

Copyright © IJCESEN

International Journal of Computational and Experimental

Science and ENgineering

(IJCESEN)

Vol. 12-No.1 (2026) pp. 470-478
http://www.ijcesen.com

ISSN: 2149-9144

 Research Article

Can Small Teams Do MLOps Too? Starting Simple Without a Big Budget

Swati Kumari*

NucleusTeq, USA
* Corresponding Author Email: swati.kumari.reach@gmail.com - ORCID: 0000-0002-0047-660X

Article Info:

DOI: 10.22399/ijcesen.4833

Received : 28 November 2025

Revised : 26 January 2026

Accepted : 28 January 2026

Keywords

MLOps Implementation,

Resource-Constrained Teams,

Incremental Automation,

Experiment Tracking,

Lightweight Infrastructure

Abstract:

MLOps is viewed as a complex process for the enterprise level, so MLOps can serve as

a significant hindrance for small teams who want to apply machine learning operations.

Yet, small teams can gain a tremendous advantage from MLOps by applying simplified,

lean tooling, gradually moving toward more complex MLOps for their teams. In this

article, a complete set is presented for small teams on how MLOps can be applied

effectively for small teams without engaging cloud orchestration platforms. The article

discusses ideas on how MLOps can be applied for small teams through basic version

control for source and model files, tooling for simple experiments with file storage and

databases, basic automation through shell scripts, basic MLOps tooling through system

job schedulers, and basic MLOPs testing through standard testing results. MLOps can

be made a successful process for small teams with the use of a progressive approach.

According to the progressive approach, teams can move toward more complex MLOps

concepts when their skills and resource availability increase. Therefore, in the

progressive approach, automation investments can provide a remarkable difference for

teams, meaning investment in MLOps can be avoided because automation can provide a

negative effect for the team. Therefore, even the leanest teams can attain a solid basis

for successful MLOps.

1. Introduction

It has always been a dilemma among small teams

working in resource-constrained environments how

to ensure that their machine learning systems

remain reliable without the budgets large

technology companies have to invest in their

systems. The advent of MLOps has become an

essential element of solving modern ML

development, yet poses an apparent impediment of

the early adoption of more basic populations

through its relationship to more complex tooling

and cloud-native infrastructure. The intricacy of the

full MLOps systems tend to overload staff who are

already operating on the margins of core

development tasks. Studies into the failures of big

data and machine learning projects have reported

systemic trends of organizations failing to move

experimental models into working systems with the

most common factors that have led to these failures

being the lack of resources and insufficient

operational practices [1]. Such problems are

especially acute in the case of smaller organizations

where employees of the team are required to

combine several roles at once, and usually do not

have the luxury of a dedicated staff focused

specifically on infrastructure and deployment

issues.

The apprehension is based on a primary

misconception, i.e., that MLOps involves

significant initial expenditure in platforms, human

resources, and infrastructure. Research on the

challenges of machine learning application has

indicated that the barriers to the use of machine

learning often occur at the level of complexity of

deployment, monitoring needs, and the perceived

complexity of complex orchestration systems that

must be in place before the teams can put models

into practice [2]. This perception produces a

paralysis that the teams feel that they need to install

enterprise-grade solutions initially or they will end

up having systems that will not scale accordingly.

The difference between the perception and the

reality makes small teams delay the realization of

the fundamental operation practices, which results

in technical debt, reproducibility problems, and

maintenance problems progressively increase. The

accrued technical debt takes different forms:

notebook-developed models that are not

http://dergipark.org.tr/en/pub/ijcesen
http://www.ijcesen.com

Swati Kumari / IJCESEN 12-1(2026)470-478

471

reproducible by other developers, computational

resource-consuming experiments as a result of

unintended duplication of prior work, manualized

deployment processes that are subject to

configuration drift and human error, and missing

monitoring that does not allow detecting that model

performance degrades in production settings.

As this article will demonstrate, it is possible to

apply the MLOps principles incrementally and

using the readily available resources and simple

workflows in the context of the current capacity

and requirements of the resource-bound teams.

Beginning with these basic practices like version

control of code and model setups, systematic test

tracking with simple tools, rudimentary automated

testing to identify regressions, and simple

automation of deployment with simple scripts

instead of engineering orchestration platforms,

teams will realize immediate operational payback

without a huge investment in capital or human

resources. These baseline practices help in tackling

the most significant pain points captured in the

literature on machine learning deployment:

reproducibility through a sound versioning

mechanism, wasteful computation through proper

experiment documentation, repetitive work with

end users through the automation of routine work,

and monitoring baselines with problem

identification when an issue has been detected

before it can impact end users [2]. Gradually

increasing its capabilities and adding them as

particular needs arise, instead of implementing

extensive solutions speculatively, even lean teams

can build strong ML operations to enhance daily

productivity and position technical systems and

organizational processes to grow in the future as

projects become mature and resource availability

deepens.

