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Abstract:  
 

Secondary neutrons produced by proton-target interactions in high-energy proton 

accelerator facilities present a major shielding challenge due to their high penetrability 

and broad energy spectra. In this study, neutron dose attenuation in B₄C- and FeB-

enhanced concretes containing 5%, 10%, and 15% additives was investigated at a proton 

energy of 1000 MeV using FLUKA-based Monte Carlo (MC) simulations coupled with 

Machine-learning (ML) surrogate models.MC-generated dose data were used to train log-

linear Linear Regression (log-linear LR), K-Nearest Neighbors (KNN), Random Forest 

(RF), and Gradient Boosting Regressor (GBR) models to enable rapid dose prediction. 

The results show that RF and GBR achieve the highest predictive accuracy under all 

configurations, with test-set R² values of approximately 0.98-0.99 in tunnel air and 0.99-

0.996 in concrete shielding. In contrast, the LR model performs poorly in shielding 

regions due to strong nonlinearity, while KNN also provides high predictive accuracy 

exceeding 90%, albeit with lower performance compared to RF and GBR. A comparative 

analysis reveals that FeB-enhanced concrete exhibits more complex attenuation behavior 

due to the combined effects of iron-induced scattering and boron absorption. Overall, the 

validated hybrid MC-ML framework demonstrates that RF- and GBR-based surrogate 

models provide a fast, reliable, and computationally efficient approach for neutron dose 

estimation and shielding optimization in high-energy proton accelerator facilities. 

 

1. Introduction 

 
The steadily increasing use of ionizing radiation in 

nuclear facilities, medical applications, and 

industrial systems necessitates the development of 

effective, reliable, and sustainable shielding 

solutions against these radiation types. In particular, 

the high dose levels encountered in particle 

accelerators, research reactors, and radiation-

producing industrial facilities render shielding 

design one of the most critical components of facility 

safety. In this context, concrete stands out as one of 

the most widely used construction materials for 

radiation shielding owing to its high mechanical 

strength, cost-effectiveness, wide availability, and 

the possibility of tailoring its properties through the 

incorporation of various additives [1-3]. The 

radiation shielding performance of concrete is 

governed by the interaction mechanisms of gamma 

rays and neutrons within the material. For gamma 

radiation, concrete density and effective atomic 

number are among the primary determining factors, 

whereas neutron shielding represents a more 

complex process that requires the joint optimization 

of moderation and absorption mechanisms. The 

concrete matrix, due to its hydrogen content, acts as 

an effective moderator for fast neutrons; however, a 

shielding strategy based solely on moderation is 

insufficient, particularly in high-energy neutron 

fields [4-6].  

In high-energy proton accelerators, especially under 

proton–target interactions at energies on the order of 

1000 MeV, secondary neutrons produced over a 

broad energy spectrum pose a significant 

engineering challenge in shielding design because of 

their high penetration capability. Compared to 
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thermal or low-energy neutrons, these high-energy 

neutrons penetrate much deeper into shielding 

materials, often necessitating very thick shielding 

structures to achieve effective attenuation. 

Numerous studies have reported that, in shielding 

systems relying solely on standard concrete, the 

required thicknesses may exceed practical and 

economic limits. This issue further complicates 

shielding design in tunnel-type accelerator facilities, 

where spatial, economic, and structural constraints 

are particularly restrictive [7-13].  

In response to these challenges, recent years have 

witnessed growing interest in additive-enhanced 

concrete approaches aimed at improving shielding 

performance. While heavy aggregates such as barite, 

hematite, and magnetite are effective in enhancing 

gamma-ray shielding, the incorporation of boron-

based additives into concrete has emerged as a 

promising strategy for neutron shielding. Compared 

to standard concrete, additive-enhanced concrete 

systems provide higher attenuation efficiency, 

enabling a reduction in the required shielding 

thickness and facilitating more compact shielding 

designs [5-9, 10,12].  

Within this framework, concretes incorporating 

boron carbide (B₄C) and ferroboron-based additives 

have attracted particular attention for high-energy 

neutron shielding applications. B₄C supports the 

efficient absorption of moderated neutrons owing to 

its high neutron capture cross-section, while 

ferroboron (FeB, Fe₂B) additives offer a synergistic 

shielding mechanism by combining the scattering 

properties of iron with the absorption capability of 

boron. The combined action of neutron moderation 

provided by the concrete matrix and neutron 

absorption induced by boron-based additives 

constitutes a critical advantage in attenuating 

secondary neutrons generated in high-energy proton 

accelerators. As a result, overall neutron dose levels 

can be reduced while simultaneously optimizing 

shielding thickness [1,6-10,12,14].  

In the literature, in addition to comprehensive review 

and experimental studies on concrete-based 

radiation shielding, several investigations have 

addressed the neutron shielding performance of 

B₄C- and ferroboron-enhanced concretes. Studies 

conducted by Sarıyer et al. and other researchers 

have demonstrated that additive-enhanced concrete 

systems offer significant advantages over standard 

concrete in reducing neutron dose. Nevertheless, a 

substantial portion of existing studies has focused on 

low- and intermediate-energy neutron fields or 

specific geometric configurations. Consequently, 

systematic and direct comparisons of the 

performance of B₄C- and ferroboron-enhanced 

concretes under identical geometric and physical 

conditions in high-energy neutron fields remain 

limited in the literature [1,6-10,12,14].  

Most studies on high-energy neutron shielding rely 

on Monte Carlo (MC)-based simulation codes, 

which can model radiation transport processes in a 

detailed and physically accurate manner [1,3,4,7-

14]. Although MC methods can represent the 

behavior of secondary neutrons generated by 

proton–target interactions with high fidelity, their 

computational cost—particularly for accelerator 

applications at energies around 1000 MeV—

significantly limits extensive parameter space 

exploration, multi-scenario analyses, and rapid 

optimization studies. Consequently, in recent years, 

the integration of high-dimensional datasets 

generated by MC simulations with machine learning 

(ML)–based surrogate models has emerged as a 

complementary approach to alleviate computational 

burdens [15,16].  

