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Abstract:  
 

MLOps is viewed as a complex process for the enterprise level, so MLOps can serve as 

a significant hindrance for small teams who want to apply machine learning operations. 

Yet, small teams can gain a tremendous advantage from MLOps by applying simplified, 

lean tooling, gradually moving toward more complex MLOps for their teams. In this 

article, a complete set is presented for small teams on how MLOps can be applied 

effectively for small teams without engaging cloud orchestration platforms. The article 

discusses ideas on how MLOps can be applied for small teams through basic version 

control for source and model files, tooling for simple experiments with file storage and 

databases, basic automation through shell scripts, basic MLOps tooling through system 

job schedulers, and basic MLOPs testing through standard testing results. MLOps can 

be made a successful process for small teams with the use of a progressive approach. 

According to the progressive approach, teams can move toward more complex MLOps 

concepts when their skills and resource availability increase. Therefore, in the 

progressive approach, automation investments can provide a remarkable difference for 

teams, meaning investment in MLOps can be avoided because automation can provide a 

negative effect for the team. Therefore, even the leanest teams can attain a solid basis 

for successful MLOps. 

 

1. Introduction 
 

It has always been a dilemma among small teams 

working in resource-constrained environments how 

to ensure that their machine learning systems 

remain reliable without the budgets large 

technology companies have to invest in their 

systems. The advent of MLOps has become an 

essential element of solving modern ML 

development, yet poses an apparent impediment of 

the early adoption of more basic populations 

through its relationship to more complex tooling 

and cloud-native infrastructure. The intricacy of the 

full MLOps systems tend to overload staff who are 

already operating on the margins of core 

development tasks. Studies into the failures of big 

data and machine learning projects have reported 

systemic trends of organizations failing to move 

experimental models into working systems with the 

most common factors that have led to these failures 

being the lack of resources and insufficient 

operational practices [1]. Such problems are 

especially acute in the case of smaller organizations 

where employees of the team are required to 

combine several roles at once, and usually do not 

have the luxury of a dedicated staff focused 

specifically on infrastructure and deployment 

issues. 

The apprehension is based on a primary 

misconception, i.e., that MLOps involves 

significant initial expenditure in platforms, human 

resources, and infrastructure. Research on the 

challenges of machine learning application has 

indicated that the barriers to the use of machine 

learning often occur at the level of complexity of 

deployment, monitoring needs, and the perceived 

complexity of complex orchestration systems that 

must be in place before the teams can put models 

into practice [2]. This perception produces a 

paralysis that the teams feel that they need to install 

enterprise-grade solutions initially or they will end 

up having systems that will not scale accordingly. 

The difference between the perception and the 

reality makes small teams delay the realization of 

the fundamental operation practices, which results 

in technical debt, reproducibility problems, and 

maintenance problems progressively increase. The 

accrued technical debt takes different forms: 

notebook-developed models that are not 
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reproducible by other developers, computational 

resource-consuming experiments as a result of 

unintended duplication of prior work, manualized 

deployment processes that are subject to 

configuration drift and human error, and missing 

monitoring that does not allow detecting that model 

performance degrades in production settings. 

As this article will demonstrate, it is possible to 

apply the MLOps principles incrementally and 

using the readily available resources and simple 

workflows in the context of the current capacity 

and requirements of the resource-bound teams. 

Beginning with these basic practices like version 

control of code and model setups, systematic test 

tracking with simple tools, rudimentary automated 

testing to identify regressions, and simple 

automation of deployment with simple scripts 

instead of engineering orchestration platforms, 

teams will realize immediate operational payback 

without a huge investment in capital or human 

resources. These baseline practices help in tackling 

the most significant pain points captured in the 

literature on machine learning deployment: 

reproducibility through a sound versioning 

mechanism, wasteful computation through proper 

experiment documentation, repetitive work with 

end users through the automation of routine work, 

and monitoring baselines with problem 

identification when an issue has been detected 

before it can impact end users [2]. Gradually 

increasing its capabilities and adding them as 

particular needs arise, instead of implementing 

extensive solutions speculatively, even lean teams 

can build strong ML operations to enhance daily 

productivity and position technical systems and 

organizational processes to grow in the future as 

projects become mature and resource availability 

deepens. 