2. Understanding MLOps at Its Core

MLOps is basically an implementation of the

software engineering field to machine learning

processes. In its simplest form, it deals with three

essential requirements: the ability to reproduce

experiments and results, the ability to deploy a

model reliably, and the ability to sustain an ML

system over time. These are requirements

independent of the size of the team and

organizational resources. The literature review of

the challenges and strategies of MLOps indicates

that organizations of various sizes face the same

underlying problems, i.e. versioning of models,

repeatability of experiments, and consistency in

terms of operations [3]. The reproducibility

problem itself has become a universal issue in all

organizations where training models constructed at

previous project stages cannot be reliably recreated

because the version of training data,

hyperparameter settings, dependency descriptions

or environmental settings are not properly

documented. The reliability issue arises when

models which perform well in controlled

development environments fail to work in

production environments owing to changes in data

distributions, infrastructure setups, integration

issues, or due to unexpected edge cases in actual

data streams. The maintenance consideration grows

in importance as the models grow older in the

production process, and need to be updated

systematically to accommodate the performance

drift that occurs with changes in data patterns,

inject new training data representing current

conditions, meet the needs of changing business

demands, or act upon feedback of prediction errors

or bias.

MLOps is modular, which is obscured by the idea

that the concept of MLOps necessitates enterprise-

level solutions. Basic MLOps principles like

version control, experiment tracking, test

automation, and deployment automation can be

applied separately and gradually. Small teams can

use the fact that MLOps is not a binary condition

but a continuum of practices that can be embraced

given the existing needs and capabilities. There are

quite a few works examining the machine learning

lifecycle that demonstrate that a successful

implementation of MLOps involves a number of

steps: data collection and preparation, model

development, deployment, and monitoring, each of

which can be enhanced by incremental operations

[4]. This planned development gives teams the

freedom to focus on those practices that will

eliminate the most urgent sources of pain instead of

seeking an overall change simultaneously.

Modularity implies that version control can be set

up on the basis of standard distributed version

control systems requiring no special machine

learning platforms; that experiment tracking can be

initiated using the basic shell scripting or scheduled

tasks before progressing to more advanced

container orchestration systems or serverless

computing architectures. Beginning with the

simplest viable practices achieves value in the

present and establishes complex-accommodating

patterns in the future. Code and data configuration

Version controlling prevents (irreversible) loss of

working solutions in which the teams invested

substantial time and computation resources in

developing. Systematic experiment tracking

eliminates the wasted computation of repeating a

prior experiment, which is becoming more and

more important as model architectures grow more

complicated, training durations grow beyond hours

Swati Kumari / IJCESEN 12-1(2026)470-478

472

to days, and cloud computing is getting more

expensive with each experiment. Automation

minimizes the number of people errors that cause

production accidents, failure of services to the end

users or wrong forecasts undermining stakeholder

confidence in machine learning systems [3]. They

both have independent gains as they lead to overall

operational maturity. The ensemble effect of these

practices at the ground level is that small

investments in operational discipline will translate

into large returns in terms of productivity, better

interaction among team members of different skills

levels, faster iteration cycles that will enable more

experiments and innovations, and increased

reliability of a system, which creates organizational

trust in the implementation of the machine learning

solutions in critical production settings [4]. Such

compounding advantages provide reasons to invest

more in moving to the right of the MLOps maturity

spectrum by adding teams and capabilities and

expanding resources.

3. Building Blocks for Budget-Conscious MLOps

The very core of any available implementation of

MLOps is version control systems. In addition to a

versioning of code changes, proper version control

covers model architectures, training settings, data

processing programs and environment

requirements. Branching strategies allow teams to

become experimental but have a stable production

code. Tagging releases gives an explicit view of the

deployed models that allow rollbacks in the case of

any problems. Studies on the support of MLOps

tools take note of the fact that version control is the

fundamental component on which all the other

operational capabilities are based and which offers

necessary traceability of reproducible machine

learning systems [5]. It is not just important in

traditional software version control terms that the

machine learning system must rely on numerous

interrelated components, which must be versioned

in a consistent manner: training code implementing

algorithms, hyperparameter settings with enormous

effects on convergence and performance properties

of the model, feature engineering pipelines

converting raw input data to model-ready formats,

model architecture description detailing layer

configurations and connectivity patterns,

dependency specifications giving a consistent

execution environment both in development and

production, and extensive metadata indicating the

conditions under which the model was trained, such

as hardware settings and random seed values.

Teams which adopted a comprehensive version

control of all these components have demonstrated

that they were much better able to recreate

experimental results many months after first being

written, debug production problems by comparing

deployments with previous versions in a systematic

manner, and induct new team members who can

perceive system evolution and design decisions by

accessing commit history and documentation.

Data versioning also seems to be an issue, given the

typical file sizes, yet there are lightweight methods.

