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Abstract:  
 

The transformation of enterprise data infrastructure has necessitated the creation of 

sophisticated table formats bridging the gap between traditional data lakes and data 

warehouses. Apache Iceberg, Delta Lake, and Apache Hudi have emerged as 

revolutionary technologies providing ACID transactional semantics, schema evolution, 

and advanced metadata management over cloud object storage systems. These formats 

address fundamental constraints of traditional data lake systems by delivering database-

grade reliability without sacrificing cost-effectiveness and scalability of distributed 

storage. Each format embodies distinct architectural philosophies: Iceberg emphasizes 

engine neutrality with scalable metadata hierarchies, Delta Lake focuses on deep 

Apache Spark integration with optimized analytical query performance, and Hudi 

specializes in streaming ingestion patterns with efficient change data capture support. 

The architectural foundations include hierarchical metadata structures, transaction log 

mechanisms, and timeline-based state tracking, each presenting trade-offs in scalability, 

consistency, and operational complexity. Schema evolution capabilities enable 

structural adaptation without data rewrites, while sophisticated update and delete 

mechanisms using Copy-On-Write and Merge-On-Read strategies optimize for diverse 

workload characteristics. Streaming integration features facilitate real-time analytics 

through incremental query interfaces, native Kafka integration, and unified batch-

streaming processing paradigms. However, these established formats encounter inherent 

overhead when handling true real-time workloads with millisecond-level latency 

requirements. Emerging technologies such as Apache Fluss and Apache Paimon 

represent next-generation solutions specifically architected for real-time data lake use 

cases, addressing limitations in existing frameworks through streaming-native 

architectures, unified streaming-batch storage engines, and optimized real-time query 

processing capabilities. Query optimization techniques, including hidden partitioning, 

data skipping, Z-order clustering, and comprehensive indexing subsystems, provide 

significant performance improvements for analytical workloads. The selection of 

appropriate table formats constitutes a foundational architectural decision with lasting 

implications for platform agility, operational complexity, and analytical capabilities, 

requiring careful evaluation of workload patterns, real-time requirements, ecosystem 

constraints, and strategic technology directions. 

 

1. Introduction 
 

The modern information landscape has witnessed a 

fundamental shift in how organizations architect 

their analytical infrastructure, moving away from 

inflexible, siloed systems toward more fluid and 

integrated models supporting diverse analytical 

requirements. Traditional data lakes, while 

providing cost-effective storage capabilities 

through columnar formats such as Parquet and 

ORC, have consistently failed to deliver the 

reliability and management features that 

contemporary enterprises demand. These 

conventional systems lack core database 

capabilities, including transactional consistency, 

schema flexibility, and effective metadata 

management, creating significant operational 

challenges for organizations striving to construct 

robust analytical platforms. 

Apache Iceberg has emerged as a transformative 

solution, characterized as a game-changing table 
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format specifically designed for big data analytics 

environments [1]. The format provides an open-

source table specification introducing critical 

capabilities for managing large-scale data lakes, 

addressing numerous limitations inherent in 

traditional approaches. Iceberg's architecture 

fundamentally reimagines how metadata and data 

files interact, enabling organizations to achieve 

warehouse-like reliability on data lake storage. The 

lakehouse architecture concept represents a new 

generation of open platforms that fundamentally 

unify data warehousing and advanced analytics 

capabilities, eliminating traditional separation 

between these two paradigms [2]. This architectural 

evolution addresses the longstanding tension 

between systems optimized for business 

intelligence and those designed for machine 

learning and data science workflows. 

Three dominant table formats have become central 

technologies in this lakehouse movement: Apache 

Iceberg, Delta Lake, and Apache Hudi. Each format 

introduces sophisticated metadata management 

layers built atop cloud object storage, enabling 

ACID transactional semantics, snapshot isolation, 

and time travel functionality. Despite fulfilling 

shared goals of achieving database-grade reliability 

in data lakes, these formats represent dramatically 

different architectural philosophies reflecting their 

origins and primary use cases. Apache Iceberg, 

initially developed at Netflix, emphasizes engine 

independence and scalable metadata architectures. 

Delta Lake, created by Databricks, focuses on 

profound integration with Apache Spark and 

efficient query execution for analytical workloads. 