 
2. Understanding MLOps at Its Core 

 

MLOps is basically an implementation of the 

software engineering field to machine learning 

processes. In its simplest form, it deals with three 

essential requirements: the ability to reproduce 

experiments and results, the ability to deploy a 

model reliably, and the ability to sustain an ML 

system over time. These are requirements 

independent of the size of the team and 

organizational resources. The literature review of 

the challenges and strategies of MLOps indicates 

that organizations of various sizes face the same 

underlying problems, i.e. versioning of models, 

repeatability of experiments, and consistency in 

terms of operations [3]. The reproducibility 

problem itself has become a universal issue in all 

organizations where training models constructed at 

previous project stages cannot be reliably recreated 

because the version of training data, 

hyperparameter settings, dependency descriptions 

or environmental settings are not properly 

documented. The reliability issue arises when 

models which perform well in controlled 

development environments fail to work in 

production environments owing to changes in data 

distributions, infrastructure setups, integration 

issues, or due to unexpected edge cases in actual 

data streams. The maintenance consideration grows 

in importance as the models grow older in the 

production process, and need to be updated 

systematically to accommodate the performance 

drift that occurs with changes in data patterns, 

inject new training data representing current 

conditions, meet the needs of changing business 

demands, or act upon feedback of prediction errors 

or bias. 

MLOps is modular, which is obscured by the idea 

that the concept of MLOps necessitates enterprise-

level solutions. Basic MLOps principles like 

version control, experiment tracking, test 

automation, and deployment automation can be 

applied separately and gradually. Small teams can 

use the fact that MLOps is not a binary condition 

but a continuum of practices that can be embraced 

given the existing needs and capabilities. There are 

quite a few works examining the machine learning 

lifecycle that demonstrate that a successful 

implementation of MLOps involves a number of 

steps: data collection and preparation, model 

development, deployment, and monitoring, each of 

which can be enhanced by incremental operations 

[4]. This planned development gives teams the 

freedom to focus on those practices that will 

eliminate the most urgent sources of pain instead of 

seeking an overall change simultaneously. 

Modularity implies that version control can be set 

up on the basis of standard distributed version 

control systems requiring no special machine 

learning platforms; that experiment tracking can be 

initiated using the basic shell scripting or scheduled 

tasks before progressing to more advanced 

container orchestration systems or serverless 

computing architectures. Beginning with the 

simplest viable practices achieves value in the 

present and establishes complex-accommodating 

patterns in the future. Code and data configuration 

Version controlling prevents (irreversible) loss of 

working solutions in which the teams invested 

substantial time and computation resources in 

developing. Systematic experiment tracking 

eliminates the wasted computation of repeating a 

prior experiment, which is becoming more and 

more important as model architectures grow more 

complicated, training durations grow beyond hours 
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to days, and cloud computing is getting more 

expensive with each experiment. Automation 

minimizes the number of people errors that cause 

production accidents, failure of services to the end 

users or wrong forecasts undermining stakeholder 

confidence in machine learning systems [3]. They 

both have independent gains as they lead to overall 

operational maturity. The ensemble effect of these 

practices at the ground level is that small 

investments in operational discipline will translate 

into large returns in terms of productivity, better 

interaction among team members of different skills 

levels, faster iteration cycles that will enable more 

experiments and innovations, and increased 

reliability of a system, which creates organizational 

trust in the implementation of the machine learning 

solutions in critical production settings [4]. Such 

compounding advantages provide reasons to invest 

more in moving to the right of the MLOps maturity 

spectrum by adding teams and capabilities and 

expanding resources. 

