with approximately 10% error in tests involving
10,000 samples, achieving millisecond-level
prediction times and successful effective dose
estimation [19]. In a subsequent study, Pal
Chowdhury et al. (2026) demonstrated that a CNN-
based surrogate model emulating MC transport
simulations could learn neutron attenuation behavior
under varying energy and material conditions and
predict  post-shield  neutron  flux  almost
instantaneously with reasonable accuracy; the
applicability of the approach was highlighted in the
context of effective dose rate calculations and
shielding optimization for FRIB applications [23].
Overall, these studies indicate that MC-ML hybrid
approaches provide an advantageous framework for
rapid exploration of the design space and multi-
parameter optimization in radiation shielding design
for accelerator facilities [17,22-24].

The aim of the present study is to develop a
comprehensive shielding model that integrates
FLUKA-based MC simulations with ML techniques
for the effective attenuation of secondary neutron
radiation generated under abnormal operating
conditions in high-energy proton accelerators.
Within this scope, dose prediction models were
constructed for various medium-shield
configurations at an energy level of 1000 MeV using
logarithmic linear regression [25-29], Gradient
Boosting  Regressor  [27,30-34],  K-Nearest
Neighbors (KNN) regression [30,31,35,36], and
Random Forest algorithms [27,30,31,37], and their
predictive  performances were systematically
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evaluated through a comparative approach.
Furthermore, the hybrid MC-ML methodology—
addressed in a limited number of studies in the
literature—was examined in detail, and the findings
were shown to provide original and meaningful
contributions toward the optimization of radiation
shielding design.

2. Material and Methods

In this study, dose distributions of secondary
neutrons generated by the interaction of 1000 MeV
protons with the target material were investigated in
detail within the air-filled tunnel and along the
surrounding concrete shielding layers containing
B.C and FeB additives at different concentrations
(5%, 10%, and 15%). The shielding analyses were
carried out using versions 2011.2b and 2011.2¢ of
the FLUKA MC simulation code, and dose values
corresponding to various shielding thicknesses and
radial distances were calculated for each shielding
configuration. The simulation outputs obtained were
subsequently used for the development and
performance evaluation of regression-based
machine learning algorithms. During this process,
data preprocessing, model training, and performance
analysis were conducted using the Python
programming language, with extensive use of open-
source data science libraries including NumPy,
Pandas, Matplotlib, and Scikit-learn.

2.1 FLUKA-Based Simulation Design and Data
Generation

To accurately model particle-matter interactions, a
spherical geometry with a radius of 25 m was
constructed using the FLUKA MC simulation code.
The outermost region of the sphere was defined as a
1 m thick blackhole layer to terminate particle

> | m backbole

Figure 1. Computational geometry of the tunnel and
surrounding concrete shielding modeled in the FLUKA
MC simulations
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tracking. Within the sphere, a shielding region with
a total thickness of 24 m was modelled and
separately applied for concrete shielding materials
containing B,C and FeB additives at concentrations
of 5%, 10%, and 15%. At the center of the spherical
geometry, an air-filled tunnel with dimensions of 5
m (X-axis) x 5 m (y-axis) x 10 m (z-axis) was placed.
The computational geometry used in this study is
schematically illustrated in Figure 1.1t is well known
that protons propagating along accelerator tunnels
interact with copper surfaces, which are widely used
in the internal structures of accelerator components
such as quadrupole magnets and RF cavities,
particularly in regions where beam losses occur. For
this reason, a cubic copper block with dimensions of
5cm x 5 cm x 5 cm and parallel faces was selected
as the target material. The chosen copper target with
a thickness of 5 cm was not designed to completely
stop 1000 MeV protons, since at this energy level the
proton range in copper extends to several tens of
centimetres. Instead, the copper target was modelled
to represent localized proton—-material interactions
occurring on copper components under realistic
beam loss conditions, as well as the subsequent
production of secondary particles, primarily
neutrons. Accordingly, the copper target was treated
not as a full proton absorber but as a partial
interaction region.