ML is a data-driven approach that aims to predict 

complex and nonlinear system behavior by 

automatically learning patterns and relationships 

from data, offering significant advantages in multi-

parameter problems where classical deterministic or 

analytical methods are inadequate. In 

computationally intensive applications such as 

radiation shielding-where geometry, material 

composition, energy, and interaction processes 

jointly influence system behavior-ML enables the 

development of low-fidelity surrogate models that 

learn from high-dimensional datasets generated by 

physics-based MC simulations and provide rapid, 

low-cost predictions. The primary objective of such 

ML-based models is not to replace high-fidelity 

calculations, but rather to deliver reasonably 

accurate estimates that support rapid preliminary 

assessments, parameter screening, design 

optimization, and uncertainty analysis. Their most 

notable advantages include low computational cost, 

limited resource requirements, and the ability to 

explore large parameter spaces efficiently. 

Nevertheless, it must be emphasized that ML 

approaches do not explicitly represent the 

underlying physical processes and therefore cannot 

substitute physics-based MC simulations. From the 

perspective of reliable and practical shielding 

design, the critical framework is a validation-driven 

hybrid (MC–ML) approach, in which ML-based 

predictions are systematically verified against high-

accuracy MC calculations before being used in final 

design decisions. In this way, ML accelerates the 

design process, while MC methods ensure the 

necessary physical accuracy and reliability [15-24].  

Within this context, the literature contains a limited 

but noteworthy number of studies based on MC-ML 

integration. Chen et al. (2023) simulated 200 

shielding configurations using MCNP to optimize 



Demet Sariyer, Elif Yıldırım / IJCESEN 12-1(2026)447-461 

 

449 

 

neutron beam shutters in a cyclotron-based neutron 

production system; using the resulting data, they 

trained a fully connected artificial neural network 

(ANN), applied it to 1,000 randomly generated 

shielding structures, and subsequently validated the 

top 20 configurations with MCNP. This approach 

demonstrated that ML-based methods can jointly 

achieve accuracy and computational efficiency in 

neutron shielding optimization [17]. Edelen et al. 

(2016) investigated the contribution of ANN-based 

methods to modeling nonlinear and complex 

processes in particle accelerator control systems, 

showing—through an experimental ANN-assisted 

resonance control application at FAST/Fermilab—

that classical control approaches are insufficient due 

to multi-subsystem interactions and long-term 

stability requirements, whereas ANN-based 

techniques provide substantial benefits in predicting 

system dynamics and enabling adaptive control [22]. 

Rajarshi Pal Chowdhury et al. (2023) developed a 

1D-CNN capable of rapidly predicting differential 

neutron flux to reduce the high computational cost 

of PHITS-based MC calculations in the FRIB case; 

they reported that the model, trained over the 1–250 

MeV energy range, could reproduce neutron spectra 

with approximately 10% error in tests involving 

10,000 samples, achieving millisecond-level 

prediction times and successful effective dose 

estimation [19]. In a subsequent study, Pal 

Chowdhury et al. (2026) demonstrated that a CNN-

based surrogate model emulating MC transport 

simulations could learn neutron attenuation behavior 

under varying energy and material conditions and 

predict post-shield neutron flux almost 

instantaneously with reasonable accuracy; the 

applicability of the approach was highlighted in the 

context of effective dose rate calculations and 

shielding optimization for FRIB applications [23]. 

Overall, these studies indicate that MC-ML hybrid 

approaches provide an advantageous framework for 

rapid exploration of the design space and multi-

parameter optimization in radiation shielding design 

for accelerator facilities [17,22-24]. 

The aim of the present study is to develop a 

comprehensive shielding model that integrates 

FLUKA-based MC simulations with ML techniques 

for the effective attenuation of secondary neutron 

radiation generated under abnormal operating 

conditions in high-energy proton accelerators. 

Within this scope, dose prediction models were 

constructed for various medium-shield 

configurations at an energy level of 1000 MeV using 

logarithmic linear regression [25-29], Gradient 

Boosting Regressor [27,30-34], K-Nearest 

Neighbors (KNN) regression [30,31,35,36], and 

Random Forest algorithms [27,30,31,37], and their 

predictive performances were systematically 

evaluated through a comparative approach. 

Furthermore, the hybrid MC-ML methodology—

addressed in a limited number of studies in the 

literature—was examined in detail, and the findings 

were shown to provide original and meaningful 

contributions toward the optimization of radiation 

shielding design. 
 

2. Material and Methods 

 
In this study, dose distributions of secondary 

neutrons generated by the interaction of 1000 MeV 

protons with the target material were investigated in 

detail within the air-filled tunnel and along the 

surrounding concrete shielding layers containing 

B₄C and FeB additives at different concentrations 

(5%, 10%, and 15%). The shielding analyses were 

carried out using versions 2011.2b and 2011.2c of 

the FLUKA MC simulation code, and dose values 

corresponding to various shielding thicknesses and 

radial distances were calculated for each shielding 

configuration. The simulation outputs obtained were 

subsequently used for the development and 

performance evaluation of regression-based 

machine learning algorithms. During this process, 

data preprocessing, model training, and performance 

analysis were conducted using the Python 

programming language, with extensive use of open-

source data science libraries including NumPy, 

Pandas, Matplotlib, and Scikit-learn. 

 

2.1 FLUKA-Based Simulation Design and Data 

Generation 

 

To accurately model particle–matter interactions, a 

spherical geometry with a radius of 25 m was 

constructed using the FLUKA MC simulation code. 

The outermost region of the sphere was defined as a 

1 m thick blackhole layer to terminate particle  

 
Figure 1. Computational geometry of the tunnel and 

surrounding concrete shielding modeled in the FLUKA 

MC simulations 
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tracking. Within the sphere, a shielding region with 

a total thickness of 24 m was modelled and 

separately applied for concrete shielding materials 

containing B₄C and FeB additives at concentrations 

of 5%, 10%, and 15%. At the center of the spherical 

geometry, an air-filled tunnel with dimensions of 5 

m (x-axis) × 5 m (y-axis) × 10 m (z-axis) was placed. 