 

3. Building Blocks for Budget-Conscious MLOps 

 

The very core of any available implementation of 

MLOps is version control systems. In addition to a 

versioning of code changes, proper version control 

covers model architectures, training settings, data 

processing programs and environment 

requirements. Branching strategies allow teams to 

become experimental but have a stable production 

code. Tagging releases gives an explicit view of the 

deployed models that allow rollbacks in the case of 

any problems. Studies on the support of MLOps 

tools take note of the fact that version control is the 

fundamental component on which all the other 

operational capabilities are based and which offers 

necessary traceability of reproducible machine 

learning systems [5]. It is not just important in 

traditional software version control terms that the 

machine learning system must rely on numerous 

interrelated components, which must be versioned 

in a consistent manner: training code implementing 

algorithms, hyperparameter settings with enormous 

effects on convergence and performance properties 

of the model, feature engineering pipelines 

converting raw input data to model-ready formats, 

model architecture description detailing layer 

configurations and connectivity patterns, 

dependency specifications giving a consistent 

execution environment both in development and 

production, and extensive metadata indicating the 

conditions under which the model was trained, such 

as hardware settings and random seed values. 

Teams which adopted a comprehensive version 

control of all these components have demonstrated 

that they were much better able to recreate 

experimental results many months after first being 

written, debug production problems by comparing 

deployments with previous versions in a systematic 

manner, and induct new team members who can 

perceive system evolution and design decisions by 

accessing commit history and documentation. 

Data versioning also seems to be an issue, given the 

typical file sizes, yet there are lightweight methods. 

Storing snapshots of data as compressed archives, 

maintaining metadata manifests that characterize 

versions of datasets, or content-addressable storage 

patterns all can provide traceability with no special 

hosting facilities. It is all about building systematic 

naming conventions and documentation practices 

that render dataset lineage visible. End-to-end 

machine learning pipeline analysis studies in the 

cloud have found data versioning to be an 

important, but frequently ignored, feature of 

MLOps implementation, which explicitly 

influences model reproducibility and debugging 

ability 6. Training datasets are often measured in 

gigabytes or terabytes, and thus naive use of 

standard version control systems is not possible 

because they bloat over time and cause poor 

performance when performing repository 

operations, as well as have implications on storage 

cost. Lightweight approaches avoid these 

limitations by making strategic trade-offs: the size 

of archives is reduced by compressing snapshots, 

but full snapshots are not, at significant milestones 

of the project; metadata manifests can reveal 

significant properties of datasets, such as counts of 

rows and columns, distributions of features and 

transformations applied, but not duplicate the 

underlying data files; deduplication-unchanged data 

segments are only stored once, across multiple 

versions; and cryptographic hash-based verification 

can ensure data safety, even in the absence of 

special hosting infrastructure and/or rich validation 

processes. 

Tracking Experiments Without Complicatedness. 

Formal monitoring of experiments is used to 

substitute informal development of models with a 

model development procedure. Open-source 

tracking tools allow teams to record parameters and 

metrics and artifacts on a regular basis in 

experiments. This creates a searchable history 

which eliminates duplication of work and 

accelerates iteration by ensuring successful settings 

can be retrieved quickly. Investigations on the 

ecosystems of MLOps tools observe that 

experiment tracking addresses one of the oldest 

dilemmas of machine learning development, 

namely the rapid expansion of experimental 

variations that soon cannot be controlled unless 

orderly arranged and reported [5]. Teams that 

execute hyperparameter searches of 
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hyperdimensional parameter spaces, that are 

comparing alternative neural network models with 

varying depth and width configurations, or that are 

comparing alternative feature engineering methods 

generate dozens or hundreds of experimental 

executions with each having different 

configurations that gave different performance 

properties across many evaluation metrics. Without 

organized recording systems, useful information on 

what strategies are effective in which circumstances 

will be stored in solitary Jupyter notebooks, 

fragmented log files, or undocumented mental 

models of a single contributor; a lot of redundant 

work will be done when different members of the 

team explore identical settings that have already 

been tried or be unable to find the same promising 

results that were discovered at an earlier stage of 

development. 

Good tracking does not require advanced 

infrastructure. File-based backenders store 

experiment data on a local or shared network 

storage and are independent. Simple databases give 

queryable experiment history, obtained by 

structured logging to them. The use of a 

spreadsheet based tracking is of value when it is 

done in a disciplined way, though task specific 

tools saves more overhead and enhance uniformity. 