To model the proton source in a manner that enables
the formation of maximum dose in all directions, a
point-like proton source was defined with reference
to the exact geometric center of the copper target.
This definition does not imply that protons are
physically generated within the target volume;
rather, it represents an idealized approach to beam-
material interactions in accelerator components. To
prevent direct activation of the shielding materials
by the primary proton beam, the beam axis was
positioned 2.5 m away from the tunnel side walls and
4 m below the tunnel ceiling. The location of the
copper target within the air-filled tunnel, together
with the reference point of the proton source and the
relative placement of the beam axis, is schematically
illustrated in Figure 2. When MC-based methods are
employed in shielding design calculations, the
reliability of the results decreases significantly due
to increased statistical uncertainties, particularly in
simulations performed with a limited number of
particles. Therefore, in order to ensure the statistical
accuracy required by the MC approach, five
independent simulation cycles were carried out in
this study, each involving 6 x 108 primary particles
and using different random number seeds. In
general, MC simulations that involve high-energy
particle transport and the tracking of a large number
of events are known to entail extremely high
computational costs and long execution times on
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Figure 2. Schematic representation of the proton source
and copper target placement inside the tunnel relative to
the surrounding shielding.

conventional desktop computers. Consequently, the
use of high-performance computing (HPC) cluster
infrastructures becomes indispensable for such
calculations. Accordingly, all MC simulations
presented in this study were performed on the TR-
Grid high-performance computing cluster.

The outputs obtained from the simulations were
analyzed in detail based on the data files generated
by the FLUKA code. To quantitatively determine
dose distributions at different spatial locations along
the tunnel, the three-dimensional spatial scoring
detector of FLUKA, namely the USRBIN card, was
employed. The detector volume was defined as 3400
c¢m, 3000 cm, and 1900 cm along the x-, y-, and z-
axes, respectively, with the corresponding numbers
of bins set to 340, 300, and 190. As a result of this
configuration, the spatial resolution of the detector
system used in the simulations was set to unit
elements (voxels) with dimensions of 10 x 10 % 10
cm?,

The dose distributions calculated for 1000 MeV
protons were visualized using FLAIR, the graphical
user interface of FLUKA, and comprehensive
quantitative analyses were performed on the
resulting data.

2.2. Selection and Training of Machine Learning
Models

ML is a data-driven approach that enables a
computer system to automatically discover patterns
and statistical relationships within given datasets and
to generate generalizable inferences from these
relationships. The ML process fundamentally
consists of two main stages. The first stage is the
training phase, during which the model learns the
input—output relationships present in the data. This
is followed by the testing and validation phase, in
which the predictive accuracy and generalization
capability of the trained model are evaluated. The
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testing process should not be regarded as a decision-
making mechanism, but rather as a validation tool
used to assess the reliability and predictive
performance of the model. If the validation results
are found to be inadequate, the model parameters are
updated and the training process is repeated. Final
prediction or decision generation is performed only
after the model has successfully completed the
validation stage. Throughout this process, two
distinct datasets are employed for performance
evaluation: a training dataset used during the
learning phase and a test dataset consisting of
samples previously unseen by the model. While the
training dataset is utilized for learning, including
data preprocessing and feature extraction, the test
dataset is used to quantitatively assess the model’s
generalization ability. Model performance is
determined using numerical metrics by comparing
predictions generated on the test dataset with
corresponding reference values [30].

ML methods are generally classified into three main
learning paradigms: supervised learning,
unsupervised learning, and reinforcement learning
[38,39]. Supervised learning encompasses methods
in which the output is predefined during the
prediction or decision-making process and the model
learns input-output relationships accordingly.
Supervised learning approaches are widely used,
particularly for classification and regression
problems.

In this study, regression-based ML models were
developed to predict neutron dose distributions
under a 1000 MeV energy level for concrete-air and
concrete-shield configurations containing B,C and
FeB additives at concentrations of 5%, 10%, and
15%, using data obtained from FLUKA MC
simulations. The problem was formulated as a
regression task aimed at predicting neutron dose,
which is a continuous physical quantity. The target
variable represents dose values calculated at
different lateral distances from the beam source,
while the model inputs consist of the corresponding
lateral distance values. The analyses indicate that the
dose decreases monotonically with increasing lateral
distance and that this behaviour can be described as
a combination of an inverse-square law component
and multiple exponential attenuation mechanisms. In
this context, the primary objective of the model is to
accurately predict the spatial distribution of dose
along different lateral positions. Accordingly,
regression-based approaches capable of learning the
functional relationship between a continuous
dependent variable and an independent variable
provide a suitable framework for this problem.

The regression models employed in this study were
selected through a deliberate and comparative
process, taking into account both the physical nature
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and the statistical characteristics of the radiation
shielding problem. Since the distance-dependent
attenuation behaviour of neutron dose exhibits
nonlinear, multi-scale, and physically complex
characteristics, the selected models were required to
capture both the dominant physical trends, and the
complex nonlinear relationships present in the data.
To this end, Logarithmic Linear Regression (log-
linear LR) was employed as a reference (baseline)
model to represent the dominant physical trend of
the dose-distance relationship. This baseline model
enables a quantitative assessment of the performance
gains achieved by more advanced ML methods.
Gradient Boosting Regressor (GBR) and Random
Forest (RF) algorithms were selected due to their
strong capability to model nonlinear attenuation
behaviour and complex spatial relationships
commonly encountered in radiation transport
problems. Owing to their decision tree—based
ensemble structures, these methods can effectively
learn dominant physical patterns across different
distance  regimes while  maintaining  high
generalization  performance. The  K-Nearest
Neighbors (KNN) regressor was included as an
intuitive, non-parametric comparison model based
on local neighborhood relationships. Its lack of
strong parametric assumptions makes KNN
particularly suitable for analysing local variations in
dose distributions that exhibit smooth and
monotonic behaviour. The selected model set spans
a broad methodological range, from simple linear
approaches to advanced ensemble-based methods,
allowing for a comprehensive comparative
evaluation of the predictive capabilities of ML-based
surrogate  models for radiation  shielding
applications.