Apache Hudi, originating from Uber's engineering 

teams, concentrates on streaming data ingestion 

patterns and effective change data capture handling. 

While these established table formats have 

revolutionized data lake capabilities, they encounter 

inherent overhead when addressing true real-time 

workloads requiring sub-second latency. Batch-

oriented architectures and periodic compaction 

cycles introduce delays incompatible with 

millisecond-level freshness requirements 

increasingly demanded by modern applications. 

Recognizing these limitations, the data engineering 

community has developed next-generation 

solutions specifically architected for real-time data 

lake scenarios. Apache Fluss represents a 

streaming-native storage system designed for real-

time analytics with unified streaming and batch 

processing capabilities, eliminating architectural 

compromises present in batch-first designs. Apache 

Paimon introduces a streaming data lake platform 

combining high-throughput streaming writes with 

efficient batch query performance, bridging the gap 

between real-time ingestion and analytical 

processing through innovative storage engine 

design. These emerging technologies address 

fundamental constraints in established table 

formats, offering millisecond-level data freshness, 

optimized real-time query processing, and native 

streaming semantics without sacrificing analytical 

query performance. 

This comprehensive examination analyzes the 

architectural foundations, operational 

characteristics, and performance profiles of 

established table formats alongside emerging real-

time solutions, providing practitioners and 

researchers with a structured framework for 

evaluating their applicability to specific 

organizational requirements and workload patterns 

in modern data platform architectures. 

 

2. Architectural Foundations and Metadata 

Management 
 

The fundamental architecture of modern table 

formats determines their scalability boundaries, 

consistency guarantees, and operational 

complexity. Understanding these architectural 

choices proves essential for organizations selecting 

technologies that must support multi-petabyte 

datasets while maintaining query performance and 

data consistency. 

Apache Iceberg introduces an innovative approach 

to metadata management through its hierarchical 

architecture, fundamentally separating concerns of 

tracking table state from the physical layout of data 

files [1]. This separation enables Iceberg to scale 

efficiently across massive datasets without 

encountering performance degradation typical of 

traditional catalog-based approaches. The format 

maintains a tree structure where snapshot metadata 

files reference manifest lists, which subsequently 

enumerate manifest files containing detailed 

information about individual data files. This multi-

level indirection allows atomic commits through 

simple pointer updates at the snapshot level, 

avoiding expensive distributed coordination 

protocols. Iceberg's design philosophy emphasizes 

engine neutrality, ensuring diverse query engines 

can interact with tables without requiring format-

specific adaptations. The metadata architecture 

supports efficient pruning during query planning, 

enabling engines to quickly identify relevant data 

files based on partition information and column-

level statistics embedded within manifest 

structures. This capability becomes particularly 

critical in environments where tables contain 

millions of files distributed across thousands of 

partitions, scenarios increasingly common in 

modern data platforms.However, Iceberg's batch-

oriented architecture introduces inherent overhead 
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for real-time workloads. The snapshot-based 

commit model, while providing strong consistency 

guarantees, requires coordination overhead that 

limits transaction throughput for high-frequency 

updates. Compaction operations necessary to 

maintain optimal read performance introduce 

periodic processing delays, creating temporal gaps 

where newly written data remains inaccessible to 

readers. These architectural characteristics, while 

acceptable for minute-level freshness requirements, 

prove inadequate for millisecond-latency scenarios 

demanded by real-time applications. 

The lakehouse architecture fundamentally 

transforms how organizations conceptualize data 

platform design by enabling direct analytical access 

to data stored in open formats on low-cost object 

storage [2]. This approach eliminates traditional 

requirements to maintain separate copies of data in 

warehouses and lakes, reducing both storage costs 

and operational complexity. The architecture 

achieves this unification through sophisticated 

metadata management, providing database-like 

capabilities including ACID transactions, schema 

enforcement, and efficient query planning over 

commodity storage systems. Modern table formats 

serve as the enabling technology layer, making 

lakehouse architectures practical, providing 

structured abstractions necessary for query engines 

to efficiently access data while maintaining 

consistency guarantees. 

