Copyright © 1JCESEN

International Journal of Computational and Experimental

CESE

Science and ENgineering B e
(IJCESEN) T
Vol. 12-No.1 (2026) pp. 470-478 i
http://www.ijcesen.com -

ISSN: 2149-9144
Research Article

Can Small Teams Do MLOps Too? Starting Simple Without a Big Budget

Swati Kumari*

NucleusTeq, USA

* Corresponding Author Email: swati.kumari.reach@gmail.com - ORCID: 0000-0002-0047-660X

Article Info:

DOI: 10.22399/ijcesen.4833
Received : 28 November 2025
Revised : 26 January 2026
Accepted : 28 January 2026

Keywords

MLOps Implementation,
Resource-Constrained Teams,
Incremental Automation,
Experiment Tracking,
Lightweight Infrastructure

Abstract:

MLOps is viewed as a complex process for the enterprise level, so MLOps can serve as
a significant hindrance for small teams who want to apply machine learning operations.
Yet, small teams can gain a tremendous advantage from MLOps by applying simplified,
lean tooling, gradually moving toward more complex MLOps for their teams. In this
article, a complete set is presented for small teams on how MLOps can be applied
effectively for small teams without engaging cloud orchestration platforms. The article
discusses ideas on how MLOps can be applied for small teams through basic version
control for source and model files, tooling for simple experiments with file storage and
databases, basic automation through shell scripts, basic MLOps tooling through system
job schedulers, and basic MLOPs testing through standard testing results. MLOps can
be made a successful process for small teams with the use of a progressive approach.
According to the progressive approach, teams can move toward more complex MLOps
concepts when their skills and resource availability increase. Therefore, in the
progressive approach, automation investments can provide a remarkable difference for
teams, meaning investment in MLOps can be avoided because automation can provide a
negative effect for the team. Therefore, even the leanest teams can attain a solid basis
for successful MLOps.

1. Introduction

It has always been a dilemma among small teams

combine several roles at once, and usually do not
have the luxury of a dedicated staff focused
specifically on infrastructure and deployment

working in resource-constrained environments how
to ensure that their machine learning systems
remain reliable without the budgets large
technology companies have to invest in their
systems. The advent of MLOps has become an
essential element of solving modern ML
development, yet poses an apparent impediment of
the early adoption of more basic populations
through its relationship to more complex tooling
and cloud-native infrastructure. The intricacy of the
full MLOps systems tend to overload staff who are
already operating on the margins of core
development tasks. Studies into the failures of big
data and machine learning projects have reported
systemic trends of organizations failing to move
experimental models into working systems with the
most common factors that have led to these failures
being the lack of resources and insufficient
operational practices [1]. Such problems are
especially acute in the case of smaller organizations
where employees of the team are required to

issues.

The apprehension is based on a primary
misconception, i.e., that MLOps involves
significant initial expenditure in platforms, human
resources, and infrastructure. Research on the
challenges of machine learning application has
indicated that the barriers to the use of machine
learning often occur at the level of complexity of
deployment, monitoring needs, and the perceived
complexity of complex orchestration systems that
must be in place before the teams can put models
into practice [2]. This perception produces a
paralysis that the teams feel that they need to install
enterprise-grade solutions initially or they will end
up having systems that will not scale accordingly.
The difference between the perception and the
reality makes small teams delay the realization of
the fundamental operation practices, which results
in technical debt, reproducibility problems, and
maintenance problems progressively increase. The
accrued technical debt takes different forms:
notebook-developed models that are not

http://dergipark.org.tr/en/pub/ijcesen
http://www.ijcesen.com

Swati Kumari / IJCESEN 12-1(2026)470-478

reproducible by other developers, computational
resource-consuming experiments as a result of
unintended duplication of prior work, manualized
deployment processes that are subject to
configuration drift and human error, and missing
monitoring that does not allow detecting that model
performance degrades in production settings.

As this article will demonstrate, it is possible to
apply the MLOps principles incrementally and
using the readily available resources and simple
workflows in the context of the current capacity
and requirements of the resource-bound teams.
Beginning with these basic practices like version
control of code and model setups, systematic test
tracking with simple tools, rudimentary automated
testing to identify regressions, and simple
automation of deployment with simple scripts
instead of engineering orchestration platforms,
teams will realize immediate operational payback
without a huge investment in capital or human
resources. These baseline practices help in tackling
the most significant pain points captured in the
literature on machine learning deployment:
reproducibility through a sound versioning
mechanism, wasteful computation through proper
experiment documentation, repetitive work with
end users through the automation of routine work,
and monitoring baselines with problem
identification when an issue has been detected
before it can impact end users [2]. Gradually
increasing its capabilities and adding them as
particular needs arise, instead of implementing
extensive solutions speculatively, even lean teams
can build strong ML operations to enhance daily
productivity and position technical systems and
organizational processes to grow in the future as
projects become mature and resource availability
deepens.