The computational geometry used in this study is 

schematically illustrated in Figure 1.It is well known 

that protons propagating along accelerator tunnels 

interact with copper surfaces, which are widely used 

in the internal structures of accelerator components 

such as quadrupole magnets and RF cavities, 

particularly in regions where beam losses occur. For 

this reason, a cubic copper block with dimensions of 

5 cm × 5 cm × 5 cm and parallel faces was selected 

as the target material. The chosen copper target with 

a thickness of 5 cm was not designed to completely 

stop 1000 MeV protons, since at this energy level the 

proton range in copper extends to several tens of 

centimetres. Instead, the copper target was modelled 

to represent localized proton–material interactions 

occurring on copper components under realistic 

beam loss conditions, as well as the subsequent 

production of secondary particles, primarily 

neutrons. Accordingly, the copper target was treated 

not as a full proton absorber but as a partial 

interaction region. 

To model the proton source in a manner that enables 

the formation of maximum dose in all directions, a 

point-like proton source was defined with reference 

to the exact geometric center of the copper target. 

This definition does not imply that protons are 

physically generated within the target volume; 

rather, it represents an idealized approach to beam-

material interactions in accelerator components. To 

prevent direct activation of the shielding materials 

by the primary proton beam, the beam axis was 

positioned 2.5 m away from the tunnel side walls and 

4 m below the tunnel ceiling. The location of the 

copper target within the air-filled tunnel, together 

with the reference point of the proton source and the 

relative placement of the beam axis, is schematically 

illustrated in Figure 2. When MC-based methods are 

employed in shielding design calculations, the 

reliability of the results decreases significantly due 

to increased statistical uncertainties, particularly in 

simulations performed with a limited number of 

particles. Therefore, in order to ensure the statistical 

accuracy required by the MC approach, five 

independent simulation cycles were carried out in 

this study, each involving 6 × 10⁸ primary particles 

and using different random number seeds. In 

general, MC simulations that involve high-energy 

particle transport and the tracking of a large number 

of events are known to entail extremely high 

computational costs and long execution times on 

 
Figure 2. Schematic representation of the proton source 

and copper target placement inside the tunnel relative to 

the surrounding shielding. 

 
conventional desktop computers. Consequently, the 

use of high-performance computing (HPC) cluster 

infrastructures becomes indispensable for such 

calculations. Accordingly, all MC simulations 

presented in this study were performed on the TR-

Grid high-performance computing cluster. 

The outputs obtained from the simulations were 

analyzed in detail based on the data files generated 

by the FLUKA code. To quantitatively determine 

dose distributions at different spatial locations along 

the tunnel, the three-dimensional spatial scoring 

detector of FLUKA, namely the USRBIN card, was 

employed. The detector volume was defined as 3400 

cm, 3000 cm, and 1900 cm along the x-, y-, and z-

axes, respectively, with the corresponding numbers 

of bins set to 340, 300, and 190. As a result of this 

configuration, the spatial resolution of the detector 

system used in the simulations was set to unit 

elements (voxels) with dimensions of 10 × 10 × 10 

cm³. 

The dose distributions calculated for 1000 MeV 

protons were visualized using FLAIR, the graphical 

user interface of FLUKA, and comprehensive 

quantitative analyses were performed on the 

resulting data. 

 

2.2. Selection and Training of Machine Learning 

Models 

 

ML is a data-driven approach that enables a 

computer system to automatically discover patterns 

and statistical relationships within given datasets and 

to generate generalizable inferences from these 

relationships. The ML process fundamentally 

consists of two main stages. The first stage is the 

training phase, during which the model learns the 

input–output relationships present in the data. This 

is followed by the testing and validation phase, in 

which the predictive accuracy and generalization 

capability of the trained model are evaluated. The 
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testing process should not be regarded as a decision-

making mechanism, but rather as a validation tool 

used to assess the reliability and predictive 

performance of the model. If the validation results 

are found to be inadequate, the model parameters are 

updated and the training process is repeated. Final 

prediction or decision generation is performed only 

after the model has successfully completed the 

validation stage. Throughout this process, two 

distinct datasets are employed for performance 

evaluation: a training dataset used during the 

learning phase and a test dataset consisting of 

samples previously unseen by the model. While the 

training dataset is utilized for learning, including 

data preprocessing and feature extraction, the test 

dataset is used to quantitatively assess the model’s 

generalization ability. Model performance is 

determined using numerical metrics by comparing 

predictions generated on the test dataset with 

corresponding reference values [30]. 

ML methods are generally classified into three main 

learning paradigms: supervised learning, 

unsupervised learning, and reinforcement learning 

[38,39]. Supervised learning encompasses methods 

in which the output is predefined during the 

prediction or decision-making process and the model 

learns input-output relationships accordingly. 

Supervised learning approaches are widely used, 

particularly for classification and regression 

problems. 

In this study, regression-based ML models were 

developed to predict neutron dose distributions 

under a 1000 MeV energy level for concrete-air and 

concrete-shield configurations containing B₄C and 

FeB additives at concentrations of 5%, 10%, and 

15%, using data obtained from FLUKA MC 

simulations. The problem was formulated as a 

regression task aimed at predicting neutron dose, 

which is a continuous physical quantity. The target 

variable represents dose values calculated at 

different lateral distances from the beam source, 

while the model inputs consist of the corresponding 

lateral distance values. The analyses indicate that the 

dose decreases monotonically with increasing lateral 

distance and that this behaviour can be described as 

a combination of an inverse-square law component 

and multiple exponential attenuation mechanisms. In 

this context, the primary objective of the model is to 

accurately predict the spatial distribution of dose 

along different lateral positions. Accordingly, 

regression-based approaches capable of learning the 

functional relationship between a continuous 

dependent variable and an independent variable 

provide a suitable framework for this problem. 

The regression models employed in this study were 

selected through a deliberate and comparative 

process, taking into account both the physical nature 

and the statistical characteristics of the radiation 

shielding problem. Since the distance-dependent 

attenuation behaviour of neutron dose exhibits 

nonlinear, multi-scale, and physically complex 

characteristics, the selected models were required to 

capture both the dominant physical trends, and the 

complex nonlinear relationships present in the data. 