The dataset used in this study consists of
independent samples obtained from FLUKA MC
radiation transport simulations. Each data point
represents a radiation transport output calculated for
a specific proton energy, environmental/shielding
configuration, and radial distance. This approach
enables systematic sampling of radiation fields
under different physical scenarios. The input
parameters provided to the ML models include the
lateral distance variable x (cm), representing
different radial distances within the air-filled tunnel
and varying shielding thicknesses within the
shielding region, as well as proton energy levels. In
this way, the models are trained to learn the spatial
variation of radiation fields both in air and within
shielding materials. The output data consist of the
corresponding dose equivalent values, H (uSv/h),
calculated under the same physical conditions.

The dataset constructed in this study comprises a
total of 1081 data points, obtained from calculations
performed in air and shielding regions for different
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energy levels and shielding configurations. Each
data point is defined as an input—output pair
representing a specific physical scenario and is
treated as an independent sample during the training
and testing of the ML models. The dataset was
divided into separate subsets for each environmental
and shielding configuration, and these subsets were
further structured into training and test datasets. To
ensure an appropriate bias-variance balance and to
reduce the risk of overfitting or underfitting, 75% of
the dataset was used for training and 25% for testing.
This split ratio is widely adopted in the literature and
has been shown to provide reliable performance
assessment [40].

The test dataset consists of samples not encountered
during the training phase and is used to evaluate the
generalization capability of the models after training
is completed. This approach allows model
performance to be validated on an independent
dataset not involved in the learning process, thereby
enabling the identification of potential overfitting
(bias) or underfitting (variance) issues. The
convergence of training and validation errors to
similar values indicates that the model has been
sufficiently optimized and does not require further
training [24].

Model performance was evaluated using the
coefficient of determination (R?) and the root mean
square error (RMSE) metrics. The target variable
was defined as neutron dose, H (uSv/h), while the
input variables were specified as the lateral distance
within the tunnel, x (cm), and the proton energy
level, E (MeV). Each environmental and shielding
configuration was modelled separately, and all
regression algorithms were applied within a
comparative framework.

3. Results and Discussions

This study was conducted to provide a scientific
contribution to shielding design for radiation safety
in proton accelerator facilities. The primary
objective of the study is to rapidly predict neutron
doses at different distances along the accelerator
tunnel under abnormal operating conditions using
ML-based models.

The ML-based dose predictions developed in this
work were compared with results obtained from
FLUKA-based MC simulations performed at an
energy level of 1000 MeV in order to assess their
accuracy. The dataset consisting of a total of 1081
data points used for training and testing the ML
models was not intended to replace high-fidelity MC
simulations; rather, it was employed to construct
surrogate models that enable rapid preliminary
assessment, parameter screening, and early-stage
design support prior to detailed shielding
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calculations. Through this approach, reasonably
accurate dose predictions can be obtained with low
computational cost during the early phases of the
shielding design process, while final design
decisions remain grounded in physics-based MC
simulations.

The dose distributions of secondary neutrons
produced by the interaction of 1000 MeV protons
with a copper target were used to train and test log-
linear LR, GBR, KNN, and RF models for each
material-environment configuration. For each
configuration, graphical comparisons between the
predicted and observed dose values are presented
separately.

Figure 3 shows the dose distribution profiles
obtained in an air environment at the 1000 MeV
energy level: (a) concrete containing 5% B,C-air, (b)
concrete containing 10% B,C-air, and (c) concrete
containing 15% B,C-air. Figure 4 presents the dose
distribution profiles obtained in a shielded
environment at the same energy level: (a) concrete
containing 5% B4C-shield, (b) concrete containing
10% B4C-shield, and (c) concrete containing 15%
B4C-shield. Similarly, Figure 5 shows the dose
distribution profiles obtained in an air environment
at the 1000 MeV energy level: (a) concrete
containing 5% FeB-air, (b) concrete containing 10%
FeB-air, and (c) concrete containing 15% FeB-air.
Figure 6 presents the dose distribution profiles
obtained in a shielded environment at the same
energy level: (a) concrete containing 5% FeB-shield,
(b) concrete containing 10% FeB-shield, and (c)
concrete containing 15% FeB-shield.