Delta Lake implements metadata management 

through a transaction log mechanism where each 

modification to a table appends an entry to an 

ordered log stored alongside data. This log-based 

approach provides straightforward audit trails of all 

changes and simplifies reasoning about table state 

evolution over time. The transaction log captures 

additions, removals, and metadata updates in JSON 

format, enabling both humans and systems to 

understand table history. To prevent unbounded 

growth of transaction logs, Delta Lake periodically 

generates checkpoint files consolidating cumulative 

effects of historical transactions into Parquet-

encoded snapshots. These checkpoints enable query 

engines to restore existing table state without 

replaying full transaction history, maintaining 

tolerable query planning latency even for long-lived 

tables. The optimistic concurrency control protocol 

implemented atop this log structure enables 

multiple writers to safely commit changes 

concurrently, with conflict detection ensuring 

incompatible operations fail gracefully rather than 

corrupting table state. 

Despite these sophisticated capabilities, Delta 

Lake's architecture introduces real-time processing 

overhead. The transaction log replay mechanism, 

while efficient for batch workloads, adds latency to 

read operations as log size grows between 

checkpoints. The OPTIMIZE and VACUUM 

operations required for maintaining performance 

necessitate exclusive table access periods, 

temporarily blocking writes and introducing 

unpredictable latency spikes. These architectural 

characteristics limit Delta Lake's suitability for 

applications requiring consistent sub-second 

latency guarantees. 

Apache Hudi distinguishes itself through a 

timeline-based architecture explicitly modeling the 

temporal evolution of table state through sequences 

of discrete actions. The timeline tracks various 

operation types, including commits, compactions, 

cleans, and rollbacks, providing a comprehensive 

history of table modifications. Hudi supports two 

fundamentally different storage modes offering 

distinct trade-offs between write performance and 

read efficiency. Copy-On-Write mode generates 

new versions of modified files during updates, 

ensuring read queries never encounter merge 

overhead, but incurring significant write 

amplification. Merge-On-Read mode postpones 

merging operations by writing updates to separate 

delta logs, reducing write latency and storage 

overhead for update-intensive workloads while 

introducing merge complexity during query 

execution. This architectural flexibility enables 

organizations to optimize for specific latency and 

throughput requirements, though it introduces 

additional operational considerations around 

compaction timing and file management. 

While Hudi advances real-time capabilities beyond 

traditional batch-oriented formats, it retains 

inherent limitations. The compaction processes 

required to maintain read performance in Merge-

On-Read mode introduce background processing 

overhead, consuming cluster resources and 

occasionally blocking writes. The indexing 

mechanisms, while accelerating upsert operations, 

add memory overhead and update latency for 

maintaining index consistency. These architectural 

trade-offs, though acceptable for minute-level 

freshness, constrain Hudi's applicability to 

millisecond-latency scenarios. 

 

3. Emerging Real-Time Data Lake 

Technologies: Apache Flussonet and Apache 

Paimon 
 

Recognizing limitations of batch-first table formats 

for true real-time workloads, the data engineering 

community has developed next-generation 

technologies specifically architected for 

millisecond-level latency requirements. Apache 

Fluss and Apache Paimon represent innovative 

approaches to real-time data lake architectures, 



Rahul Jain / IJCESEN 12-1(2026)572-581 

 

575 

 

addressing fundamental constraints present in 

established formats through streaming-native 

designs and unified storage engines. 

 

3.1 Apache Fluss: Streaming-Native Storage for 

Real-Time Analytics 

 

Apache Fluss emerges as a streaming-native 

storage system designed specifically for real-time 

analytics workloads requiring sub-second data 

freshness. Unlike batch-oriented table formats 

retrofitted with streaming capabilities, Fluss adopts 

a streaming-first architecture where real-time 

processing represents the primary design 

consideration rather than an afterthought. The 

system provides unified streaming and batch 

processing capabilities through log-structured 

storage optimized for continuous data ingestion 

while maintaining efficient analytical query 

performance. 