To this end, Logarithmic Linear Regression (log-

linear LR) was employed as a reference (baseline) 

model to represent the dominant physical trend of 

the dose-distance relationship. This baseline model 

enables a quantitative assessment of the performance 

gains achieved by more advanced ML methods. 

Gradient Boosting Regressor (GBR) and Random 

Forest (RF) algorithms were selected due to their 

strong capability to model nonlinear attenuation 

behaviour and complex spatial relationships 

commonly encountered in radiation transport 

problems. Owing to their decision tree–based 

ensemble structures, these methods can effectively 

learn dominant physical patterns across different 

distance regimes while maintaining high 

generalization performance. The K-Nearest 

Neighbors (KNN) regressor was included as an 

intuitive, non-parametric comparison model based 

on local neighborhood relationships. Its lack of 

strong parametric assumptions makes KNN 

particularly suitable for analysing local variations in 

dose distributions that exhibit smooth and 

monotonic behaviour. The selected model set spans 

a broad methodological range, from simple linear 

approaches to advanced ensemble-based methods, 

allowing for a comprehensive comparative 

evaluation of the predictive capabilities of ML-based 

surrogate models for radiation shielding 

applications. 

The dataset used in this study consists of 

independent samples obtained from FLUKA MC 

radiation transport simulations. Each data point 

represents a radiation transport output calculated for 

a specific proton energy, environmental/shielding 

configuration, and radial distance. This approach 

enables systematic sampling of radiation fields 

under different physical scenarios. The input 

parameters provided to the ML models include the 

lateral distance variable x (cm), representing 

different radial distances within the air-filled tunnel 

and varying shielding thicknesses within the 

shielding region, as well as proton energy levels. In 

this way, the models are trained to learn the spatial 

variation of radiation fields both in air and within 

shielding materials. The output data consist of the 

corresponding dose equivalent values, H (µSv/h), 

calculated under the same physical conditions. 

The dataset constructed in this study comprises a 

total of 1081 data points, obtained from calculations 

performed in air and shielding regions for different 
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energy levels and shielding configurations. Each 

data point is defined as an input–output pair 

representing a specific physical scenario and is 

treated as an independent sample during the training 

and testing of the ML models. The dataset was 

divided into separate subsets for each environmental 

and shielding configuration, and these subsets were 

further structured into training and test datasets. To 

ensure an appropriate bias-variance balance and to 

reduce the risk of overfitting or underfitting, 75% of 

the dataset was used for training and 25% for testing. 

This split ratio is widely adopted in the literature and 

has been shown to provide reliable performance 

assessment [40]. 

The test dataset consists of samples not encountered 

during the training phase and is used to evaluate the 

generalization capability of the models after training 

is completed. This approach allows model 

performance to be validated on an independent 

dataset not involved in the learning process, thereby 

enabling the identification of potential overfitting 

(bias) or underfitting (variance) issues. The 

convergence of training and validation errors to 

similar values indicates that the model has been 

sufficiently optimized and does not require further 

training [24]. 

Model performance was evaluated using the 

coefficient of determination (R²) and the root mean 

square error (RMSE) metrics. The target variable 

was defined as neutron dose, H (µSv/h), while the 

input variables were specified as the lateral distance 

within the tunnel, x (cm), and the proton energy 

level, E (MeV). Each environmental and shielding 

configuration was modelled separately, and all 

regression algorithms were applied within a 

comparative framework.  

 

3. Results and Discussions 
 

This study was conducted to provide a scientific 

contribution to shielding design for radiation safety 

in proton accelerator facilities. The primary 

objective of the study is to rapidly predict neutron 

doses at different distances along the accelerator 

tunnel under abnormal operating conditions using 

ML-based models. 

The ML-based dose predictions developed in this 

work were compared with results obtained from 

FLUKA-based MC simulations performed at an 

energy level of 1000 MeV in order to assess their 

accuracy. The dataset consisting of a total of 1081 

data points used for training and testing the ML 

models was not intended to replace high-fidelity MC 

simulations; rather, it was employed to construct 

surrogate models that enable rapid preliminary 

assessment, parameter screening, and early-stage 

design support prior to detailed shielding 

calculations. Through this approach, reasonably 

accurate dose predictions can be obtained with low 

computational cost during the early phases of the 

shielding design process, while final design 

decisions remain grounded in physics-based MC 

simulations. 

The dose distributions of secondary neutrons 

produced by the interaction of 1000 MeV protons 

with a copper target were used to train and test log-

linear LR, GBR, KNN, and RF models for each 

material-environment configuration. For each 

configuration, graphical comparisons between the 

predicted and observed dose values are presented 

separately. 

Figure 3 shows the dose distribution profiles 

obtained in an air environment at the 1000 MeV 

energy level: (a) concrete containing 5% B₄C-air, (b) 

concrete containing 10% B₄C-air, and (c) concrete 

containing 15% B₄C-air. Figure 4 presents the dose 

distribution profiles obtained in a shielded 

environment at the same energy level: (a) concrete 

containing 5% B4C-shield, (b) concrete containing 

10% B4C-shield, and (c) concrete containing 15% 

B4C-shield. Similarly, Figure 5 shows the dose 

distribution profiles obtained in an air environment 

at the 1000 MeV energy level: (a) concrete 

containing 5% FeB-air, (b) concrete containing 10% 

FeB-air, and (c) concrete containing 15% FeB-air. 

Figure 6 presents the dose distribution profiles 

obtained in a shielded environment at the same 

energy level: (a) concrete containing 5% FeB-shield, 

(b) concrete containing 10% FeB-shield, and (c) 

concrete containing 15% FeB-shield.  