2. Understanding MLOps at Its Core

MLOps is basically an implementation of the
software engineering field to machine learning
processes. In its simplest form, it deals with three
essential requirements: the ability to reproduce
experiments and results, the ability to deploy a
model reliably, and the ability to sustain an ML
system over time. These are requirements
independent of the size of the team and
organizational resources. The literature review of
the challenges and strategies of MLOps indicates
that organizations of various sizes face the same
underlying problems, i.e. versioning of models,
repeatability of experiments, and consistency in
terms of operations [3]. The reproducibility
problem itself has become a universal issue in all
organizations where training models constructed at

471

previous project stages cannot be reliably recreated
because the wversion of training data,
hyperparameter settings, dependency descriptions
or environmental settings are not properly
documented. The reliability issue arises when
models which perform well in controlled
development environments fail to work in
production environments owing to changes in data
distributions, infrastructure setups, integration
issues, or due to unexpected edge cases in actual
data streams. The maintenance consideration grows
in importance as the models grow older in the
production process, and need to be updated
systematically to accommodate the performance
drift that occurs with changes in data patterns,
inject new training data representing current
conditions, meet the needs of changing business
demands, or act upon feedback of prediction errors
or bias.

MLOps is modular, which is obscured by the idea
that the concept of MLOps necessitates enterprise-
level solutions. Basic MLOps principles like
version control, experiment tracking, test
automation, and deployment automation can be
applied separately and gradually. Small teams can
use the fact that MLOps is not a binary condition
but a continuum of practices that can be embraced
given the existing needs and capabilities. There are
quite a few works examining the machine learning
lifecycle that demonstrate that a successful
implementation of MLOps involves a number of
steps: data collection and preparation, model
development, deployment, and monitoring, each of
which can be enhanced by incremental operations
[4]. This planned development gives teams the
freedom to focus on those practices that will
eliminate the most urgent sources of pain instead of
seeking an overall change simultaneously.
Modularity implies that version control can be set
up on the basis of standard distributed version
control systems requiring no special machine
learning platforms; that experiment tracking can be
initiated using the basic shell scripting or scheduled
tasks before progressing to more advanced
container orchestration systems or serverless
computing architectures. Beginning with the
simplest viable practices achieves value in the
present and establishes complex-accommodating
patterns in the future. Code and data configuration
Version controlling prevents (irreversible) loss of
working solutions in which the teams invested
substantial time and computation resources in
developing. Systematic experiment tracking
eliminates the wasted computation of repeating a
prior experiment, which is becoming more and
more important as model architectures grow more
complicated, training durations grow beyond hours

Swati Kumari / IJCESEN 12-1(2026)470-478

to days, and cloud computing is getting more
expensive with each experiment. Automation
minimizes the number of people errors that cause
production accidents, failure of services to the end
users or wrong forecasts undermining stakeholder
confidence in machine learning systems [3]. They
both have independent gains as they lead to overall
operational maturity. The ensemble effect of these
practices at the ground level is that small
investments in operational discipline will translate
into large returns in terms of productivity, better
interaction among team members of different skills
levels, faster iteration cycles that will enable more
experiments and innovations, and increased
reliability of a system, which creates organizational
trust in the implementation of the machine learning
solutions in critical production settings [4]. Such
compounding advantages provide reasons to invest
more in moving to the right of the MLOps maturity
spectrum by adding teams and capabilities and
expanding resources.

3. Building Blocks for Budget-Conscious MLOps

The very core of any available implementation of
MLOps is version control systems. In addition to a
versioning of code changes, proper version control
covers model architectures, training settings, data
processing programs and environment
requirements. Branching strategies allow teams to
become experimental but have a stable production
code. Tagging releases gives an explicit view of the
deployed models that allow rollbacks in the case of
any problems. Studies on the support of MLOps
tools take note of the fact that version control is the
fundamental component on which all the other
operational capabilities are based and which offers
necessary traceability of reproducible machine
learning systems [5]. It is not just important in
traditional software version control terms that the
machine learning system must rely on numerous
interrelated components, which must be versioned
in a consistent manner: training code implementing
algorithms, hyperparameter settings with enormous
effects on convergence and performance properties
of the model, feature engineering pipelines
converting raw input data to model-ready formats,
model architecture description detailing layer
configurations ~ and connectivity patterns,
dependency specifications giving a consistent
execution environment both in development and
production, and extensive metadata indicating the
conditions under which the model was trained, such
as hardware settings and random seed values.
Teams which adopted a comprehensive version
control of all these components have demonstrated
that they were much better able to recreate

472

experimental results many months after first being
written, debug production problems by comparing
deployments with previous versions in a systematic
manner, and induct new team members who can
perceive system evolution and design decisions by
accessing commit history and documentation.