Fluss architecture centers on distributed log storage, 

enabling high-throughput append operations with 

minimal write latency. The system maintains 

separate log and table storage layers, where log 

storage optimizes for streaming writes with 

microsecond-level ingestion latency, while table 

storage provides columnar formats optimized for 

analytical queries. This separation enables Fluss to 

simultaneously satisfy contradictory requirements 

of streaming and batch workloads without 

architectural compromises inherent in unified 

designs. The log storage layer supports exact event-

time ordering and deterministic replay semantics 

critical for complex event processing applications, 

capabilities often absent or inefficient in batch-first 

table formats. 

Real-time query capabilities in Fluss leverage 

streaming-aware query planning that accounts for 

data freshness requirements during execution 

planning. The system maintains real-time indexes 

enabling millisecond-level point lookups and range 

scans over streaming data, eliminating query 

latency penalties associated with merging delta files 

in traditional Merge-On-Read architectures. Fluss 

implements continuous compaction processes that 

operate concurrently with read and write 

operations, avoiding blocking behaviors and 

latency spikes characteristic of periodic batch 

compaction in conventional table formats. 

The streaming-native design philosophy extends to 

consistency guarantees, where Fluss provides 

exactly-once processing semantics without 

requiring external coordination systems. This 

contrasts with established table formats that often 

delegate streaming consistency to external 

frameworks like Apache Flink or Spark Structured 

Streaming. By internalizing consistency 

management, Fluss reduces operational complexity 

and eliminates coordination overhead that limits 

transaction throughput in batch-oriented designs. 

 

3.2 Apache Paimon: Unified Streaming-Batch 

Data Lake Platform 

 

Apache Paimon introduces a streaming data lake 

platform combining high-throughput streaming 

writes with efficient batch query performance 

through an innovative unified storage engine 

design. Paimon addresses fundamental limitations 

in existing table formats by treating streaming and 

batch as equal first-class workloads rather than 

optimizing primarily for one paradigm while 

accommodating the other as a secondary 

consideration. 

The Paimon storage engine implements a multi-tier 

architecture where recent data resides in memory-

optimized structures supporting millisecond-level 

writes and queries, while historical data transitions 

to columnar formats optimized for analytical 

processing. This tiered approach eliminates trade-

offs between streaming write performance and 

analytical query efficiency that constrain 

conventional table formats. The system 

automatically manages data placement across tiers 

based on access patterns and freshness 

requirements, transparently optimizing for both 

real-time and historical query workloads without 

manual intervention. 

Paimon's changelog mechanism provides native 

change data capture capabilities without the 

overhead associated with delta log merging in 

traditional Merge-On-Read implementations. The 

system maintains separate changelog streams 

tracking all data modifications, enabling 

downstream consumers to efficiently process 

incremental changes without scanning entire tables 

or merging complex delta structures. This 

architecture eliminates the read amplification 

characteristic of conventional MoR 

implementations, where query engines must merge 

multiple delta files with base data during scan 

operations. 

The unified storage engine supports advanced 

features, including primary key constraints, 

aggregate materialized views, and lookup joins, 

capabilities typically requiring separate systems in 

traditional data lake architectures. Paimon 

implements these features through streaming-aware 

execution engines that incrementally maintain 

derived datasets as source data arrives, providing 

real-time materialized views without batch 

recomputation overhead. This native integration of 

streaming materialization contrasts sharply with 

established table formats requiring external 
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processing frameworks to maintain derived 

datasets. 

 

3.3 Comparative Analysis: Real-Time 

Capabilities 

 

Apache Fluss and Apache Paimon address 

fundamental architectural limitations in established 

table formats regarding real-time processing. 

Traditional formats like Iceberg, Delta Lake, and 

Hudi, while providing streaming ingestion 

capabilities, retain batch-oriented architectures, 

introducing inherent latency overhead. Periodic 

compaction cycles, transaction log replay, and delta 

file merging create processing delays incompatible 

with millisecond-level freshness requirements. 

Fluss and Paimon eliminate these overhead sources 

through streaming-native designs where real-time 

processing constitutes the primary architectural 

consideration. Continuous compaction, streaming-

aware query planning, and log-structured storage 

enable these systems to provide millisecond-level 

data freshness without sacrificing analytical query 

performance. The unified storage engines avoid 

architectural compromises present in batch-first 

designs, supporting both real-time and historical 

workloads with equivalent efficiency. 