Storing snapshots of data as compressed archives,

maintaining metadata manifests that characterize

versions of datasets, or content-addressable storage

patterns all can provide traceability with no special

hosting facilities. It is all about building systematic

naming conventions and documentation practices

that render dataset lineage visible. End-to-end

machine learning pipeline analysis studies in the

cloud have found data versioning to be an

important, but frequently ignored, feature of

MLOps implementation, which explicitly

influences model reproducibility and debugging

ability 6. Training datasets are often measured in

gigabytes or terabytes, and thus naive use of

standard version control systems is not possible

because they bloat over time and cause poor

performance when performing repository

operations, as well as have implications on storage

cost. Lightweight approaches avoid these

limitations by making strategic trade-offs: the size

of archives is reduced by compressing snapshots,

but full snapshots are not, at significant milestones

of the project; metadata manifests can reveal

significant properties of datasets, such as counts of

rows and columns, distributions of features and

transformations applied, but not duplicate the

underlying data files; deduplication-unchanged data

segments are only stored once, across multiple

versions; and cryptographic hash-based verification

can ensure data safety, even in the absence of

special hosting infrastructure and/or rich validation

processes.

Tracking Experiments Without Complicatedness.

Formal monitoring of experiments is used to

substitute informal development of models with a

model development procedure. Open-source

tracking tools allow teams to record parameters and

metrics and artifacts on a regular basis in

experiments. This creates a searchable history

which eliminates duplication of work and

accelerates iteration by ensuring successful settings

can be retrieved quickly. Investigations on the

ecosystems of MLOps tools observe that

experiment tracking addresses one of the oldest

dilemmas of machine learning development,

namely the rapid expansion of experimental

variations that soon cannot be controlled unless

orderly arranged and reported [5]. Teams that

execute hyperparameter searches of

Swati Kumari / IJCESEN 12-1(2026)470-478

473

hyperdimensional parameter spaces, that are

comparing alternative neural network models with

varying depth and width configurations, or that are

comparing alternative feature engineering methods

generate dozens or hundreds of experimental

executions with each having different

configurations that gave different performance

properties across many evaluation metrics. Without

organized recording systems, useful information on

what strategies are effective in which circumstances

will be stored in solitary Jupyter notebooks,

fragmented log files, or undocumented mental

models of a single contributor; a lot of redundant

work will be done when different members of the

team explore identical settings that have already

been tried or be unable to find the same promising

results that were discovered at an earlier stage of

development.

Good tracking does not require advanced

infrastructure. File-based backenders store

experiment data on a local or shared network

storage and are independent. Simple databases give

queryable experiment history, obtained by

structured logging to them. The use of a

spreadsheet based tracking is of value when it is

done in a disciplined way, though task specific

tools saves more overhead and enhance uniformity.

Various works have examined the machine learning

pipeline implementations and have determined that

experiment tracking can bring valuable operational

advantages to teams with low infrastructure costs

[6]. Small teams are adequately served by file based

backends, which store structured metadata of the

experiments on local filesystems or network-

attached storage. These enable simple queries of

experiments and performance comparisons without

the need to have specific server infrastructure,

expertise in database administration, and constant

subscription to cloud services that add overhead

costs to operation.

4. Automation Strategies for Small Teams

4.1 Starting with Simple Pipelines

Simple Pipelines is a simple initial pipeline system

that functions according to the principle that water's

specific gravity is greater than that of

oil.<|human|>Simple Pipelines: beginning with

Simple Pipelines. Simple Pipelines is a simple type

of initial pipeline system which operates based on

the principle that water has a higher specific gravity

than oil.

Automation should not start with complicated

orchestration systems. Task schedulers at the

system level offer predictable automation to

performing routine workflows. Training pipelines

may also be scheduled to run or activated by signals

of data availability. Evaluation scripts can be run

automatically on held-out test sets to provide

performance reports by which teams can detect

degradation. Studies discussing continuous

integration and continuous delivery as a means of

automated deployment of machine learning models

show that simple automation strategies provide

significant value without implying complex

infrastructure or tooling ecosystems development

[7]. Task schedulers on the system level that are

provided by all operating systems allow a team to

create consistent periodic execution of training

processes, data preprocessor, and model evaluation

processes that are not deployed on specific

orchestration platforms, do not require the

implementation of complex workflow definition

languages, and do not need to maintain other

infrastructure elements. By training pipelines to be

run at off-peak times of the computation, the

maximum use is made of the available hardware

resources, and in interactive development activities,

when a model needs to be triggered to run to absorb

new information is better done by use of trigger

based execution mechanism that reacts to signals of

data availability by the upstream source systems.

Systemic execution of automated evaluation scripts

on held-out test datasets yields stable performance

reports that can be used to set behavioral

expectations of model predictions, so that teams

can identify performance decay caused by drift in

data distribution, accidental software regressions, or

environmental configurations before the problems

can spread to production prediction services and

affect business processes or user experiences.