 

 
Figure 3. True dose measurements and full-data fitted 

regression curves for B₄C in air at boron fractions of 

5%, 10%, and 15% 
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Figure 4. True dose measurements and full-data fitted 

regression curves for B₄C in shield at boron fractions of 

5%, 10%, and 15% 

 

The dose distribution profiles presented in Figures 3 

and 4 reveal a clear distinction between neutron 

transport behavior in the tunnel air environment and 

within the concrete shielding for B₄C-enhanced 

concrete. In the tunnel air environment, the dose 

decreases smoothly and monotonically with 

increasing distance from the source, whereas within 

the concrete shielding the dose is reduced by several 

orders of magnitude over much shorter distances, 

exhibiting a steep, highly nonlinear attenuation 

profile. This contrast reflects the dominant physical 

mechanisms in each medium: geometric spreading 

and scattering prevail in air, while neutron 

moderation and absorption govern the attenuation 

process within the concrete shield.A comparative 

assessment of the regression curves clearly 

demonstrates the superiority of nonlinear modeling 

approaches. The Random Forest (RF) and Gradient 

Boosting Regressor (GBR) models consistently 

reproduce the reference dose values with high 

fidelity in both environments. These models 

accurately capture the steep dose gradients in the 

vicinity of the source as well as the more gradual 

attenuation behavior observed at larger distances, 

yielding physically consistent predictions across the 

entire spatial range. Their near coincidence with the 

true dose points in the shielding environment 

highlights their ability to represent the multi-scale 

and strongly nonlinear nature of neutron attenuation 

in B₄C-enhanced concrete. 

The K-Nearest Neighbors (KNN) model, while 

capable of following the general attenuation trend in 

the tunnel air environment, exhibits local 

fluctuations and reduced stability, particularly at 

intermediate distances. Its performance deteriorates 

more noticeably within the concrete shielding, where 

rapid dose reductions occur. In these high-gradient 

regions, KNN predictions deviate from the reference 

data, indicating that its locally driven, instance-

based structure is not well suited to capturing the 

complex and rapidly varying physical processes 

governing neutron transport in shielding materials. 

The log-linear Linear Regression (LR) model 

performs inadequately in both environments, failing 

to represent the inherently nonlinear dose–distance 

relationship. This limitation is especially evident 

within the concrete shielding, where the sharp dose 

attenuation cannot be reproduced by a log-linear 

formulation, leading to substantial deviations from 

the true dose distribution. These observations 

underscore the inability of simple linear approaches 

to describe neutron transport phenomena in high-

energy accelerator shielding problems.Overall, the 

results presented in Figures 3 and 4 demonstrate that 

Random Forest and Gradient Boosting Regressor 

models provide the most reliable and physically 

meaningful predictions of secondary neutron dose 

distributions for B₄C-enhanced concrete. Their 

robust performance in both tunnel air and concrete 

shielding environments confirms their suitability for 

modeling complex, nonlinear neutron attenuation 

behavior. In contrast, KNN offers only limited 

applicability, and linear regression approaches prove 

inadequate for accurately representing the physics of 

neutron shielding in high-energy proton accelerator 

facilities. The dose distribution profiles presented in 

Figures 5 and 6 demonstrate a clear distinction in 

neutron transport behavior between the tunnel air 

 

 
Figure 5. True dose measurements and full-data fitted 

regression curves for FeB in air at boron fractions of 

5%, 10%, and 15% 
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Figure 6. True dose measurements and full-data fitted 

regression curves for FeB in shield at boron fractions of 

5%, 10%, and 15% 

 

environment and the concrete shielding for FeB-

enhanced concrete. In the tunnel air environment, the 

dose decreases smoothly and monotonically with 

increasing distance from the source, whereas within 

the concrete shielding the dose is reduced by several 

orders of magnitude over much shorter distances, 

exhibiting a steep and strongly nonlinear attenuation 

profile. This contrast reflects the change in dominant 

physical mechanisms: geometric spreading and 

scattering govern neutron transport in air, while 

moderation, scattering, and absorption processes 

collectively control dose attenuation within the 

concrete shield.An examination of Figure 5, 

corresponding to the tunnel air environment, shows 

that for all FeB fractions (5%, 10%, and 15%) the 

dose decreases regularly with distance. A 

comparison of the regression curves highlights the 

superiority of nonlinear modeling approaches. The 

RF and GBR models accurately reproduce the true 

dose values across the entire spatial range, capturing 

both the high dose gradients near the source and the 

more gradual attenuation behavior observed at larger 

distances. In contrast, the KNN model follows the 

general trend but exhibits local fluctuations and 

reduced stability, particularly at intermediate 

distances. The log-linear LR model performs 

inadequately even in the air environment, failing to 

represent the nonlinear dose-distance relationship 

and showing systematic deviations at medium and 

long distances.The dose distributions within the 

concrete shielding, shown in Figure 6, reveal a much 

more pronounced attenuation behavior. The rapid 

reduction in dose over a short distance reflects the 

strong shielding effectiveness of FeB-enhanced 

concrete. In this environment, the RF and GBR 

models clearly outperform the other approaches, 

with prediction curves that nearly coincide with the 

true dose points throughout the shielding thickness. 

Their ability to accurately model the sharp dose 

gradients near the source and the subsequent low-

dose saturation regions underscores their robustness 

in highly nonlinear regimes.The shielding 

performance of FeB-enhanced concrete arises from 

the complementary physical roles of iron and boron. 

Boron provides a high neutron absorption cross 

section, particularly for thermal and epithermal 

neutrons, while the iron component, owing to its 

relatively high atomic number and density, plays a 

critical role in reducing the energy of fast neutrons 

through elastic and inelastic scattering interactions. 

This energy degradation shifts high-energy neutrons 

toward lower-energy regimes, creating favorable 

spectral conditions for efficient absorption by boron. 