However, these emerging technologies introduce 

trade-offs. The streaming-native architectures 

require more sophisticated operational management 

compared to established table formats. The multi-

tier storage systems demand careful capacity 

planning and monitoring to ensure optimal data 

placement. The continuous compaction processes 

consume cluster resources that might otherwise 

serve query workloads. Organizations must 

carefully evaluate whether millisecond-level 

latency requirements justify the additional 

operational complexity compared to minute-level 

freshness achievable with established formats. 

 

4. Transactional Semantics and Schema 

Evolution 
 

Transactional capabilities over distributed object 

storage represent defining achievements of modern 

table formats, enabling reliable multi-user access 

patterns previously impossible in traditional data 

lake architectures. These guarantees prove essential 

for production analytical systems where data 

quality and consistency directly impact business 

decision-making. 

Schema evolution represents the process through 

which data structures adapt over time to 

accommodate changing business requirements 

while maintaining compatibility with existing data 

and downstream consumers [3]. Modern analytical 

systems must gracefully handle schema 

modifications as organizations continuously 

improve their understanding of business entities, 

introduce new data sources, and increase analytical 

capabilities. Effective schema evolution strategies 

reduce disruption to running pipelines while 

ensuring historical data remains interpretable under 

existing schema definitions. This becomes more 

complicated in distributed environments with many 

consumers potentially accessing tables with various 

schema versions, necessitating careful coordination 

to ensure incompatibilities do not occur. 

Apache Iceberg addresses these issues by 

implementing sophisticated schema versioning 

mechanisms as part of its metadata snapshot 

system. The format records and utilizes schema 

changes as explicit metadata modifications instead 

of making physical changes to underlying data, 

enabling schema changes to occur instantly even in 

petabyte-scale tables. Iceberg supports a wide 

variety of evolution operations, including adding 

and removing columns, rearranging them, and 

promoting and demoting types, with automatic 

validation ensuring proposed operations do not 

impair compatibility with existing data. The hidden 

partitioning mechanism further enhances flexibility 

by allowing partition specifications to evolve 

independently of schema changes, eliminating 

common sources of migration complexity in 

traditional systems. 

Delta Lake provides robust schema enforcement 

and evolution capabilities specifically designed to 

prevent data quality issues while enabling 

controlled structural changes [4]. The format 

implements schema validation at write time, 

automatically rejecting data failing to conform to 

current table schemas unless explicit schema 

evolution options are enabled. This enforcement 

prevents silent data corruption scenarios where 

incompatible data might otherwise be written 

without validation, later causing query failures or 

incorrect analytical results. When schema evolution 

is explicitly requested, Delta Lake supports adding 

new columns with optional default values and 

widening column types to accommodate broader 

value ranges. The merge operation provides 

particularly powerful schema evolution capabilities, 

allowing upsert workloads to automatically expand 

target table schemas to accommodate new columns 

appearing in source data streams. Delta Lake's 

approach is flexible but safe, requiring opt-in for 

potentially disruptive schema changes while 

automatically implementing compatible 

modifications. The format maintains schema 

history in transaction logs, enabling time travel 

queries to accurately read historical data with 

schema versions in effect at query time, an essential 
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feature for regulatory compliance and analytical 

reproducibility. 

Apache Hudi applies schema evolution features to 

its ingestion pipeline, acknowledging that 

streaming data sources are often associated with 

schema drift, requiring real-time accommodation. 

The timeline-based architecture tracks schema 

versions alongside data commits, ensuring 

compaction operations correctly merge files created 

under different schema versions. Hudi supports 

backward-compatible schema changes through 

metadata propagation mechanisms, ensuring all 

table components remain synchronized as schemas 

evolve. The format's focus on incremental ingestion 

patterns requires especially robust schema handling 

since continuous pipelines cannot endure downtime 

associated with full table rewrites. Organizations 

using Hudi in change data capture situations enjoy 

the advantages of schema synchronization 

mechanisms that automatically identify upstream 

schema changes and propagate them downstream 

with minimal manual intervention. 

For real-time workloads, schema evolution 

introduces additional complexity. The validation 

and propagation overhead associated with schema 

changes can temporarily impact write latency, 

particularly in high-throughput streaming scenarios. 