Various works have examined the machine learning 

pipeline implementations and have determined that 

experiment tracking can bring valuable operational 

advantages to teams with low infrastructure costs 

[6]. Small teams are adequately served by file based 

backends, which store structured metadata of the 

experiments on local filesystems or network-

attached storage. These enable simple queries of 

experiments and performance comparisons without 

the need to have specific server infrastructure, 

expertise in database administration, and constant 

subscription to cloud services that add overhead 

costs to operation. 

  

4. Automation Strategies for Small Teams 

 

4.1 Starting with Simple Pipelines 

 

Simple Pipelines is a simple initial pipeline system 

that functions according to the principle that water's 

specific gravity is greater than that of 

oil.<|human|>Simple Pipelines: beginning with 

Simple Pipelines. Simple Pipelines is a simple type 

of initial pipeline system which operates based on 

the principle that water has a higher specific gravity 

than oil. 

Automation should not start with complicated 

orchestration systems. Task schedulers at the 

system level offer predictable automation to 

performing routine workflows. Training pipelines 

may also be scheduled to run or activated by signals 

of data availability. Evaluation scripts can be run 

automatically on held-out test sets to provide 

performance reports by which teams can detect 

degradation. Studies discussing continuous 

integration and continuous delivery as a means of 

automated deployment of machine learning models 

show that simple automation strategies provide 

significant value without implying complex 

infrastructure or tooling ecosystems development 

[7]. Task schedulers on the system level that are 

provided by all operating systems allow a team to 

create consistent periodic execution of training 

processes, data preprocessor, and model evaluation 

processes that are not deployed on specific 

orchestration platforms, do not require the 

implementation of complex workflow definition 

languages, and do not need to maintain other 

infrastructure elements. By training pipelines to be 

run at off-peak times of the computation, the 

maximum use is made of the available hardware 

resources, and in interactive development activities, 

when a model needs to be triggered to run to absorb 

new information is better done by use of trigger 

based execution mechanism that reacts to signals of 

data availability by the upstream source systems. 

Systemic execution of automated evaluation scripts 

on held-out test datasets yields stable performance 

reports that can be used to set behavioral 

expectations of model predictions, so that teams 

can identify performance decay caused by drift in 

data distribution, accidental software regressions, or 

environmental configurations before the problems 

can spread to production prediction services and 

affect business processes or user experiences. 

Chaining Shell scripts, reproducible pipelines can 

be generated by chaining together preprocessing, 

training, and evaluation steps, which anyone on the 

team can use. The execution logic is separated by 

configuration files with which these scripts are 

parameterized and experimental parameters, thus 

allowing easy modification. This is a non-

architectural scaling of local development machines 

to common compute resources. Research on the 

difficulties surrounding the creation and 

implementation of artificial intelligence models in 

industrial environments has emphasized script-

based pipelines as a welcoming starting point to 

teams embarking on automation as it offers instant 

reproducibility advantages without the high 

learning curve of the complicated workflow 

engines or dedicated orchestration-focused tools 

[8]. Sequences of data preprocessing operations, 

model training processes, validation routines, and 

evaluation programs are shell scripts describing key 

institutional knowledge of the order of correct 

execution, input file locations and formats, output 
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artifacts and specifications, dependency 

management process, and error handling routines 

which would otherwise be stored only in the 

unwritten memory of individual developers or on 

wiki pages and email archives. By parameterizing 

them with external configuration files in standard 

formats, such as JSON or YAML, the teams can 

change hyperparameters that affect the model 

behavior, data source locations or selection criteria, 

evaluation metrics or reporting formats, or number 

of computational resources but without changing 

the core scripts logic and thus reduce significantly 

the risk of syntactic errors or logical bugs to the 

point of making changes during normal 

experimentation cycles. 