Chaining Shell scripts, reproducible pipelines can

be generated by chaining together preprocessing,

training, and evaluation steps, which anyone on the

team can use. The execution logic is separated by

configuration files with which these scripts are

parameterized and experimental parameters, thus

allowing easy modification. This is a non-

architectural scaling of local development machines

to common compute resources. Research on the

difficulties surrounding the creation and

implementation of artificial intelligence models in

industrial environments has emphasized script-

based pipelines as a welcoming starting point to

teams embarking on automation as it offers instant

reproducibility advantages without the high

learning curve of the complicated workflow

engines or dedicated orchestration-focused tools

[8]. Sequences of data preprocessing operations,

model training processes, validation routines, and

evaluation programs are shell scripts describing key

institutional knowledge of the order of correct

execution, input file locations and formats, output

Swati Kumari / IJCESEN 12-1(2026)470-478

474

artifacts and specifications, dependency

management process, and error handling routines

which would otherwise be stored only in the

unwritten memory of individual developers or on

wiki pages and email archives. By parameterizing

them with external configuration files in standard

formats, such as JSON or YAML, the teams can

change hyperparameters that affect the model

behavior, data source locations or selection criteria,

evaluation metrics or reporting formats, or number

of computational resources but without changing

the core scripts logic and thus reduce significantly

the risk of syntactic errors or logical bugs to the

point of making changes during normal

experimentation cycles.

4.2 Progressive Enhancement

The level of automation is an organic development

that follows the demands of a group. Planned

scripts are replaced by event-based triggers as

workflows become more fluid and manual steps of

the deployment process are replaced by automatic

ones as trust is established. Monitoring capabilities

vary depending on the complexity of a system

between the simplistic logging to structured metrics

gathering. Each improvement is very specific,

instead of affecting capabilities in a speculative

fashion. Studies of continuous integration and

delivery of machine learning have shown that

gradual optimization of automation, ensuring that

all automation efforts are well-calibrated with real

operational requirements and the capacity of the

team, leads to increasingly sustainable

implementations, as opposed to aiming to achieve

full end-to-end automation too soon. Teams are

generally embarking on an automation journey with

simple fixed-cadence scheduled execution of

training workflows and then gradually move on to

event-driven architectures in which data availability

announcements by upstream systems, observable

performance thresholds by monitoring, or manual

announcements by data scientists may trigger

pipeline execution as the business needs of more

responsive adaptive systems become evident. On

the same note, manual processes of deployment that

involve human verification, approval gates, and

rollout processes are replaced with automated

deployment pipelines that also consist of full testing

suites and automated validation checks as the

different teams continue to get more operational

experience with model behavior in production

scenarios, develop confidence with their quality

assurance processes and develop robust rollback

mechanisms that effectively address the risks

inherent in fully automated releases.The

improvements are focused on particular pain points,

which in practice are not only stalling the

workflows but also introducing the capabilities’

implementation according to the speculation of the

ideal work that should be. It makes sure that

automation investments can provide operational

returns instead of increasing system complexity and

not productivity returns. The study examining

issues in the deployment of industrial AI proved

that it is clear that the teams achieving sustainable

automation maturity are strategically concerned

with the improvement of the real bottlenecks that

restrict their growth pace or functional stability, as

opposed to the implementation of features as

predetermined by the generic MLOps framework or

futuristic reference architecture [8].

5. Testing and Validation Practices

Testing discipline is crucial from the outset to avoid

quality problems from accumulating. Unit tests

assess the correctness of the logic on which the data

processing is based. Integration tests check the

functionality of various components within the

processing pipeline. Tests for validating models

check their predictions on standard cases and their

efficiency on different data segments. Such

activities can be accomplished with a bare

minimum of infrastructure, relying on generic

testing tools, but they have to be performed

consistently. Studies on the perspectives on the

results related to the incorporation of artificial

intelligence and machine learning techniques on the

generation and accumulation of debt cite the

necessity for the application of a multifaceted

approach toward complete testing toward the

maintenance of the quality features within the

studied models, irrespective of the progressive

evolution and change in distributions within the

analyzed data sources through time [9]. Individual

unit tests related to the processing functions assess

the functionality when the feature transformation

logic is applied, the functionality when the cleaning

logic based on the input and output is applied, the

functionality when the preprocessing logic is

applied based on the transformation chains, and the

functionality when the preprocessing logic is

applied based on the transformation chains.

Integration tests applied on a more abstract level

confirm the functionality when the components

interact within the complete workflow, assess the

functionality when the output format from the

preprocessing stage corresponds with the input

expectations for the training modules, the

functionality when the model’s deserialization and

serialization logic maintains the prediction

functionality on various runtime environments, and

assess the functionality when the evaluation

Swati Kumari / IJCESEN 12-1(2026)470-478

475

harnesses appropriately use the model’s outputs for

the metric computation. The tests for validating

models work on the highest level and assess the

functionality upon the prediction on standard cases

based on the established outputs within the

historical data sources, the functionality upon the

efficiency based on the different segments within

the defined data sources based on demographic

information, and the functionality upon the various

input perturbations based on the real-world

variations.