Data versioning also seems to be an issue, given the
typical file sizes, yet there are lightweight methods.
Storing snapshots of data as compressed archives,
maintaining metadata manifests that characterize
versions of datasets, or content-addressable storage
patterns all can provide traceability with no special
hosting facilities. It is all about building systematic
naming conventions and documentation practices
that render dataset lineage visible. End-to-end
machine learning pipeline analysis studies in the
cloud have found data versioning to be an
important, but frequently ignored, feature of
MLOps implementation, which explicitly
influences model reproducibility and debugging
ability 6. Training datasets are often measured in
gigabytes or terabytes, and thus naive use of
standard version control systems is not possible
because they bloat over time and cause poor
performance ~ when performing repository
operations, as well as have implications on storage
cost. Lightweight approaches avoid these
limitations by making strategic trade-offs: the size
of archives is reduced by compressing snapshots,
but full snapshots are not, at significant milestones
of the project; metadata manifests can reveal
significant properties of datasets, such as counts of
rows and columns, distributions of features and
transformations applied, but not duplicate the
underlying data files; deduplication-unchanged data
segments are only stored once, across multiple
versions; and cryptographic hash-based verification
can ensure data safety, even in the absence of
special hosting infrastructure and/or rich validation
processes.

Tracking Experiments Without Complicatedness.
Formal monitoring of experiments is used to
substitute informal development of models with a
model development procedure. Open-source
tracking tools allow teams to record parameters and
metrics and artifacts on a regular basis in
experiments. This creates a searchable history
which eliminates duplication of work and
accelerates iteration by ensuring successful settings
can be retrieved quickly. Investigations on the
ecosystems of MLOps tools observe that
experiment tracking addresses one of the oldest
dilemmas of machine learning development,
namely the rapid expansion of experimental
variations that soon cannot be controlled unless
orderly arranged and reported [5]. Teams that
execute hyperparameter searches of

Swati Kumari / IJCESEN 12-1(2026)470-478

hyperdimensional parameter spaces, that are
comparing alternative neural network models with
varying depth and width configurations, or that are
comparing alternative feature engineering methods
generate dozens or hundreds of experimental
executions with each having different
configurations that gave different performance
properties across many evaluation metrics. Without
organized recording systems, useful information on
what strategies are effective in which circumstances
will be stored in solitary Jupyter notebooks,
fragmented log files, or undocumented mental
models of a single contributor; a lot of redundant
work will be done when different members of the
team explore identical settings that have already
been tried or be unable to find the same promising
results that were discovered at an earlier stage of
development.

Good tracking does not require advanced
infrastructure. File-based backenders store
experiment data on a local or shared network
storage and are independent. Simple databases give
gueryable experiment history, obtained by
structured logging to them. The use of a
spreadsheet based tracking is of value when it is
done in a disciplined way, though task specific
tools saves more overhead and enhance uniformity.
Various works have examined the machine learning
pipeline implementations and have determined that
experiment tracking can bring valuable operational
advantages to teams with low infrastructure costs
[6]. Small teams are adequately served by file based
backends, which store structured metadata of the
experiments on local filesystems or network-
attached storage. These enable simple queries of
experiments and performance comparisons without
the need to have specific server infrastructure,
expertise in database administration, and constant
subscription to cloud services that add overhead
costs to operation.

4. Automation Strategies for Small Teams
4.1 Starting with Simple Pipelines

Simple Pipelines is a simple initial pipeline system
that functions according to the principle that water's
specific gravity is greater than that of
oil.<|human|>Simple Pipelines: beginning with
Simple Pipelines. Simple Pipelines is a simple type
of initial pipeline system which operates based on
the principle that water has a higher specific gravity
than oil.

Automation should not start with complicated
orchestration systems. Task schedulers at the
system level offer predictable automation to
performing routine workflows. Training pipelines

473

may also be scheduled to run or activated by signals
of data availability. Evaluation scripts can be run
automatically on held-out test sets to provide
performance reports by which teams can detect
degradation. Studies discussing continuous
integration and continuous delivery as a means of
automated deployment of machine learning models
show that simple automation strategies provide
significant value without implying complex
infrastructure or tooling ecosystems development
[7]. Task schedulers on the system level that are
provided by all operating systems allow a team to
create consistent periodic execution of training
processes, data preprocessor, and model evaluation
processes that are not deployed on specific
orchestration platforms, do not require the
implementation of complex workflow definition
languages, and do not need to maintain other
infrastructure elements. By training pipelines to be
run at off-peak times of the computation, the
maximum use is made of the available hardware
resources, and in interactive development activities,
when a model needs to be triggered to run to absorb
new information is better done by use of trigger
based execution mechanism that reacts to signals of
data availability by the upstream source systems.
Systemic execution of automated evaluation scripts
on held-out test datasets yields stable performance
reports that can be wused to set behavioral
expectations of model predictions, so that teams
can identify performance decay caused by drift in
data distribution, accidental software regressions, or
environmental configurations before the problems
can spread to production prediction services and
affect business processes or user experiences.