Figure 3. True dose measurements and full-data fitted
regression curves for B,C in air at boron fractions of
5%, 10%, and 15%
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Figure 4. True dose measurements and full-data fitted
regression curves for B4C in shield at boron fractions of
5%, 10%, and 15%

The dose distribution profiles presented in Figures 3
and 4 reveal a clear distinction between neutron
transport behavior in the tunnel air environment and
within the concrete shielding for B,C-enhanced
concrete. In the tunnel air environment, the dose
decreases smoothly and monotonically with
increasing distance from the source, whereas within
the concrete shielding the dose is reduced by several
orders of magnitude over much shorter distances,
exhibiting a steep, highly nonlinear attenuation
profile. This contrast reflects the dominant physical
mechanisms in each medium: geometric spreading
and scattering prevail in air, while neutron
moderation and absorption govern the attenuation
process within the concrete shield.A comparative
assessment of the regression curves clearly
demonstrates the superiority of nonlinear modeling
approaches. The Random Forest (RF) and Gradient
Boosting Regressor (GBR) models consistently
reproduce the reference dose values with high
fidelity in both environments. These models
accurately capture the steep dose gradients in the
vicinity of the source as well as the more gradual
attenuation behavior observed at larger distances,
yielding physically consistent predictions across the
entire spatial range. Their near coincidence with the
true dose points in the shielding environment
highlights their ability to represent the multi-scale
and strongly nonlinear nature of neutron attenuation
in B,C-enhanced concrete.

The K-Nearest Neighbors (KNN) model, while
capable of following the general attenuation trend in
the tunnel air environment, exhibits local
fluctuations and reduced stability, particularly at
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intermediate distances. Its performance deteriorates
more noticeably within the concrete shielding, where
rapid dose reductions occur. In these high-gradient
regions, KNN predictions deviate from the reference
data, indicating that its locally driven, instance-
based structure is not well suited to capturing the
complex and rapidly varying physical processes
governing neutron transport in shielding materials.
The log-linear Linear Regression (LR) model
performs inadequately in both environments, failing
to represent the inherently nonlinear dose—distance
relationship. This limitation is especially evident
within the concrete shielding, where the sharp dose
attenuation cannot be reproduced by a log-linear
formulation, leading to substantial deviations from
the true dose distribution. These observations
underscore the inability of simple linear approaches
to describe neutron transport phenomena in high-
energy accelerator shielding problems.Overall, the
results presented in Figures 3 and 4 demonstrate that
Random Forest and Gradient Boosting Regressor
models provide the most reliable and physically
meaningful predictions of secondary neutron dose
distributions for B,C-enhanced concrete. Their
robust performance in both tunnel air and concrete
shielding environments confirms their suitability for
modeling complex, nonlinear neutron attenuation
behavior. In contrast, KNN offers only limited
applicability, and linear regression approaches prove
inadequate for accurately representing the physics of
neutron shielding in high-energy proton accelerator
facilities. The dose distribution profiles presented in
Figures 5 and 6 demonstrate a clear distinction in
neutron transport behavior between the tunnel air

Figure 5. True dose measurements and full-data fitted
regression curves for FeB in air at boron fractions of
5%, 10%, and 15%
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Figure 6. True dose measurements and full-data fitted
regression curves for FeB in shield at boron fractions of
5%, 10%, and 15%