 

4.2 Progressive Enhancement 

 

The level of automation is an organic development 

that follows the demands of a group. Planned 

scripts are replaced by event-based triggers as 

workflows become more fluid and manual steps of 

the deployment process are replaced by automatic 

ones as trust is established. Monitoring capabilities 

vary depending on the complexity of a system 

between the simplistic logging to structured metrics 

gathering. Each improvement is very specific, 

instead of affecting capabilities in a speculative 

fashion. Studies of continuous integration and 

delivery of machine learning have shown that 

gradual optimization of automation, ensuring that 

all automation efforts are well-calibrated with real 

operational requirements and the capacity of the 

team, leads to increasingly sustainable 

implementations, as opposed to aiming to achieve 

full end-to-end automation too soon. Teams are 

generally embarking on an automation journey with 

simple fixed-cadence scheduled execution of 

training workflows and then gradually move on to 

event-driven architectures in which data availability 

announcements by upstream systems, observable 

performance thresholds by monitoring, or manual 

announcements by data scientists may trigger 

pipeline execution as the business needs of more 

responsive adaptive systems become evident. On 

the same note, manual processes of deployment that 

involve human verification, approval gates, and 

rollout processes are replaced with automated 

deployment pipelines that also consist of full testing 

suites and automated validation checks as the 

different teams continue to get more operational 

experience with model behavior in production 

scenarios, develop confidence with their quality 

assurance processes and develop robust rollback 

mechanisms that effectively address the risks 

inherent in fully automated releases.The 

improvements are focused on particular pain points, 

which in practice are not only stalling the 

workflows but also introducing the capabilities’ 

implementation according to the speculation of the 

ideal work that should be. It makes sure that 

automation investments can provide operational 

returns instead of increasing system complexity and 

not productivity returns. The study examining 

issues in the deployment of industrial AI proved 

that it is clear that the teams achieving sustainable 

automation maturity are strategically concerned 

with the improvement of the real bottlenecks that 

restrict their growth pace or functional stability, as 

opposed to the implementation of features as 

predetermined by the generic MLOps framework or 

futuristic reference architecture [8]. 

 

5. Testing and Validation Practices 

 

Testing discipline is crucial from the outset to avoid 

quality problems from accumulating. Unit tests 

assess the correctness of the logic on which the data 

processing is based. Integration tests check the 

functionality of various components within the 

processing pipeline. Tests for validating models 

check their predictions on standard cases and their 

efficiency on different data segments. Such 

activities can be accomplished with a bare 

minimum of infrastructure, relying on generic 

testing tools, but they have to be performed 

consistently. Studies on the perspectives on the 

results related to the incorporation of artificial 

intelligence and machine learning techniques on the 

generation and accumulation of debt cite the 

necessity for the application of a multifaceted 

approach toward complete testing toward the 

maintenance of the quality features within the 

studied models, irrespective of the progressive 

evolution and change in distributions within the 

analyzed data sources through time [9]. Individual 

unit tests related to the processing functions assess 

the functionality when the feature transformation 

logic is applied, the functionality when the cleaning 

logic based on the input and output is applied, the 

functionality when the preprocessing logic is 

applied based on the transformation chains, and the 

functionality when the preprocessing logic is 

applied based on the transformation chains. 

Integration tests applied on a more abstract level 

confirm the functionality when the components 

interact within the complete workflow, assess the 

functionality when the output format from the 

preprocessing stage corresponds with the input 

expectations for the training modules, the 

functionality when the model’s deserialization and 

serialization logic maintains the prediction 

functionality on various runtime environments, and 

assess the functionality when the evaluation 
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harnesses appropriately use the model’s outputs for 

the metric computation. The tests for validating 

models work on the highest level and assess the 

functionality upon the prediction on standard cases 

based on the established outputs within the 

historical data sources, the functionality upon the 

efficiency based on the different segments within 

the defined data sources based on demographic 

information, and the functionality upon the various 

input perturbations based on the real-world 

variations. 

These methodologies require low-barrier tooling, as 

the testing infrastructure already supported by all 

programming languages will suffice, albeit with 

rigorous adherence throughout the entire 

development cycle for maximum liable-end 

protective benefits. Technical debt research and 

analysis studies among AI-based systems clearly 

indicate the testing discipline paradigm as a 

paradigm where pooling cumulative benefits over 

time requires initial heavy spending on 

comprehensive testing suites to avoid protracted 

debugging processes and production-level events, 

with later analyses otherwise requiring far more 

resources and expense to debug and rectify [10]. 