Chaining Shell scripts, reproducible pipelines can
be generated by chaining together preprocessing,
training, and evaluation steps, which anyone on the
team can use. The execution logic is separated by
configuration files with which these scripts are
parameterized and experimental parameters, thus
allowing easy modification. This is a non-
architectural scaling of local development machines
to common compute resources. Research on the
difficulties surrounding the creation and
implementation of artificial intelligence models in
industrial environments has emphasized script-
based pipelines as a welcoming starting point to
teams embarking on automation as it offers instant
reproducibility advantages without the high
learning curve of the complicated workflow
engines or dedicated orchestration-focused tools
[8]. Sequences of data preprocessing operations,
model training processes, validation routines, and
evaluation programs are shell scripts describing key
institutional knowledge of the order of correct
execution, input file locations and formats, output

Swati Kumari / IJCESEN 12-1(2026)470-478

artifacts and specifications, dependency
management process, and error handling routines
which would otherwise be stored only in the
unwritten memory of individual developers or on
wiki pages and email archives. By parameterizing
them with external configuration files in standard
formats, such as JSON or YAML, the teams can
change hyperparameters that affect the model
behavior, data source locations or selection criteria,
evaluation metrics or reporting formats, or number
of computational resources but without changing
the core scripts logic and thus reduce significantly
the risk of syntactic errors or logical bugs to the
point of making changes during normal
experimentation cycles.

4.2 Progressive Enhancement

The level of automation is an organic development
that follows the demands of a group. Planned
scripts are replaced by event-based triggers as
workflows become more fluid and manual steps of
the deployment process are replaced by automatic
ones as trust is established. Monitoring capabilities
vary depending on the complexity of a system
between the simplistic logging to structured metrics
gathering. Each improvement is very specific,
instead of affecting capabilities in a speculative
fashion. Studies of continuous integration and
delivery of machine learning have shown that
gradual optimization of automation, ensuring that
all automation efforts are well-calibrated with real
operational requirements and the capacity of the
team, leads to increasingly sustainable
implementations, as opposed to aiming to achieve
full end-to-end automation too soon. Teams are
generally embarking on an automation journey with
simple fixed-cadence scheduled execution of
training workflows and then gradually move on to
event-driven architectures in which data availability
announcements by upstream systems, observable
performance thresholds by monitoring, or manual
announcements by data scientists may trigger
pipeline execution as the business needs of more
responsive adaptive systems become evident. On
the same note, manual processes of deployment that
involve human verification, approval gates, and
rollout processes are replaced with automated
deployment pipelines that also consist of full testing
suites and automated validation checks as the
different teams continue to get more operational
experience with model behavior in production
scenarios, develop confidence with their quality
assurance processes and develop robust rollback
mechanisms that effectively address the risks
inherent in fully automated releases.The
improvements are focused on particular pain points,

474

which in practice are not only stalling the
workflows but also introducing the capabilities’
implementation according to the speculation of the
ideal work that should be. It makes sure that
automation investments can provide operational
returns instead of increasing system complexity and
not productivity returns. The study examining
issues in the deployment of industrial Al proved
that it is clear that the teams achieving sustainable
automation maturity are strategically concerned
with the improvement of the real bottlenecks that
restrict their growth pace or functional stability, as
opposed to the implementation of features as
predetermined by the generic MLOps framework or
futuristic reference architecture [8].

5. Testing and Validation Practices

Testing discipline is crucial from the outset to avoid
quality problems from accumulating. Unit tests
assess the correctness of the logic on which the data
processing is based. Integration tests check the
functionality of various components within the
processing pipeline. Tests for validating models
check their predictions on standard cases and their
efficiency on different data segments. Such
activities can be accomplished with a bare
minimum of infrastructure, relying on generic
testing tools, but they have to be performed
consistently. Studies on the perspectives on the
results related to the incorporation of artificial
intelligence and machine learning techniques on the
generation and accumulation of debt cite the
necessity for the application of a multifaceted
approach toward complete testing toward the
maintenance of the quality features within the
studied models, irrespective of the progressive
evolution and change in distributions within the
analyzed data sources through time [9]. Individual
unit tests related to the processing functions assess
the functionality when the feature transformation
logic is applied, the functionality when the cleaning
logic based on the input and output is applied, the
functionality when the preprocessing logic is
applied based on the transformation chains, and the
functionality when the preprocessing logic is
applied based on the transformation chains.
Integration tests applied on a more abstract level
confirm the functionality when the components
interact within the complete workflow, assess the
functionality when the output format from the
preprocessing stage corresponds with the input
expectations for the training modules, the
functionality when the model’s deserialization and
serialization logic maintains the prediction
functionality on various runtime environments, and
assess the functionality when the evaluation

Swati Kumari / IJCESEN 12-1(2026)470-478

harnesses appropriately use the model’s outputs for
the metric computation. The tests for validating
models work on the highest level and assess the
functionality upon the prediction on standard cases
based on the established outputs within the
historical data sources, the functionality upon the
efficiency based on the different segments within
the defined data sources based on demographic
information, and the functionality upon the various
input perturbations based on the real-world
variations.