environment and the concrete shielding for FeB-
enhanced concrete. In the tunnel air environment, the
dose decreases smoothly and monotonically with
increasing distance from the source, whereas within
the concrete shielding the dose is reduced by several
orders of magnitude over much shorter distances,
exhibiting a steep and strongly nonlinear attenuation
profile. This contrast reflects the change in dominant
physical mechanisms: geometric spreading and
scattering govern neutron transport in air, while
moderation, scattering, and absorption processes
collectively control dose attenuation within the
concrete shield. An examination of Figure 5,
corresponding to the tunnel air environment, shows
that for all FeB fractions (5%, 10%, and 15%) the
dose decreases regularly with distance. A
comparison of the regression curves highlights the
superiority of nonlinear modeling approaches. The
RF and GBR models accurately reproduce the true
dose values across the entire spatial range, capturing
both the high dose gradients near the source and the
more gradual attenuation behavior observed at larger
distances. In contrast, the KNN model follows the
general trend but exhibits local fluctuations and
reduced stability, particularly at intermediate
distances. The log-linear LR model performs
inadequately even in the air environment, failing to
represent the nonlinear dose-distance relationship
and showing systematic deviations at medium and
long distances.The dose distributions within the
concrete shielding, shown in Figure 6, reveal a much
more pronounced attenuation behavior. The rapid
reduction in dose over a short distance reflects the
strong shielding effectiveness of FeB-enhanced
concrete. In this environment, the RF and GBR
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models clearly outperform the other approaches,
with prediction curves that nearly coincide with the
true dose points throughout the shielding thickness.
Their ability to accurately model the sharp dose
gradients near the source and the subsequent low-
dose saturation regions underscores their robustness
in  highly nonlinear regimes.The shielding
performance of FeB-enhanced concrete arises from
the complementary physical roles of iron and boron.
Boron provides a high neutron absorption cross
section, particularly for thermal and epithermal
neutrons, while the iron component, owing to its
relatively high atomic number and density, plays a
critical role in reducing the energy of fast neutrons
through elastic and inelastic scattering interactions.
This energy degradation shifts high-energy neutrons
toward lower-energy regimes, creating favorable
spectral conditions for efficient absorption by boron.
The resulting multi-mechanism attenuation process
leads to the complex, strongly nonlinear dose
reduction  observed  within  the  concrete
shielding.Consistent with this physical complexity,
the KNN model exhibits reduced reliability in the
shielding environment, where its locally driven
structure limits its ability to produce stable
attenuation curves in regions characterized by steep
dose gradients. The LR model performs poorly,
failing to capture the sharp dose decrease and
deviating substantially from the true dose
distribution. These observations confirm that log-
linear LR modeling approaches are not suitable for
describing neutron transport and shielding behavior
in FeB-enhanced concrete.Overall, the results
presented in Figures 5 and 6 demonstrate that RF and
GBR models provide the most reliable and
physically meaningful predictions for FeB-enhanced
concrete, both in tunnel air and concrete shielding
environments. These models consistently capture the
complex, nonlinear, and multi-scale nature of
neutron dose attenuation, whereas KNN offers only
limited applicability and log-linear LR regression
approaches prove inadequate for shielding analyses
in high-energy proton accelerator facilities.The
performance metrics of each model, along with their
hyperparameter settings, R? values for the training
and test sets, normalized RMSE (N-RMSE) results,
and the number of samples used in the training and
test sets, are summarized in Table 1. N-RMSE was
calculated by normalizing the RMSE with respect to
either the mean or the range of the data, allowing the
error magnitude to be interpreted relative to both
typical values and the spread of the dataset. The
results indicate that model performance varies not
only with the algorithm employed but also
significantly depends on the environmental
conditions and the type of shielding material.
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Table 1. Summary of machine learning model performance for each material-environment configuration.