The resulting multi-mechanism attenuation process 

leads to the complex, strongly nonlinear dose 

reduction observed within the concrete 

shielding.Consistent with this physical complexity, 

the KNN model exhibits reduced reliability in the 

shielding environment, where its locally driven 

structure limits its ability to produce stable 

attenuation curves in regions characterized by steep 

dose gradients. The LR model performs poorly, 

failing to capture the sharp dose decrease and 

deviating substantially from the true dose 

distribution. These observations confirm that log-

linear LR modeling approaches are not suitable for 

describing neutron transport and shielding behavior 

in FeB-enhanced concrete.Overall, the results 

presented in Figures 5 and 6 demonstrate that RF and 

GBR models provide the most reliable and 

physically meaningful predictions for FeB-enhanced 

concrete, both in tunnel air and concrete shielding 

environments. These models consistently capture the 

complex, nonlinear, and multi-scale nature of 

neutron dose attenuation, whereas KNN offers only 

limited applicability and log-linear LR regression 

approaches prove inadequate for shielding analyses 

in high-energy proton accelerator facilities.The 

performance metrics of each model, along with their 

hyperparameter settings, R² values for the training 

and test sets, normalized RMSE (N-RMSE) results, 

and the number of samples used in the training and 

test sets, are summarized in Table 1. N-RMSE was 

calculated by normalizing the RMSE with respect to 

either the mean or the range of the data, allowing the 

error magnitude to be interpreted relative to both 

typical values and the spread of the dataset. The 

results indicate that model performance varies not 

only with the algorithm employed but also 

significantly depends on the environmental 

conditions and the type of shielding material. 
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Table 1. Summary of machine learning model performance for each material-environment configuration. 

Material Enviroment Percent Model n R2_test NRMSE_test(%) NMAE_test(%) 