The tool infrastructure remains low-barrier because 

the current unit testing infrastructure already exists 

and was devised for traditional softwares has a 

direct natural extension for AI-based machine 

learning systems requiring only the addition of 

standards for representing test cases, wherein 

acceptable margins for numerical testing 

comparisons subject to floating point arithmetic 

precision and stochastic training processes must 

also require, and representing fixtures for test data 

with diverse minutiae without making them 

unmanageable for large-scale systems, whereas the 

key to success remains rigorous adherence and not 

the complexity and infrastructure overheads 

requiring standardization where each code change 

should include tests, wherein test failures are 

automatically and automatically blocked for 

integration into the development trunk, and wherein 

developing and maintaining test infrastructure 

health should rank on par with new feature 

enhancements or boosted accuracy for AI-based 

systems as well. 

Lightweight continuous integration through a code 

repository hook or timed validation runs identifies 

bugs prior to deploying them in production 

environments. Automated test scripts executing on 

each code change offer fast in-process feedback 

loops during software development activities. 

Staging environments that are simply separate 

config files directing references to non-production 

data sources provide a safe setting prior to software 

deployments or updates in production environments 

using this solution that costs nothing but 

significantly impacts reduced frequency or 

occurrence in production environments due to 

reduced software issues or bugs. A study from 

research in AI/Machine Learning infrastructure 

development explicitly addresses that automating 

software tests integrated into a software 

development process boosts immediate feedback 

loops in debugging activities that fast-track bug fix 

resolutions in systems while avoiding regressions 

from a software update or modification in a system 

that increases developers' confidence in a system 

whose functionality operates as expected [9]. 

Repository hooks that automatically trigger test 

execution scripts upon each code change ensure 

that software bugs are quickly identifiable in 

minutes from their code introduction during a 

setting that ensures minimal remediation work due 

to fresh implementation contexts in system 

developers' minds compared to environments 

requiring delayed validation that involve extensive 

code changes from a bug introduction point prior to 

system visibility in production environments for 

increased remediation difficulties in search and 

isolation activities due to their buried system 

contexts among multiple code changes in rapid 

software changes in a system environment. 

Such practices have minimal implementation costs 

and mostly depend on the discipline within an 

organization as well as the computational resources 

necessary to run tests, while they greatly minimize 

the occurrence of issues within the production 

environment as most issues are identified before the 

systems go to the user environment. Findings from 

research that focus on methodologies of technical 

debt management have identified that organizations 

that adopt total testing and validation 

methodologies experience fewer failures within the 

production environment and reduced mean time to 

detect and repair when failures occur [10]. 

 

Table 1: MLOps Core Components and Implementation Characteristics for Small Teams [3, 4] 

MLOps Practice Primary Purpose 
Initial Implementation 

Approach 

Progressive 

Enhancement 
Team Impact 
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Version Control 

Reproducibility of 

experiments and 

models 

Standard distributed 

version control systems 

for code and 

configurations 

Add data versioning 

through metadata 

manifests and content-

addressable storage 

Prevents loss of 

working solutions; 

enables 

collaboration 

Experiment 

Tracking 

Eliminate duplicate 

work and enable 

configuration retrieval 

Structured logging to 

simple databases or file-

based backends 

Adopt dedicated 

tracking servers with 

visualization 

capabilities 

Reduces wasted 

computational 

effort; accelerates 

iteration 

Automated Testing 
Reliability and quality 

assurance 

Unit tests for data 

processing; integration 

tests for pipeline 

components 

Expand to model 

validation tests and 

continuous integration 

hooks 

Reduces production 

incidents and service 

disruptions 

Deployment 

Automation 

Maintainability and 

error reduction 

Basic shell scripting or 

scheduled tasks 

Progress to container 

orchestration or 

serverless 

architectures 

Minimizes human 

errors; frees time for 

model improvement 

 