These methodologies require low-barrier tooling, as

the testing infrastructure already supported by all

programming languages will suffice, albeit with

rigorous adherence throughout the entire

development cycle for maximum liable-end

protective benefits. Technical debt research and

analysis studies among AI-based systems clearly

indicate the testing discipline paradigm as a

paradigm where pooling cumulative benefits over

time requires initial heavy spending on

comprehensive testing suites to avoid protracted

debugging processes and production-level events,

with later analyses otherwise requiring far more

resources and expense to debug and rectify [10].

The tool infrastructure remains low-barrier because

the current unit testing infrastructure already exists

and was devised for traditional softwares has a

direct natural extension for AI-based machine

learning systems requiring only the addition of

standards for representing test cases, wherein

acceptable margins for numerical testing

comparisons subject to floating point arithmetic

precision and stochastic training processes must

also require, and representing fixtures for test data

with diverse minutiae without making them

unmanageable for large-scale systems, whereas the

key to success remains rigorous adherence and not

the complexity and infrastructure overheads

requiring standardization where each code change

should include tests, wherein test failures are

automatically and automatically blocked for

integration into the development trunk, and wherein

developing and maintaining test infrastructure

health should rank on par with new feature

enhancements or boosted accuracy for AI-based

systems as well.

Lightweight continuous integration through a code

repository hook or timed validation runs identifies

bugs prior to deploying them in production

environments. Automated test scripts executing on

each code change offer fast in-process feedback

loops during software development activities.

Staging environments that are simply separate

config files directing references to non-production

data sources provide a safe setting prior to software

deployments or updates in production environments

using this solution that costs nothing but

significantly impacts reduced frequency or

occurrence in production environments due to

reduced software issues or bugs. A study from

research in AI/Machine Learning infrastructure

development explicitly addresses that automating

software tests integrated into a software

development process boosts immediate feedback

loops in debugging activities that fast-track bug fix

resolutions in systems while avoiding regressions

from a software update or modification in a system

that increases developers' confidence in a system

whose functionality operates as expected [9].

Repository hooks that automatically trigger test

execution scripts upon each code change ensure

that software bugs are quickly identifiable in

minutes from their code introduction during a

setting that ensures minimal remediation work due

to fresh implementation contexts in system

developers' minds compared to environments

requiring delayed validation that involve extensive

code changes from a bug introduction point prior to

system visibility in production environments for

increased remediation difficulties in search and

isolation activities due to their buried system

contexts among multiple code changes in rapid

software changes in a system environment.

Such practices have minimal implementation costs

and mostly depend on the discipline within an

organization as well as the computational resources

necessary to run tests, while they greatly minimize

the occurrence of issues within the production

environment as most issues are identified before the

systems go to the user environment. Findings from

research that focus on methodologies of technical

debt management have identified that organizations

that adopt total testing and validation

methodologies experience fewer failures within the

production environment and reduced mean time to

detect and repair when failures occur [10].

Table 1: MLOps Core Components and Implementation Characteristics for Small Teams [3, 4]

MLOps Practice Primary Purpose
Initial Implementation

Approach

Progressive

Enhancement
Team Impact

Swati Kumari / IJCESEN 12-1(2026)470-478

476

Version Control

Reproducibility of

experiments and

models

Standard distributed

version control systems

for code and

configurations

Add data versioning

through metadata

manifests and content-

addressable storage

Prevents loss of

working solutions;

enables

collaboration

Experiment

Tracking

Eliminate duplicate

work and enable

configuration retrieval

Structured logging to

simple databases or file-

based backends

Adopt dedicated

tracking servers with

visualization

capabilities

Reduces wasted

computational

effort; accelerates

iteration

Automated Testing
Reliability and quality

assurance

Unit tests for data

processing; integration

tests for pipeline

components

Expand to model

validation tests and

continuous integration

hooks

Reduces production

incidents and service

disruptions

Deployment

Automation

Maintainability and

error reduction

Basic shell scripting or

scheduled tasks

Progress to container

orchestration or

serverless

architectures

Minimizes human

errors; frees time for

model improvement

Table 2: Version Control Components for MLOps [5, 6]

Component File Size Implementation Method Key Benefit

Source Code Megabytes Standard Git repositories Code reproducibility

Hyperparameters Kilobytes Configuration files (JSON/YAML) Parameter tracking

Training Data Gigabytes to Terabytes Compressed archives + metadata Data lineage

Model Architecture Kilobytes JSON/YAML specifications Architecture versioning

Dependencies Megabytes Requirements files Environment consistency

Table 3: Automation Maturity Evolution Path [7, 8]