B4C Air 0.05 GBR 52 0.983 ± 0.012 3.14 ± 1.17 1.88 ± 0.84 

B4C Air 0.05 KNN 52 0.950 ± 0.042 5.48 ± 3.37 3.14 ± 1.32 

B4C Air 0.05 LRlog 52 0.854 ± 0.067 9.70 ± 3.94 6.37 ± 1.64 

B4C Air 0.05 RF 52 0.991 ± 0.003 2.39 ± 0.78 1.47 ± 0.35 

B4C Air 0.1 GBR 54 0.984 ± 0.009 3.16 ± 1.07 1.99 ± 0.68 

B4C Air 0.1 KNN 54 0.960 ± 0.020 5.01 ± 1.62 2.96 ± 0.52 

B4C Air  0.1 LRlog 54 0.856 ± 0.040 9.73 ± 2.49 6.73 ± 1.33 

B4C Air 0.1 RF 54 0.989 ± 0.011 2.37 ± 1.37 1.53 ± 0.74 

B4C Air 0.15 GBR 46 0.979 ± 0.008 3.53 ± 1.26 2.43 ± 0.76 

B4C Air 0.15 KNN 46 0.935 ± 0.045 6.17 ± 3.35 3.81 ± 1.63 

B4C Air 0.15 LRlog 46 0.875 ± 0.061 8.52 ± 3.83 5.86 ± 1.56 

B4C Aİr 0.15 RF 46 0.987 ± 0.008 2.75 ± 1.32 1.86 ± 0.70 

B4C Shield 0.05 GBR 137 0.992 ± 0.004 1.83 ± 0.78 0.73 ± 0.36 

B4C Shield 0.05 KNN 137 0.977 ± 0.015 2.96 ± 1.51 0.97 ± 0.52 

B4C Shield 0.05 LRlog 137 0.353 ± 0.090 16.06 ± 4.86 5.68 ± 2.73 

B4C Shield 0.05 RF 137 0.996 ± 0.004 1.23 ± 0.61 0.45 ± 0.22 

B4C Shield 0.1 GBR 127 0.991 ± 0.004 1.80 ± 0.70 0.80 ± 0.36 

B4C Shield 0.1 KNN 127 0.971 ± 0.026 3.26 ± 2.44 1.10 ± 0.70 

B4C Shield 0.1 LRlog 127 0.334 ± 0.091 16.11 ± 5.77 6.35 ± 3.03 

B4C Shield 0.1 RF 127 0.996 ± 0.004 1.31 ± 0.84 0.53 ± 0.30 

B4C Shield 0.15 GBR 126 0.990 ± 0.006 1.76 ± 0.42 0.75 ± 0.29 

B4C Shield 0.15 KNN 126 0.973 ± 0.024 3.13 ± 2.23 0.98 ± 0.58 

B4C Shield 0.15 LRlog 126 0.495 ± 0.080 14.18 ± 5.15 5.54 ± 2.67 

B4C Shield 0.15 RF 126 0.994 ± 0.002 1.43 ± 0.48 0.56 ± 0.24 

FeB Air  0.05 GBR 49 0.977 ± 0.008 3.33 ± 1.33 2.18 ± 0.92 

FeB Air 0.05 KNN 49 0.938 ± 0.056 5.36 ± 3.80 3.19 ± 1.70 

FeB Air 0.05 LRlog 49 0.866 ± 0.066 7.81 ± 3.78 5.29 ± 1.23 

FeB Air 0.05 RF 49 0.985 ± 0.014 2.62 ± 1.67 1.54 ± 0.64 

FeB Air 0.1 GBR 51 0.984 ± 0.009 3.01 ± 0.90 1.90 ± 0.37 

FeB Air 0.1 KNN 51 0.944 ± 0.037 6.05 ± 3.59 3.10 ± 1.55 

FeB Air 0.1 LRlog 51 0.863 ± 0.057 9.58 ± 4.10 6.42 ± 1.90 

FeB Air  0.1 RF 51 0.988 ± 0.006 2.59 ± 0.66 1.67 ± 0.33 

FeB Air  0.15 GBR 49 0.966 ± 0.019 4.39 ± 2.19 2.82 ± 1.35 

FeB Air 0.15 KNN 49 0.947 ± 0.044 5.35 ± 3.56 3.42 ± 1.73 

FeB Air 0.15 LRlog 49 0.868 ± 0.049 8.26 ± 3.34 5.64 ± 1.31 

FeB Air 0.15 RF 49 0.976 ± 0.012 3.66 ± 1.88 2.27 ± 0.97 

FeB Shield 0.05 GBR 131 0.991 ± 0.004 1.81 ± 1.12 0.86 ± 0.53 

FeB Shield 0.05 KNN 131 0.977 ± 0.014 2.79 ± 1.86 1.02 ± 0.61 

FeB Shield 0.05 LRlog 131 0.457 ± 0.248 16.10 ± 8.41 7.20 ± 4.11 

FeB Shield 0.05 RF 131 0.990 ± 0.006 1.62 ± 0.93 0.68 ± 0.40 

FeB Shield 0.1 GBR 132 0.986 ± 0.008 1.96 ± 1.46 0.80 ± 0.58 

FeB Shield 0.1 KNN 132 0.967 ± 0.036 3.11 ± 2.78 1.05 ± 0.84 

FeB Shield 0.1 LRlog 132 0.366 ± 0.269 15.21 ± 8.14 6.00 ± 3.62 

FeB Shield 0.1 RF 132 0.992 ± 0.005 1.53 ± 1.15 0.59 ± 0.46 

FeB Shield 0.15 GBR 127 0.985 ± 0.008 2.14 ± 0.81 0.83 ± 0.41 

FeB Shield 0.15 KNN 127 0.964 ± 0.026 3.66 ± 2.32 1.23 ± 0.67 

FeB Shield 0.15 LRlog 127 0.318 ± 0.079 15.64 ± 5.82 5.82 ± 2.86 

FeB Shield 0.15 RF 127 0.992 ± 0.005 1.60 ± 0.82 0.57 ± 0.34 

Table 1 summarizes the quantitative performance 

metrics of the machine learning models applied to 

B₄C- and FeB-enhanced concrete under different 

environmental conditions (tunnel air and concrete 

shielding). The table reports, for each model, the 

number of samples used (n), the coefficient of 

determination (R²) on the test set, the normalized 

root mean square error (N-RMSE), and the 

normalized mean absolute error (NMAE). The N-

RMSE values were obtained by normalizing the 

RMSE with respect to either the mean or the range 

of the dataset, allowing the prediction errors to be 

interpreted relative to both the characteristic 

magnitude and the variability of the data. 

The results clearly indicate that model performance 

depends not only on the selected algorithm but also 

strongly on the environmental conditions and the 

type of shielding material. Overall, the RF and GBR 

models consistently exhibit the highest predictive 

accuracy across all configurations. These models 

achieve very high R² values—typically in the range 

of 0.98–0.996—together with low N-RMSE and 

NMAE values in both the tunnel air environment and 

the concrete shielding. This behavior demonstrates 
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the strong capability of tree-based ensemble 

methods to capture the nonlinear, multi-scale 

attenuation characteristics of secondary neutron 

dose distributions. 

The KNN model provides acceptable performance, 

particularly in the tunnel air environment; however, 

it generally yields higher error metrics than RF and 

GBR. This relative degradation becomes more 

pronounced in the shielding environment, where 

steep dose gradients and highly heterogeneous 

attenuation behavior are present. Such sensitivity 

can be attributed to the local, instance-based nature 

of KNN and its limited generalization capability in 

complex, high-gradient data spaces. 

In contrast, the log-linear LR model exhibits 

markedly poorer performance, especially within the 

concrete shielding. For both B₄C- and FeB-

enhanced concretes in the shielded environment, 

log-linear LR is characterized by very low R² values 

(approximately 0.3–0.5) and high N-RMSE values 

reaching up to 14-16%. These results indicate that 

the sharp and strongly nonlinear dose attenuation 

observed within shielding materials cannot be 

adequately represented by simple log-linear 

formulations. Although log-linear LR performs 

comparatively better in the tunnel air environment, it 

still remains clearly inferior to the nonlinear machine 

learning approaches. 

From a material-specific perspective, similar 

performance trends are observed for both B₄C- and 

FeB-enhanced concretes. However, the FeB-based 

shielding configurations exhibit slightly more 

complex attenuation behavior, particularly in the 

shielded environment, due to the combined effects of 

iron-induced neutron scattering and boron-based 

absorption. This increased physical complexity 

further challenges linear modeling approaches, 

while RF and GBR remain robust and accurate 

across all FeB configurations.In summary, the 

performance metrics presented in Table 1 

demonstrate that nonlinear machine learning models 

provide a reliable and physically consistent 

framework for predicting secondary neutron dose 

distributions in both tunnel air and concrete 

shielding environments. Among the evaluated 

approaches, RF and GBR emerge as the most 

effective and stable models across varying material 

compositions and environmental conditions. 

Conversely, the limited predictive capability of the 

log-linear regression approach highlights its 

unsuitability for neutron transport and shielding 

problems in high-energy proton accelerator 

facilities. To further investigate the learning 

behavior and error characteristics of the models, the 

spatial variation of prediction errors was analyzed 

using the root mean square error (RMSE) metric. 

Rather than relying solely on global performance 

indicators, evaluating the distance-dependent 

variation of RMSE enables a detailed assessment of 

model accuracy and stability in both the near-field 

and far-field regions. In this context, distance-

dependent test RMSE profiles derived from 5-fold 

cross-validation were examined. 
 

 
Figure 7. Distance-dependent variation of test RMSE as 

a function of 𝑥for B₄C-enhanced concrete with 5%, 

10%, and 15% boron content in the tunnel air 

environment. Results are presented as mean ± standard 

deviation based on 5-fold cross-validation for the log-

linear LR, RF, GBR, and KNN models. 

 

 
Figure 8. Distance-dependent variation of test RMSE as 

a function of 𝑥for B₄C-enhanced concrete with 5%, 

10%, and 15% boron content in the concrete shielding 

environment. Results are presented as mean ± standard 

deviation based on 5-fold cross-validation for the log-

linear LR, RF, GBR, and KNN models. 
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Figure 9. Distance-dependent variation of test RMSE as 

a function of 𝑥for FeB-enhanced concrete with 5%, 10%, 

and 15% additive content in the tunnel air environment. 

Results are presented as mean ± standard deviation 

based on 5-fold cross-validation for the log-linear LR, 

RF, GBR, and KNN models. 

 

 
Figure 10. Distance-dependent variation of test RMSE 

as a function of 𝑥for FeB-enhanced concrete with 5%, 

10%, and 15% additive content in the concrete shielding 

environment. Results are presented as mean ± standard 

deviation based on 5-fold cross-validation for the log-

linear LR, RF, GBR, and KNN models. 

 

For B₄C-enhanced concrete, the RMSE profiles 

obtained in the tunnel air environment (Figure 7) 

indicate that all models exhibit their highest error 

levels in the near-field region close to the source. 