Table 2: Version Control Components for MLOps [5, 6] 

Component File Size Implementation Method Key Benefit 

Source Code Megabytes Standard Git repositories Code reproducibility 

Hyperparameters Kilobytes Configuration files (JSON/YAML) Parameter tracking 

Training Data Gigabytes to Terabytes Compressed archives + metadata Data lineage 

Model Architecture Kilobytes JSON/YAML specifications Architecture versioning 

Dependencies Megabytes Requirements files Environment consistency 

 

Table 3: Automation Maturity Evolution Path [7, 8] 

Maturity Stage 
Trigger 

Mechanism 

Deployment 

Process 
Monitoring Level 

Team 

Confidence 

Implementation 

Focus 

Initial Manual execution 
Fully manual with 

verification 
Basic logging Low Establishing scripts 

Basic Fixed schedules 
Manual with 

checklists 
Structured logs Building 

Reliability 

improvement 

Intermediate 
Event-driven 

triggers 

Semi-automated 

with approvals 
Metrics collection Moderate 

Reducing manual 

steps 

Advanced Intelligent triggers 
Fully automated 

with rollback 

Comprehensive 

dashboards 
High 

Performance 

optimization 

 

Table 4: Testing Practice Implementation and Impact Analysis [9, 10] 

Testing Approach 
Setup 

Effort 

Organizational 

Requirement 

Feedback 

Speed 

Impact on Production 

Incidents 

Long-term 

ROI 

Manual Testing Minimal Individual discipline Hours to days Moderate incident rate Low 

Basic Automated 

Tests 
Low Team conventions 

Minutes to 

hours 
Reduced incidents Moderate 

Repository Hook 

Testing 
Moderate CI/CD setup Minutes 

Significantly reduced 

incidents 
High 

Comprehensive Test 

Suites 
High Strong testing culture Real-time Minimal incidents Very High 

 

6. Conclusions 

 
Small teams with low budgets can practice effective 

MLOps by accepting the fact that operational 

maturity must instead be measured on a spectrum, 

rather than seeing the process of implementation as 

an all-or-nothing solution for the enterprises. The 

trick here is that a set of skills needs to be 

incrementally introduced to the system, focusing on 

the basic practices of version control, experiment 
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tracking, basic automation, and test discipline. 

Indeed, all of these basic practices are important in 

themselves, but together, they provide a starting 

foundation for the necessary set of skills for 

operation infrastructures in machine learning. The 

tools used within the system include basic version 

control tools, basic tracking tools, basic scripts for 

the logistics of the system and the automation of the 

process, and basic test tools, all of which can be 

used within the system to address the critical needs 

regarding the reproducibility, the interaction within 

the system, and the reliability of the deployment 

process with the system in place, all of which can 

be done with less budget within the system. 

Moreover, the ideology of progressive 

enhancement allows the system to develop the level 

of automation maturity increments, in line with the 

growth of the system's needs and possibilities in the 

process of implementation of practice within the 

system's framework. In other words, each of the 

progresses developed within the system aims to 

resolve the existing bottlenecks in the system, 

rather than focusing on the assumed needs for the 

system according to the ideal framework of the 

system's practice, processes, and operations, within 

the specified process in the system's framework. 

Indeed, the enterprises that adopted the practical 

approach to implementation of the practice in the 

system have developed numerous benefits within 

the system's framework and process, including the 

reduced technological debt of the system, the 

reduced incidents of production within the system, 

an increased level of efficiency of the process for 

the system's validation, an increased level of 

cooperative processes within the system's 

framework for the validation process, the reduced 

time of the system's iteration, and the increased 

confidence within the system's validation for the 

machine-learning-oriented processes in the system's 

framework, all of which clearly indicate that the 

implementation of the practice of the system's 

operation does not require significant budget within 

the system's framework. Indeed, the necessary 

budget within the system's process for the 

implementation of the practice includes the 

systematic discipline of the organization within the 

system's framework, the practice of all the system's 

operational processes in the system's framework, 

and the systematic selection of the tools within. 
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