These methodologies require low-barrier tooling, as
the testing infrastructure already supported by all
programming languages will suffice, albeit with
rigorous adherence throughout the entire
development cycle for maximum liable-end
protective benefits. Technical debt research and
analysis studies among Al-based systems clearly
indicate the testing discipline paradigm as a
paradigm where pooling cumulative benefits over
time requires initial heavy spending on
comprehensive testing suites to avoid protracted
debugging processes and production-level events,
with later analyses otherwise requiring far more
resources and expense to debug and rectify [10].
The tool infrastructure remains low-barrier because
the current unit testing infrastructure already exists
and was devised for traditional softwares has a
direct natural extension for Al-based machine
learning systems requiring only the addition of
standards for representing test cases, wherein
acceptable margins for numerical testing
comparisons subject to floating point arithmetic
precision and stochastic training processes must
also require, and representing fixtures for test data
with diverse minutiae without making them
unmanageable for large-scale systems, whereas the
key to success remains rigorous adherence and not
the complexity and infrastructure overheads
requiring standardization where each code change
should include tests, wherein test failures are
automatically and automatically blocked for
integration into the development trunk, and wherein
developing and maintaining test infrastructure
health should rank on par with new feature
enhancements or boosted accuracy for Al-based
systems as well.

Lightweight continuous integration through a code
repository hook or timed validation runs identifies

bugs prior to deploying them in production
environments. Automated test scripts executing on
each code change offer fast in-process feedback
loops during software development activities.
Staging environments that are simply separate
config files directing references to non-production
data sources provide a safe setting prior to software
deployments or updates in production environments
using this solution that costs nothing but
significantly impacts reduced frequency or
occurrence in production environments due to
reduced software issues or bugs. A study from
research in Al/Machine Learning infrastructure
development explicitly addresses that automating
software tests integrated into a software
development process boosts immediate feedback
loops in debugging activities that fast-track bug fix
resolutions in systems while avoiding regressions
from a software update or modification in a system
that increases developers' confidence in a system
whose functionality operates as expected [9].
Repository hooks that automatically trigger test
execution scripts upon each code change ensure
that software bugs are quickly identifiable in
minutes from their code introduction during a
setting that ensures minimal remediation work due
to fresh implementation contexts in system
developers’ minds compared to environments
requiring delayed validation that involve extensive
code changes from a bug introduction point prior to
system visibility in production environments for
increased remediation difficulties in search and
isolation activities due to their buried system
contexts among multiple code changes in rapid
software changes in a system environment.

Such practices have minimal implementation costs
and mostly depend on the discipline within an
organization as well as the computational resources
necessary to run tests, while they greatly minimize
the occurrence of issues within the production
environment as most issues are identified before the
systems go to the user environment. Findings from
research that focus on methodologies of technical
debt management have identified that organizations
that adopt total testing and validation
methodologies experience fewer failures within the
production environment and reduced mean time to
detect and repair when failures occur [10].

Table 1: MLOps Core Components and Implementation Characteristics for Small Teams [3, 4]

MLOps Practice | Primary Purpose

Initial Implementation
Approach

Progressive

Enhancement Team Impact

475

Swati Kumari / IJCESEN 12-1(2026)470-478

Version Control

Reproducibility of
experiments and
models

Prevents loss of
working solutions;
enables
collaboration

Add data versioning
through metadata
manifests and content-
addressable storage

Standard distributed
version control systems
for code and
configurations

Experiment work and enable |simple databases or file- trackl_ng SETVers with computatmnal
Tracking . . . visualization effort; accelerates
configuration retrieval based backends - . .
capabilities iteration

Eliminate duplicate

Adopt dedicated Reduces wasted

Structured logging to

Automated Testing

Reliability and quality|

assurance

Expand to model
validation tests and
continuous integration
hooks

Unit tests for data
processing; integration
tests for pipeline
components

Reduces production
incidents and service
disruptions

Progress to container L
Minimizes human

Deployment Maintainability and | Basic shell scripting or orchestration or) .