This behavior is associated with the presence of 

steep spatial dose gradients and the strongly 

nonlinear nature of the underlying physical 

processes. As the distance from the source increases, 

RMSE values decrease systematically, reflecting 

improved prediction accuracy in the far-field regime. 

Among the evaluated models, Random Forest (RF) 

and Gradient Boosting Regressor (GBR) 

consistently achieve lower RMSE values across the 

entire distance range and display narrower 

uncertainty bands, indicating stable and robust 

learning behavior. In contrast, the KNN model 

shows noticeable fluctuations, particularly at 

intermediate distances, while the log-linear LR 

model exhibits persistently higher and more variable 

RMSE values, highlighting its limited capability to 

capture nonlinear dose–distance relationships. 

The RMSE profiles for B₄C-enhanced concrete in 

the shielding environment (Figure 8) reveal an even 

stronger dependence on distance. Extremely high 

RMSE values are observed in the immediate vicinity 

of the source due to the sharp dose attenuation within 

the concrete shield. Beyond this near-field region, 

however, RF and GBR rapidly suppress the 

prediction error, converging to near-zero RMSE 

values and maintaining this performance over a wide 

distance range. This behavior demonstrates that 

these models successfully learn the dominant 

nonlinear attenuation mechanisms governing 

neutron transport within the shielding material. In 

contrast, KNN exhibits reduced stability in the near-

field, while LR fails to represent the steep dose 

gradients, resulting in elevated RMSE levels over a 

broader spatial range. 

The distance-dependent RMSE profiles obtained for 

FeB-enhanced concrete (Figures 9 and 10) show 

trends that are largely consistent with those observed 

for B₄C. In the tunnel air environment (Figure 9), the 

highest RMSE values again occur near the source, 

followed by a gradual reduction with increasing 

distance. RF and GBR models demonstrate superior 

performance, characterized by lower RMSE values 

and reduced fold-to-fold variability across all 

distances. The KNN model exhibits pronounced 

fluctuations at intermediate distances, whereas the 

LR model consistently yields higher RMSE values, 

indicating insufficient generalization even in the air 

environment. 

In the shielding environment for FeB-enhanced 

concrete (Figure 10), the prediction task becomes 

more challenging due to the combined effects of 

iron-induced neutron scattering and boron-based 

absorption. These multi-mechanism attenuation 

processes lead to extremely steep dose gradients in 

the near-field region, resulting in high RMSE values 

close to the source. Despite this complexity, RF and 

GBR models rapidly reduce RMSE beyond the 

initial shielding thickness and maintain very low and 

stable error levels in the far-field region. This 

outcome confirms their ability to capture the 
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strongly nonlinear and multi-scale attenuation 

behavior characteristic of FeB-enhanced concrete. 

Conversely, KNN shows limited robustness near the 

source, and LR remains unable to reproduce the 

rapid dose attenuation, leading to persistently higher 

RMSE values.Overall, the distance-dependent 

RMSE analyses presented in Figures 7-10 clearly 

demonstrate that model performance is strongly 

distance-dependent, with the most challenging 

prediction region located in the near-field where 

dose gradients are steepest. Across all material and 

environmental configurations, Random Forest and 

Gradient Boosting Regressor models consistently 

provide the lowest prediction errors and the highest 

spatial stability in both near-field and far-field 

regimes. In contrast, KNN offers limited reliability, 

and log-linear regression approaches are inadequate 

for representing the complex spatial behavior of 

secondary neutron dose attenuation in both B₄C- and 

FeB-enhanced concrete shielding systems. 

Radiation has been studied in a variety of different 

purposes and reported in the literature [41-60]. 

 

4. Conclusions 

 
In this study, a hybrid MC-ML framework was 

developed to model the secondary neutron dose 

distributions generated by the interaction of 1000 

MeV protons with a copper target. Neutron dose data 

obtained from FLUKA simulations were evaluated 

for both tunnel air and concrete shielding 

environments using B₄C- and FeB-enhanced 

concrete at additive fractions of 5%, 10%, and 15%. 

Within this framework, log-linear LR, KNN, RF, 

and GBR models were systematically trained and 

tested. 

The results demonstrate that neutron dose 

attenuation exhibits a strongly nonlinear and 

distance-dependent behavior, particularly within 

shielding materials where steep dose gradients occur 

over short spatial ranges. In addition to global 

performance metrics, distance-dependent RMSE 

analyses revealed pronounced differences in model 

accuracy between the near-field and far-field 

regions. Across all material compositions and 

environmental configurations, RF and GBR models 

consistently outperformed log-linear LR and KNN, 

providing superior predictive accuracy and spatial 

stability. In contrast, the log-linear LR model failed 

to adequately represent the nonlinear dose–distance 

relationship, while KNN showed limited robustness, 

especially in regions characterized by sharp 

attenuation. 

Comparative analyses of B₄C- and FeB-enhanced 

concretes indicate that both materials provide 

effective neutron shielding; however, FeB-enhanced 

concrete exhibits more complex attenuation 

behavior due to the synergistic physical roles of iron 

and boron. Iron contributes to fast-neutron energy 

degradation through elastic and inelastic scattering, 

while boron provides efficient absorption at lower 

neutron energies. This multi-mechanism shielding 

behavior results in highly nonlinear dose 

distributions, which can be reliably captured only by 

advanced nonlinear machine learning models. 

Distance-dependent error analyses further show that 

prediction uncertainty is highest near the source and 

rapidly decreases beyond the initial shielding 

thickness when RF and GBR models are employed. 

Overall, this study demonstrates that nonlinear, tree-

based machine learning models trained on MC 

simulation data offer a reliable, rapid, and 

computationally efficient alternative for neutron 

dose estimation and shielding analysis in high-

energy proton accelerator facilities. The proposed 

framework enables accurate dose prediction across 

different shielding materials, additive fractions, and 

spatial regions, thereby providing a powerful tool for 

shielding design optimization and radiation safety 

assessments. Future work will focus on extending 

this approach to three-dimensional geometries, 

additional energy ranges, and real-time surrogate 

modeling for accelerator operation and facility 

design. 
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