Maturity Stage
Trigger

Mechanism

Deployment

Process
Monitoring Level

Team

Confidence

Implementation

Focus

Initial Manual execution
Fully manual with

verification
Basic logging Low Establishing scripts

Basic Fixed schedules
Manual with

checklists
Structured logs Building

Reliability

improvement

Intermediate
Event-driven

triggers

Semi-automated

with approvals
Metrics collection Moderate

Reducing manual

steps

Advanced Intelligent triggers
Fully automated

with rollback

Comprehensive

dashboards
High

Performance

optimization

Table 4: Testing Practice Implementation and Impact Analysis [9, 10]

Testing Approach
Setup

Effort

Organizational

Requirement

Feedback

Speed

Impact on Production

Incidents

Long-term

ROI

Manual Testing Minimal Individual discipline Hours to days Moderate incident rate Low

Basic Automated

Tests
Low Team conventions

Minutes to

hours
Reduced incidents Moderate

Repository Hook

Testing
Moderate CI/CD setup Minutes

Significantly reduced

incidents
High

Comprehensive Test

Suites
High Strong testing culture Real-time Minimal incidents Very High

6. Conclusions

Small teams with low budgets can practice effective

MLOps by accepting the fact that operational

maturity must instead be measured on a spectrum,

rather than seeing the process of implementation as

an all-or-nothing solution for the enterprises. The

trick here is that a set of skills needs to be

incrementally introduced to the system, focusing on

the basic practices of version control, experiment

Swati Kumari / IJCESEN 12-1(2026)470-478

477

tracking, basic automation, and test discipline.

Indeed, all of these basic practices are important in

themselves, but together, they provide a starting

foundation for the necessary set of skills for

operation infrastructures in machine learning. The

tools used within the system include basic version

control tools, basic tracking tools, basic scripts for

the logistics of the system and the automation of the

process, and basic test tools, all of which can be

used within the system to address the critical needs

regarding the reproducibility, the interaction within

the system, and the reliability of the deployment

process with the system in place, all of which can

be done with less budget within the system.

Moreover, the ideology of progressive

enhancement allows the system to develop the level

of automation maturity increments, in line with the

growth of the system's needs and possibilities in the

process of implementation of practice within the

system's framework. In other words, each of the

progresses developed within the system aims to

resolve the existing bottlenecks in the system,

rather than focusing on the assumed needs for the

system according to the ideal framework of the

system's practice, processes, and operations, within

the specified process in the system's framework.

Indeed, the enterprises that adopted the practical

approach to implementation of the practice in the

system have developed numerous benefits within

the system's framework and process, including the

reduced technological debt of the system, the

reduced incidents of production within the system,

an increased level of efficiency of the process for

the system's validation, an increased level of

cooperative processes within the system's

framework for the validation process, the reduced

time of the system's iteration, and the increased

confidence within the system's validation for the

machine-learning-oriented processes in the system's

framework, all of which clearly indicate that the

implementation of the practice of the system's

operation does not require significant budget within

the system's framework. Indeed, the necessary

budget within the system's process for the

implementation of the practice includes the

systematic discipline of the organization within the

system's framework, the practice of all the system's

operational processes in the system's framework,

and the systematic selection of the tools within.

Author Statements:

 Ethical approval: The conducted research is

not related to either human or animal use.

 Conflict of interest: The authors declare that

they have no known competing financial

interests or personal relationships that could

have appeared to influence the work reported in

this paper

 Acknowledgement: The authors declare that

they have nobody or no-company to

acknowledge.

 Author contributions: The authors declare that

they have equal right on this paper.

 Funding information: The authors declare that

there is no funding to be acknowledged.

 Data availability statement: The data that

support the findings of this study are available

on request from the corresponding author. The

data are not publicly available due to privacy or

ethical restrictions.

 Use of AI Tools: The author(s) declare that no

generative AI or AI-assisted technologies were

used in the writing process of this manuscript.

References

[1] Pouya Ataei et al., "Why Big Data Projects Fail: A

Systematic Literature Review," International

Journal of Information Management Data Insights,

January 2025. [Online]. Available:

https://www.researchgate.net/publication/38803892

2_Why_Big_Data_Projects_Fail_A_Systematic_Li

terature_Review

[2] Alexandra Clara, "A Survey of Applications,

Challenges, and Future Directions in Machine

Learning," ResearchGate, February 2025. [Online].

Available:

https://www.researchgate.net/publication/38965911

4_A_Survey_of_Applications_Challenges_and_Fut

ure_Directions_in_Machine_Learning

[3] Amandeep Singla, "Machine Learning Operations

(MLOps): Challenges and Strategies," International

Journal of Advanced Computer Science and

Applications, vol. 15, no. 1, August 2023. [Online].