. ; errors; frees time for
Automation error reduction scheduled tasks serverless li

architectures model improvement
Table 2: Version Control Components for MLOps [5, 6]
Component File Size Implementation Method Key Benefit
Source Code Megabytes Standard Git repositories Code reproducibility
Hyperparameters Kilobytes Configuration files (JSON/YAML) Parameter tracking

Training Data

Gigabytes to Terabytes

Compressed archives + metadata Data lineage

Model Architecture

Kilobytes

JSON/Y AML specifications Architecture versioning

Dependencies

Megabytes

Requirements files Environment consistency

Table 3: Automation Maturity Evolution Path [7, 8]

. Trigger Deployment N Team Implementation
Maturity Stage Mechanism Process Monitoring Level Confidence Focus
Initial Manual execution Fully fT‘f?‘”“"f" with Basic logging Low Establishing scripts
verification
Basic Fixed schedules Manual .W'th Structured logs Building . Reliability
checklists improvement
Intermediate Ever)t—drlven Sem-automated Metrics collection Moderate Reducing manual
triggers with approvals steps
. . Fully automated | Comprehensive . Performance
Advanced | Intelligent triggers with rollback dashboards High optimization
Table 4: Testing Practice Implementation and Impact Analysis [9, 10]
Testina Aoproach Setup Organizational Feedback |Impact on Production| Long-term
gApp Effort Requirement Speed Incidents ROI
Manual Testing Minimal | Individual discipline [Hours to days| Moderate incident rate Low
Basic Automated Low Team conventions Minutes to Reduced incidents Moderate
Tests hours
Reposnor_y Hook Moderate CI/CD setup Minutes Slgnlfl_car_mtly reduced High
Testing incidents
CompreShuei?es;ve Test High Strong testing culture | Real-time Minimal incidents Very High

6. Conclusions

Small teams with low budgets can practice effective
MLOps by accepting the fact that operational
maturity must instead be measured on a spectrum,

rather than seeing the process of implementation as
an all-or-nothing solution for the enterprises. The
trick here is that a set of skills needs to be
incrementally introduced to the system, focusing on
the basic practices of version control, experiment

476

Swati Kumari / IJCESEN 12-1(2026)470-478

tracking, basic automation, and test discipline.
Indeed, all of these basic practices are important in
themselves, but together, they provide a starting
foundation for the necessary set of skills for
operation infrastructures in machine learning. The
tools used within the system include basic version
control tools, basic tracking tools, basic scripts for
the logistics of the system and the automation of the
process, and basic test tools, all of which can be
used within the system to address the critical needs
regarding the reproducibility, the interaction within
the system, and the reliability of the deployment
process with the system in place, all of which can
be done with less budget within the system.
Moreover, the ideology of progressive
enhancement allows the system to develop the level
of automation maturity increments, in line with the
growth of the system's needs and possibilities in the
process of implementation of practice within the
system's framework. In other words, each of the
progresses developed within the system aims to
resolve the existing bottlenecks in the system,
rather than focusing on the assumed needs for the
system according to the ideal framework of the
system's practice, processes, and operations, within
the specified process in the system's framework.
Indeed, the enterprises that adopted the practical
approach to implementation of the practice in the
system have developed numerous benefits within
the system's framework and process, including the
reduced technological debt of the system, the
reduced incidents of production within the system,
an increased level of efficiency of the process for
the system's validation, an increased level of
cooperative processes within the system's
framework for the validation process, the reduced
time of the system's iteration, and the increased
confidence within the system's validation for the
machine-learning-oriented processes in the system's
framework, all of which clearly indicate that the
implementation of the practice of the system's
operation does not require significant budget within
the system's framework. Indeed, the necessary
budget within the system's process for the
implementation of the practice includes the
systematic discipline of the organization within the
system's framework, the practice of all the system's
operational processes in the system's framework,
and the systematic selection of the tools within.

Author Statements:

e Ethical approval: The conducted research is
not related to either human or animal use.

e Conflict of interest: The authors declare that
they have no known competing financial
interests or personal relationships that could

477

have appeared to influence the work reported in
this paper

e Acknowledgement: The authors declare that
they have nobody or no-company to
acknowledge.

e Author contributions: The authors declare that
they have equal right on this paper.

e Funding information: The authors declare that
there is no funding to be acknowledged.

o Data availability statement: The data that
support the findings of this study are available
on request from the corresponding author. The
data are not publicly available due to privacy or
ethical restrictions.

e Use of Al Tools: The author(s) declare that no
generative Al or Al-assisted technologies were
used in the writing process of this manuscript.

References

[1] Pouya Ataei et al., "Why Big Data Projects Fail: A

Systematic Literature Review," International

Journal of Information Management Data Insights,

January 2025. [Online]. Available:

https://www.researchgate.net/publication/38803892

2_Why Big_Data Projects_Fail_A_Systematic_Li

terature_Review

Alexandra Clara, "A Survey of Applications,

Challenges, and Future Directions in Machine

Learning," ResearchGate, February 2025. [Online].