Material Enviroment | Percent Model n R2_test NRMSE_test(%) NMAE_test(%)
B4C Air 0.05 GBR 52 0.983 £0.012 3.14+1.17 1.88 +0.84
B4C Air 0.05 KNN 52 0.950 = 0.042 548 +3.37 3.14+1.32
B4C Air 0.05 LRlog | 52 0.854 = 0.067 9.70 + 3.94 6.37 + 1.64
B4C Air 0.05 RF 52 0.991 £ 0.003 239 +0.78 1.47+0.35
B4C Air 0.1 GBR 54 0.984 =+ 0.009 3.16 £1.07 1.99 £ 0.68
B4C Air 0.1 KNN 54 0.960 =+ 0.020 5.01 £ 1.62 2.96 £0.52
B4C Air 0.1 LRlog | 54 0.856 = 0.040 9.73 +2.49 6.73 +1.33
B4C Air 0.1 RF 54 0.989 £ 0.011 237+137 1.53+0.74
B4C Air 0.15 GBR 46 0.979 = 0.008 3.53+1.26 243 +0.76
B4C Air 0.15 KNN 46 0.935 +0.045 6.17 £3.35 3.81£1.63
B4C Air 0.15 LRlog | 46 0.875 £0.061 8.52+3.83 5.86 £ 1.56
B4C Air 0.15 RF 46 0.987 £ 0.008 2.75+1.32 1.86 = 0.70
B4C Shield 0.05 GBR 137 | 0.992+0.004 1.83 £0.78 0.73 +0.36
B4C Shield 0.05 KNN 137 [ 0.977+£0.015 2.96 +1.51 0.97 +£0.52
B4C Shield 0.05 LRlog [ 137 | 0.353 £0.090 16.06 = 4.86 5.68 £2.73
B4C Shield 0.05 RF 137 ] 0.996 +0.004 1.23 £0.61 0.45+£0.22
B4C Shield 0.1 GBR 127 ] 0.991+0.004 1.80 = 0.70 0.80 + 0.36
B4C Shield 0.1 KNN 127 [ 0.971+£0.026 3.26+2.44 1.10 £ 0.70
B4C Shield 0.1 LRlog [ 127 | 0.334+0.091 16.11+5.77 6.35+3.03
B4C Shield 0.1 RF 127 ] 0.996 +0.004 1.31+0.84 0.53 +£0.30
B4C Shield 0.15 GBR 126 | 0.990 +0.006 1.76 £ 0.42 0.75 +£0.29
B4C Shield 0.15 KNN 126 | 0.973+0.024 3.13+2.23 0.98 +0.58
B4C Shield 0.15 LRlog [ 126 | 0.495 +0.080 14.18 +5.15 5.54+2.67
B4C Shield 0.15 RF 126 | 0.994 +0.002 1.43 £0.48 0.56 + 0.24
FeB Air 0.05 GBR 49 0.977 £ 0.008 3.33+1.33 2.18£0.92
FeB Air 0.05 KNN 49 0.938 £ 0.056 5.36 +3.80 3.19+1.70
FeB Air 0.05 LRlog | 49 0.866 = 0.066 7.81£3.78 5.20+1.23
FeB Air 0.05 RF 49 0.985+0.014 2.62+1.67 1.54 +0.64
FeB Air 0.1 GBR 51 0.984 = 0.009 3.01+£0.90 1.90 £ 0.37
FeB Air 0.1 KNN 51 0.944 +0.037 6.05 +3.59 3.10£1.55
FeB Air 0.1 LRlog | 51 0.863 = 0.057 9.58 £4.10 6.42+1.90
FeB Air 0.1 RF 51 0.988 = 0.006 2.59 +0.66 1.67 +0.33
FeB Air 0.15 GBR 49 0.966 = 0.019 439+2.19 2.82+1.35
FeB Air 0.15 KNN 49 0.947 +0.044 535+3.56 342+1.73
FeB Air 0.15 LRlog | 49 0.868 = 0.049 8.26£3.34 5.64+1.31
FeB Air 0.15 RF 49 0.976 £0.012 3.66 + 1.88 2.27+0.97
FeB Shield 0.05 GBR 131 [ 0.991+0.004 1.81+1.12 0.86 +0.53
FeB Shield 0.05 KNN 131 [ 0.977+£0.014 2.79 + 1.86 1.02 +0.61
FeB Shield 0.05 LRlog | 131 | 0.457£0.248 16.10 = 8.41 720+4.11
FeB Shield 0.05 RF 131 | 0.990 +0.006 1.62+0.93 0.68 + 0.40
FeB Shield 0.1 GBR 132 | 0.986 +0.008 1.96 = 1.46 0.80 +0.58
FeB Shield 0.1 KNN 132 [ 0.967 £0.036 3.11+2.78 1.05 +0.84
FeB Shield 0.1 LRlog [ 132 | 0.366 0.269 1521 +8.14 6.00 + 3.62
FeB Shield 0.1 RF 132 ] 0.992 +0.005 153+1.15 0.59 + 0.46
FeB Shield 0.15 GBR 127 ] 0.985+0.008 2.14£0.81 0.83 +0.41
FeB Shield 0.15 KNN 127 | 0.964 +0.026 3.66+2.32 1.23 +0.67
FeB Shield 0.15 LRlog [ 127 | 0.318+0.079 15.64 + 5.82 5.82 +2.86
FeB Shield 0.15 RF 127 ] 0.992+0.005 1.60 + 0.82 0.57 +0.34
Table 1 summarizes the quantitative performance interpreted relative to both the characteristic

metrics of the machine learning models applied to
B,C- and FeB-enhanced concrete under different
environmental conditions (tunnel air and concrete
shielding). The table reports, for each model, the
number of samples used (n), the coefficient of
determination (R?) on the test set, the normalized
root mean square error (N-RMSE), and the
normalized mean absolute error (NMAE). The N-
RMSE values were obtained by normalizing the
RMSE with respect to either the mean or the range
of the dataset, allowing the prediction errors to be
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magnitude and the variability of the data.

The results clearly indicate that model performance
depends not only on the selected algorithm but also
strongly on the environmental conditions and the
type of shielding material. Overall, the RF and GBR
models consistently exhibit the highest predictive
accuracy across all configurations. These models
achieve very high R? values—typically in the range
of 0.98-0.996—together with low N-RMSE and
NMAE values in both the tunnel air environment and
the concrete shielding. This behavior demonstrates
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the strong capability of tree-based ensemble
methods to capture the nonlinear, multi-scale
attenuation characteristics of secondary neutron
dose distributions.