Available:

https://www.researchgate.net/publication/37754704

4_Machine_Learning_Operations_MLOps_Challen

ges_and_Strategies

[4] Zhengxin Fang et al., "MLOps: Spanning Whole

Machine Learning Life Cycle, A Survey," arXiv

preprint, April 2023. [Online]. Available:

https://www.researchgate.net/publication/37007045

9_MLOps_Spanning_Whole_Machine_Learning_L

ife_Cycle_A_Survey

[5] Nipuni Hewage & Dulani Meedeniya, "Machine

Learning Operations: A Survey on MLOps Tool

Support," arXiv preprint arXiv:2202.10169,

February 2022. [Online]. Available:

https://www.researchgate.net/publication/35876627

4_Machine_Learning_Operations_A_Survey_on_

MLOps_Tool_Support

[6] Lee Michael et al., "End-to-End ML Pipelines in

Cloud Environments for AI-First Product

Engineering," ResearchGate, June 2023. [Online].

Available:

https://www.researchgate.net/publication/39570509

https://www.researchgate.net/publication/388038922_Why_Big_Data_Projects_Fail_A_Systematic_Literature_Review
https://www.researchgate.net/publication/388038922_Why_Big_Data_Projects_Fail_A_Systematic_Literature_Review
https://www.researchgate.net/publication/388038922_Why_Big_Data_Projects_Fail_A_Systematic_Literature_Review
https://www.researchgate.net/publication/388038922_Why_Big_Data_Projects_Fail_A_Systematic_Literature_Review
https://www.researchgate.net/publication/388038922_Why_Big_Data_Projects_Fail_A_Systematic_Literature_Review
https://www.researchgate.net/publication/389659114_A_Survey_of_Applications_Challenges_and_Future_Directions_in_Machine_Learning
https://www.researchgate.net/publication/389659114_A_Survey_of_Applications_Challenges_and_Future_Directions_in_Machine_Learning
https://www.researchgate.net/publication/389659114_A_Survey_of_Applications_Challenges_and_Future_Directions_in_Machine_Learning
https://www.researchgate.net/publication/389659114_A_Survey_of_Applications_Challenges_and_Future_Directions_in_Machine_Learning
https://www.researchgate.net/publication/389659114_A_Survey_of_Applications_Challenges_and_Future_Directions_in_Machine_Learning
https://www.researchgate.net/publication/377547044_Machine_Learning_Operations_MLOps_Challenges_and_Strategies
https://www.researchgate.net/publication/377547044_Machine_Learning_Operations_MLOps_Challenges_and_Strategies
https://www.researchgate.net/publication/377547044_Machine_Learning_Operations_MLOps_Challenges_and_Strategies
https://www.researchgate.net/publication/377547044_Machine_Learning_Operations_MLOps_Challenges_and_Strategies
https://www.researchgate.net/publication/377547044_Machine_Learning_Operations_MLOps_Challenges_and_Strategies
https://www.researchgate.net/publication/370070459_MLOps_Spanning_Whole_Machine_Learning_Life_Cycle_A_Survey
https://www.researchgate.net/publication/370070459_MLOps_Spanning_Whole_Machine_Learning_Life_Cycle_A_Survey
https://www.researchgate.net/publication/370070459_MLOps_Spanning_Whole_Machine_Learning_Life_Cycle_A_Survey
https://www.researchgate.net/publication/370070459_MLOps_Spanning_Whole_Machine_Learning_Life_Cycle_A_Survey
https://www.researchgate.net/publication/370070459_MLOps_Spanning_Whole_Machine_Learning_Life_Cycle_A_Survey
https://www.researchgate.net/publication/358766274_Machine_Learning_Operations_A_Survey_on_MLOps_Tool_Support
https://www.researchgate.net/publication/358766274_Machine_Learning_Operations_A_Survey_on_MLOps_Tool_Support
https://www.researchgate.net/publication/358766274_Machine_Learning_Operations_A_Survey_on_MLOps_Tool_Support
https://www.researchgate.net/publication/358766274_Machine_Learning_Operations_A_Survey_on_MLOps_Tool_Support
https://www.researchgate.net/publication/358766274_Machine_Learning_Operations_A_Survey_on_MLOps_Tool_Support
https://www.researchgate.net/publication/395705090_End-to-End_ML_Pipelines_in_Cloud_Environments_for_AI-First_Product_Engineering
https://www.researchgate.net/publication/395705090_End-to-End_ML_Pipelines_in_Cloud_Environments_for_AI-First_Product_Engineering
https://www.researchgate.net/publication/395705090_End-to-End_ML_Pipelines_in_Cloud_Environments_for_AI-First_Product_Engineering

Swati Kumari / IJCESEN 12-1(2026)470-478

478

0_End-to-

End_ML_Pipelines_in_Cloud_Environments_for_

AI-First_Product_Engineering

[7] Satvik Garg, "On Continuous Integration/Continuous

Delivery for Automated Deployment of Machine

Learning Models using MLOps," ResearchGate,

December 2021. [Online]. Available:

https://www.researchgate.net/publication/35900028

2_On_Continuous_Integration_Continuous_Delive

ry_for_Automated_Deployment_of_Machine_Lear

ning_Models_using_MLOps

[8] Sudhi Sinha & Young M. Lee, "Challenges with

developing and deploying AI models and

applications in industrial systems," Software and

Systems Modeling, August 2024. [Online].