Available:

https://www.researchgate.net/publication/38965911

4 A Survey of Applications_Challenges and_Fut

ure_Directions_in_Machine Learning

[3] Amandeep Singla, "Machine Learning Operations
(MLOps): Challenges and Strategies,” International
Journal of Advanced Computer Science and
Applications, vol. 15, no. 1, August 2023. [Online].
Available:
https://www.researchgate.net/publication/37754704
4 _Machine_Learning_Operations_MLOps_Challen
ges_and_Strategies

[4] Zhengxin Fang et al., "MLOps: Spanning Whole
Machine Learning Life Cycle, A Survey," arXiv
preprint, April 2023. [Online]. Available:
https://www.researchgate.net/publication/37007045
9 _MLOps_Spanning_Whole_Machine_Learning_L
ife_Cycle_ A Survey

[5] Nipuni Hewage & Dulani Meedeniya, "Machine
Learning Operations: A Survey on MLOps Tool
Support,” arXiv preprint arXiv:2202.10169,
February 2022. [Online]. Available:
https://www.researchgate.net/publication/35876627
4 Machine_Learning_Operations_A_Survey on
MLOps_Tool_Support

[6] Lee Michael et al., "End-to-End ML Pipelines in
Cloud Environments for Al-First Product
Engineering," ResearchGate, June 2023. [Online].
Available:
https://www.researchgate.net/publication/39570509

[2

https://www.researchgate.net/publication/388038922_Why_Big_Data_Projects_Fail_A_Systematic_Literature_Review
https://www.researchgate.net/publication/388038922_Why_Big_Data_Projects_Fail_A_Systematic_Literature_Review
https://www.researchgate.net/publication/388038922_Why_Big_Data_Projects_Fail_A_Systematic_Literature_Review
https://www.researchgate.net/publication/388038922_Why_Big_Data_Projects_Fail_A_Systematic_Literature_Review
https://www.researchgate.net/publication/388038922_Why_Big_Data_Projects_Fail_A_Systematic_Literature_Review
https://www.researchgate.net/publication/389659114_A_Survey_of_Applications_Challenges_and_Future_Directions_in_Machine_Learning
https://www.researchgate.net/publication/389659114_A_Survey_of_Applications_Challenges_and_Future_Directions_in_Machine_Learning
https://www.researchgate.net/publication/389659114_A_Survey_of_Applications_Challenges_and_Future_Directions_in_Machine_Learning
https://www.researchgate.net/publication/389659114_A_Survey_of_Applications_Challenges_and_Future_Directions_in_Machine_Learning
https://www.researchgate.net/publication/389659114_A_Survey_of_Applications_Challenges_and_Future_Directions_in_Machine_Learning
https://www.researchgate.net/publication/377547044_Machine_Learning_Operations_MLOps_Challenges_and_Strategies
https://www.researchgate.net/publication/377547044_Machine_Learning_Operations_MLOps_Challenges_and_Strategies
https://www.researchgate.net/publication/377547044_Machine_Learning_Operations_MLOps_Challenges_and_Strategies
https://www.researchgate.net/publication/377547044_Machine_Learning_Operations_MLOps_Challenges_and_Strategies
https://www.researchgate.net/publication/377547044_Machine_Learning_Operations_MLOps_Challenges_and_Strategies
https://www.researchgate.net/publication/370070459_MLOps_Spanning_Whole_Machine_Learning_Life_Cycle_A_Survey
https://www.researchgate.net/publication/370070459_MLOps_Spanning_Whole_Machine_Learning_Life_Cycle_A_Survey
https://www.researchgate.net/publication/370070459_MLOps_Spanning_Whole_Machine_Learning_Life_Cycle_A_Survey
https://www.researchgate.net/publication/370070459_MLOps_Spanning_Whole_Machine_Learning_Life_Cycle_A_Survey
https://www.researchgate.net/publication/370070459_MLOps_Spanning_Whole_Machine_Learning_Life_Cycle_A_Survey
https://www.researchgate.net/publication/358766274_Machine_Learning_Operations_A_Survey_on_MLOps_Tool_Support
https://www.researchgate.net/publication/358766274_Machine_Learning_Operations_A_Survey_on_MLOps_Tool_Support
https://www.researchgate.net/publication/358766274_Machine_Learning_Operations_A_Survey_on_MLOps_Tool_Support
https://www.researchgate.net/publication/358766274_Machine_Learning_Operations_A_Survey_on_MLOps_Tool_Support
https://www.researchgate.net/publication/358766274_Machine_Learning_Operations_A_Survey_on_MLOps_Tool_Support
https://www.researchgate.net/publication/395705090_End-to-End_ML_Pipelines_in_Cloud_Environments_for_AI-First_Product_Engineering
https://www.researchgate.net/publication/395705090_End-to-End_ML_Pipelines_in_Cloud_Environments_for_AI-First_Product_Engineering
https://www.researchgate.net/publication/395705090_End-to-End_ML_Pipelines_in_Cloud_Environments_for_AI-First_Product_Engineering

Swati Kumari / IJCESEN 12-1(2026)470-478

0_End-to-
End_ML_Pipelines_in_Cloud_Environments_for
Al-First_Product_Engineering