The KNN model provides acceptable performance,
particularly in the tunnel air environment; however,
it generally yields higher error metrics than RF and
GBR. This relative degradation becomes more
pronounced in the shielding environment, where
steep dose gradients and highly heterogeneous
attenuation behavior are present. Such sensitivity
can be attributed to the local, instance-based nature
of KNN and its limited generalization capability in
complex, high-gradient data spaces.

In contrast, the log-linear LR model exhibits
markedly poorer performance, especially within the
concrete shielding. For both B,C- and FeB-
enhanced concretes in the shielded environment,
log-linear LR is characterized by very low R? values
(approximately 0.3-0.5) and high N-RMSE values
reaching up to 14-16%. These results indicate that
the sharp and strongly nonlinear dose attenuation
observed within shielding materials cannot be
adequately represented by simple log-linear
formulations. Although log-linear LR performs
comparatively better in the tunnel air environment, it
still remains clearly inferior to the nonlinear machine
learning approaches.

From a material-specific perspective, similar
performance trends are observed for both B,C- and
FeB-enhanced concretes. However, the FeB-based
shielding configurations exhibit slightly more
complex attenuation behavior, particularly in the
shielded environment, due to the combined effects of
iron-induced neutron scattering and boron-based
absorption. This increased physical complexity
further challenges linear modeling approaches,
while RF and GBR remain robust and accurate
across all FeB configurations.In  summary, the
performance metrics presented in Table 1
demonstrate that nonlinear machine learning models
provide a reliable and physically consistent
framework for predicting secondary neutron dose
distributions in both tunnel air and concrete
shielding environments. Among the evaluated
approaches, RF and GBR emerge as the most
effective and stable models across varying material
compositions and environmental  conditions.
Conversely, the limited predictive capability of the
log-linear regression approach highlights its
unsuitability for neutron transport and shielding
problems in high-energy proton accelerator
facilities. To further investigate the learning
behavior and error characteristics of the models, the
spatial variation of prediction errors was analyzed
using the root mean square error (RMSE) metric.
Rather than relying solely on global performance

456

indicators, evaluating the distance-dependent
variation of RMSE enables a detailed assessment of
model accuracy and stability in both the near-field
and far-field regions. In this context, distance-
dependent test RMSE profiles derived from 5-fold
cross-validation were examined.

——
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Figure 7. Distance-dependent variation of test RMSE as
a function of xfor B,C-enhanced concrete with 5%,
10%, and 15% boron content in the tunnel air
environment. Results are presented as mean =+ standard
deviation based on 5-fold cross-validation for the log-
linear LR, RF, GBR, and KNN models.

——

Figure 8. Distance-dependent variation of test RMSE as
a function of xfor B,C-enhanced concrete with 5%,
10%, and 15% boron content in the concrete shielding
environment. Results are presented as mean =+ standard
deviation based on 5-fold cross-validation for the log-
linear LR, RF, GBR, and KNN models.
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Figure 9. Distance-dependent variation of test RMSE as
a function of xfor FeB-enhanced concrete with 5%, 10%,
and 15% additive content in the tunnel air environment.
Results are presented as mean + standard deviation
based on 5-fold cross-validation for the log-linear LR,
RF, GBR, and KNN models.
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Figure 10. Distance-dependent variation of test RMSE
as a function of xfor FeB-enhanced concrete with 5%,
10%, and 15% additive content in the concrete shielding
environment. Results are presented as mean + standard
deviation based on 5-fold cross-validation for the log-
linear LR, RF, GBR, and KNN models.

For B,C-enhanced concrete, the RMSE profiles
obtained in the tunnel air environment (Figure 7)
indicate that all models exhibit their highest error
levels in the near-field region close to the source.
This behavior is associated with the presence of
steep spatial dose gradients and the strongly
nonlinear nature of the underlying physical
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processes. As the distance from the source increases,
RMSE values decrease systematically, reflecting
improved prediction accuracy in the far-field regime.
Among the evaluated models, Random Forest (RF)
and Gradient Boosting Regressor (GBR)
consistently achieve lower RMSE values across the
entire distance range and display narrower
uncertainty bands, indicating stable and robust
learning behavior. In contrast, the KNN model
shows noticeable fluctuations, particularly at
intermediate distances, while the log-linear LR
model exhibits persistently higher and more variable
RMSE values, highlighting its limited capability to
capture nonlinear dose—distance relationships.

The RMSE profiles for B,C-enhanced concrete in
the shielding environment (Figure 8) reveal an even
stronger dependence on distance. Extremely high
RMSE values are observed in the immediate vicinity
of the source due to the sharp dose attenuation within
the concrete shield. Beyond this near-field region,
however, RF and GBR rapidly suppress the
prediction error, converging to near-zero RMSE
values and maintaining this performance over a wide
distance range. This behavior demonstrates that
these models successfully learn the dominant
nonlinear  attenuation mechanisms governing
neutron transport within the shielding material. In
contrast, KNN exhibits reduced stability in the near-
field, while LR fails to represent the steep dose
gradients, resulting in elevated RMSE levels over a
broader spatial range.