Available:

https://www.researchgate.net/publication/38319872

5_Challenges_with_developing_and_deploying_AI

_models_and_applications_in_industrial_systems

[9] Dimitri Kalles, Dionysios Sklavenitis, "A Scoping

Review and Assessment Framework for Technical

Debt in the Development and Operation of AI/ML

Competition Platforms," arXiv preprint

arXiv:2410.20199, June 2025. [Online]. Available:

https://www.researchgate.net/publication/39308794

4

[10] Gilberto Recupito et al., "Technical debt in AI-

enabled systems: On the prevalence, severity,

impact and management strategies for code and

architecture," Journal of Systems and Software,

July 2024. [Online]. Available:

https://www.researchgate.net/publication/38201163

2

https://www.researchgate.net/publication/395705090_End-to-End_ML_Pipelines_in_Cloud_Environments_for_AI-First_Product_Engineering
https://www.researchgate.net/publication/395705090_End-to-End_ML_Pipelines_in_Cloud_Environments_for_AI-First_Product_Engineering
https://www.researchgate.net/publication/395705090_End-to-End_ML_Pipelines_in_Cloud_Environments_for_AI-First_Product_Engineering
https://www.researchgate.net/publication/359000282_On_Continuous_Integration_Continuous_Delivery_for_Automated_Deployment_of_Machine_Learning_Models_using_MLOps
https://www.researchgate.net/publication/359000282_On_Continuous_Integration_Continuous_Delivery_for_Automated_Deployment_of_Machine_Learning_Models_using_MLOps
https://www.researchgate.net/publication/359000282_On_Continuous_Integration_Continuous_Delivery_for_Automated_Deployment_of_Machine_Learning_Models_using_MLOps
https://www.researchgate.net/publication/359000282_On_Continuous_Integration_Continuous_Delivery_for_Automated_Deployment_of_Machine_Learning_Models_using_MLOps
https://www.researchgate.net/publication/359000282_On_Continuous_Integration_Continuous_Delivery_for_Automated_Deployment_of_Machine_Learning_Models_using_MLOps
https://www.researchgate.net/publication/359000282_On_Continuous_Integration_Continuous_Delivery_for_Automated_Deployment_of_Machine_Learning_Models_using_MLOps
https://www.researchgate.net/publication/383198725_Challenges_with_developing_and_deploying_AI_models_and_applications_in_industrial_systems
https://www.researchgate.net/publication/383198725_Challenges_with_developing_and_deploying_AI_models_and_applications_in_industrial_systems
https://www.researchgate.net/publication/383198725_Challenges_with_developing_and_deploying_AI_models_and_applications_in_industrial_systems
https://www.researchgate.net/publication/383198725_Challenges_with_developing_and_deploying_AI_models_and_applications_in_industrial_systems
https://www.researchgate.net/publication/383198725_Challenges_with_developing_and_deploying_AI_models_and_applications_in_industrial_systems
https://www.researchgate.net/scientific-contributions/Dionysios-Sklavenitis-2282209451?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
https://www.researchgate.net/publication/393087944_A_Scoping_Review_and_Assessment_Framework_for_Technical_Debt_in_the_Development_and_Operation_of_AIML_Competition_Platforms
https://www.researchgate.net/publication/393087944_A_Scoping_Review_and_Assessment_Framework_for_Technical_Debt_in_the_Development_and_Operation_of_AIML_Competition_Platforms
https://www.researchgate.net/publication/393087944_A_Scoping_Review_and_Assessment_Framework_for_Technical_Debt_in_the_Development_and_Operation_of_AIML_Competition_Platforms
https://www.researchgate.net/publication/393087944_A_Scoping_Review_and_Assessment_Framework_for_Technical_Debt_in_the_Development_and_Operation_of_AIML_Competition_Platforms
https://www.researchgate.net/publication/382011632_Technical_debt_in_AI-enabled_systems_On_the_prevalence_severity_impact_and_management_strategies_for_code_and_architecture
https://www.researchgate.net/publication/382011632_Technical_debt_in_AI-enabled_systems_On_the_prevalence_severity_impact_and_management_strategies_for_code_and_architecture
https://www.researchgate.net/publication/382011632_Technical_debt_in_AI-enabled_systems_On_the_prevalence_severity_impact_and_management_strategies_for_code_and_architecture
https://www.researchgate.net/publication/382011632_Technical_debt_in_AI-enabled_systems_On_the_prevalence_severity_impact_and_management_strategies_for_code_and_architecture