[7] Satvik Garg, "On Continuous Integration/Continuous
Delivery for Automated Deployment of Machine
Learning Models using MLOps," ResearchGate,
December 2021. [Online]. Available:
https://www.researchgate.net/publication/35900028
2_0On_Continuous_Integration_Continuous Delive
ry_for Automated Deployment of Machine Lear
ning_Models_using_MLOps

[8] Sudhi Sinha & Young M. Lee, "Challenges with
developing and deploying Al models and
applications in industrial systems,"” Software and
Systems Modeling, August 2024. [Online].
Available:
https://www.researchgate.net/publication/38319872
5_Challenges_with_developing_and_deploying_Al
models_and_applications_in_industrial_systems

[9] Dimitri Kalles, Dionysios Sklavenitis, "A Scoping
Review and Assessment Framework for Technical
Debt in the Development and Operation of AI/ML
Competition Platforms," arXiv preprint
arXiv:2410.20199, June 2025. [Online]. Available:
https://www.researchgate.net/publication/39308794
4

[10] Gilberto Recupito et al., "Technical debt in Al-
enabled systems: On the prevalence, severity,
impact and management strategies for code and
architecture,” Journal of Systems and Software,

July 2024. [Online]. Available:
https://www.researchgate.net/publication/38201163
2

478

https://www.researchgate.net/publication/395705090_End-to-End_ML_Pipelines_in_Cloud_Environments_for_AI-First_Product_Engineering
https://www.researchgate.net/publication/395705090_End-to-End_ML_Pipelines_in_Cloud_Environments_for_AI-First_Product_Engineering
https://www.researchgate.net/publication/395705090_End-to-End_ML_Pipelines_in_Cloud_Environments_for_AI-First_Product_Engineering
https://www.researchgate.net/publication/359000282_On_Continuous_Integration_Continuous_Delivery_for_Automated_Deployment_of_Machine_Learning_Models_using_MLOps
https://www.researchgate.net/publication/359000282_On_Continuous_Integration_Continuous_Delivery_for_Automated_Deployment_of_Machine_Learning_Models_using_MLOps
https://www.researchgate.net/publication/359000282_On_Continuous_Integration_Continuous_Delivery_for_Automated_Deployment_of_Machine_Learning_Models_using_MLOps
https://www.researchgate.net/publication/359000282_On_Continuous_Integration_Continuous_Delivery_for_Automated_Deployment_of_Machine_Learning_Models_using_MLOps
https://www.researchgate.net/publication/359000282_On_Continuous_Integration_Continuous_Delivery_for_Automated_Deployment_of_Machine_Learning_Models_using_MLOps
https://www.researchgate.net/publication/359000282_On_Continuous_Integration_Continuous_Delivery_for_Automated_Deployment_of_Machine_Learning_Models_using_MLOps
https://www.researchgate.net/publication/383198725_Challenges_with_developing_and_deploying_AI_models_and_applications_in_industrial_systems
https://www.researchgate.net/publication/383198725_Challenges_with_developing_and_deploying_AI_models_and_applications_in_industrial_systems
https://www.researchgate.net/publication/383198725_Challenges_with_developing_and_deploying_AI_models_and_applications_in_industrial_systems
https://www.researchgate.net/publication/383198725_Challenges_with_developing_and_deploying_AI_models_and_applications_in_industrial_systems
https://www.researchgate.net/publication/383198725_Challenges_with_developing_and_deploying_AI_models_and_applications_in_industrial_systems
https://www.researchgate.net/scientific-contributions/Dionysios-Sklavenitis-2282209451?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
https://www.researchgate.net/publication/393087944_A_Scoping_Review_and_Assessment_Framework_for_Technical_Debt_in_the_Development_and_Operation_of_AIML_Competition_Platforms
https://www.researchgate.net/publication/393087944_A_Scoping_Review_and_Assessment_Framework_for_Technical_Debt_in_the_Development_and_Operation_of_AIML_Competition_Platforms
https://www.researchgate.net/publication/393087944_A_Scoping_Review_and_Assessment_Framework_for_Technical_Debt_in_the_Development_and_Operation_of_AIML_Competition_Platforms
https://www.researchgate.net/publication/393087944_A_Scoping_Review_and_Assessment_Framework_for_Technical_Debt_in_the_Development_and_Operation_of_AIML_Competition_Platforms
https://www.researchgate.net/publication/382011632_Technical_debt_in_AI-enabled_systems_On_the_prevalence_severity_impact_and_management_strategies_for_code_and_architecture
https://www.researchgate.net/publication/382011632_Technical_debt_in_AI-enabled_systems_On_the_prevalence_severity_impact_and_management_strategies_for_code_and_architecture
https://www.researchgate.net/publication/382011632_Technical_debt_in_AI-enabled_systems_On_the_prevalence_severity_impact_and_management_strategies_for_code_and_architecture
https://www.researchgate.net/publication/382011632_Technical_debt_in_AI-enabled_systems_On_the_prevalence_severity_impact_and_management_strategies_for_code_and_architecture