The distance-dependent RMSE profiles obtained for
FeB-enhanced concrete (Figures 9 and 10) show
trends that are largely consistent with those observed
for B,C. In the tunnel air environment (Figure 9), the
highest RMSE values again occur near the source,
followed by a gradual reduction with increasing
distance. RF and GBR models demonstrate superior
performance, characterized by lower RMSE values
and reduced fold-to-fold variability across all
distances. The KNN model exhibits pronounced
fluctuations at intermediate distances, whereas the
LR model consistently yields higher RMSE values,
indicating insufficient generalization even in the air
environment.

In the shielding environment for FeB-enhanced
concrete (Figure 10), the prediction task becomes
more challenging due to the combined effects of
iron-induced neutron scattering and boron-based
absorption. These multi-mechanism attenuation
processes lead to extremely steep dose gradients in
the near-field region, resulting in high RMSE values
close to the source. Despite this complexity, RF and
GBR models rapidly reduce RMSE beyond the
initial shielding thickness and maintain very low and
stable error levels in the far-field region. This
outcome confirms their ability to capture the
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strongly nonlinear and multi-scale attenuation
behavior characteristic of FeB-enhanced concrete.
Conversely, KNN shows limited robustness near the
source, and LR remains unable to reproduce the
rapid dose attenuation, leading to persistently higher
RMSE values.Overall, the distance-dependent
RMSE analyses presented in Figures 7-10 clearly
demonstrate that model performance is strongly
distance-dependent, with the most challenging
prediction region located in the near-field where
dose gradients are steepest. Across all material and
environmental configurations, Random Forest and
Gradient Boosting Regressor models consistently
provide the lowest prediction errors and the highest
spatial stability in both near-field and far-field
regimes. In contrast, KNN offers limited reliability,
and log-linear regression approaches are inadequate
for representing the complex spatial behavior of
secondary neutron dose attenuation in both B,C- and
FeB-enhanced  concrete  shielding  systems.
Radiation has been studied in a variety of different
purposes and reported in the literature [41-60].

4. Conclusions

In this study, a hybrid MC-ML framework was
developed to model the secondary neutron dose
distributions generated by the interaction of 1000
MeV protons with a copper target. Neutron dose data
obtained from FLUKA simulations were evaluated
for both tunnel air and concrete shielding
environments using B,C- and FeB-enhanced
concrete at additive fractions of 5%, 10%, and 15%.
Within this framework, log-linear LR, KNN, RF,
and GBR models were systematically trained and
tested.

The results demonstrate that neutron dose
attenuation exhibits a strongly nonlinear and
distance-dependent behavior, particularly within
shielding materials where steep dose gradients occur
over short spatial ranges. In addition to global
performance metrics, distance-dependent RMSE
analyses revealed pronounced differences in model
accuracy between the near-field and far-field
regions. Across all material compositions and
environmental configurations, RF and GBR models
consistently outperformed log-linear LR and KNN,
providing superior predictive accuracy and spatial
stability. In contrast, the log-linear LR model failed
to adequately represent the nonlinear dose—distance
relationship, while KNN showed limited robustness,
especially in regions characterized by sharp
attenuation.

Comparative analyses of B,C- and FeB-enhanced
concretes indicate that both materials provide
effective neutron shielding; however, FeB-enhanced
concrete exhibits more complex attenuation
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behavior due to the synergistic physical roles of iron
and boron. Iron contributes to fast-neutron energy
degradation through elastic and inelastic scattering,
while boron provides efficient absorption at lower
neutron energies. This multi-mechanism shielding
behavior results in highly nonlinear dose
distributions, which can be reliably captured only by
advanced nonlinear machine learning models.
Distance-dependent error analyses further show that
prediction uncertainty is highest near the source and
rapidly decreases beyond the initial shielding
thickness when RF and GBR models are employed.
Overall, this study demonstrates that nonlinear, tree-
based machine learning models trained on MC
simulation data offer a reliable, rapid, and
computationally efficient alternative for neutron
dose estimation and shielding analysis in high-
energy proton accelerator facilities. The proposed
framework enables accurate dose prediction across
different shielding materials, additive fractions, and
spatial regions, thereby providing a powerful tool for
shielding design optimization and radiation safety
assessments. Future work will focus on extending
this approach to three-dimensional geometries,
additional energy ranges, and real-time surrogate
modeling for accelerator operation and facility
design.
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