Emerging technologies like Apache Fluss and 

Paimon address these concerns through optimized 

schema validation pipelines and asynchronous 

propagation mechanisms that minimize impact on 

streaming write performance while maintaining 

consistency guarantees. 

 

5. Update, Delete, and Compaction 

Strategies 
 

The mechanisms through which table formats 

handle row-level modifications fundamentally 

determine their suitability for workloads involving 

frequent updates, a requirement increasingly 

common as organizations adopt near-real-time 

analytics and synchronize operational databases 

with analytical systems. 

Apache Hudi was explicitly architected to address 

challenges of managing data lakes with frequent 

updates, use cases proving problematic for earlier 

table format implementations [5]. The format's dual 

storage mode architecture provides organizations 

with flexibility to optimize for either read 

performance or write efficiency based on workload 

characteristics. Copy-On-Write mode completely 

rewrites files containing modified records during 

each update operation, ensuring read queries 

encounter only fully consolidated data files without 

merge overhead. This method is optimal when 

working with read-intensive workloads where 

update rates are moderate, and query performance 

is more important than write latency. Merge-On-

Read mode represents a radical approach to 

handling updates, where modifications are written 

to small delta log files instead of overwriting full 

base files, eliminating write operation amplification 

and storage costs by significant factors. This 

architecture enables sub-minute data freshness for 

streaming ingestion pipelines while maintaining 

acceptable query performance through efficient 

merge algorithms combining base files with delta 

logs during query execution. Hudi provides 

comprehensive automation for compaction 

processes necessary to maintain optimal file layouts 

in Merge-On-Read tables, with background 

services continuously monitoring file sizes and 

merge ratios to trigger compaction operations when 

thresholds are exceeded. 

However, Hudi's compaction processes introduce 

real-time processing constraints. Background 

compaction consumes cluster resources, potentially 

impacting concurrent query and ingestion 

workloads. During compaction operations, affected 

partitions may experience temporarily elevated 

query latency as engines merge larger numbers of 

delta files. Organizations requiring consistent 

millisecond-level query latency must carefully tune 

compaction schedules and resource allocation to 

minimize impact on real-time workloads. 

Deletion vectors represent storage optimization 

techniques that significantly accelerate delete 

operations by marking rows as logically deleted 

rather than physically removing them immediately 

[6]. This technique is especially useful in 

workloads with selective deletes affecting small 

fractions of files, typical in data retention processes 

and regulatory compliance procedures. 

Conventional delete schemes involve overwriting 

entire files to physically delete rows, costly 

operations causing large write amplification when 

only small fractions of rows require deletion. 

Deletion vectors eliminate this overhead by 

maintaining separate metadata structures tracking 

deleted row positions within each file, allowing 

query engines to filter deleted rows during scan 

operations without modifying base data files. Delta 

Lake has incorporated deletion vectors as 

optimizations for delete and merge operations, 

achieving order-of-magnitude performance 

improvements for operations affecting limited 

subsets of table data. The technique introduces 

trade-offs between write performance and read 

complexity, as query engines must merge deletion 

vectors with base files during execution, potentially 

impacting scan performance when deletion ratios 

become substantial. Organizations must balance 

these considerations by scheduling periodic 
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optimization operations that physically apply 

deletion vectors and consolidate small files, 

maintenance patterns similar to database vacuum 

operations. 

The accumulation of deletion vectors creates real-

time query overhead as engines must evaluate 

additional metadata during scan operations. This 

overhead increases query latency proportionally to 

deletion vector count and complexity, constraining 

the format's suitability for latency-sensitive 

applications. Emerging technologies address these 

limitations through more efficient deletion tracking 

mechanisms that minimize scan-time overhead. 

Apache Iceberg implements flexible deletion 

strategies through position deletes and equality 

deletes, providing multiple mechanisms for 

efficiently representing removed data. Position 

deletes specify exact row positions within data files 

that should be filtered during query execution, 

offering precise control for delete operations 

targeting specific records. Equality deletes define 

predicate-based filters, removing all rows matching 

specified column values, enabling efficient bulk 

deletion patterns. This dual approach 

accommodates diverse deletion patterns 

encountered in production workloads while 

maintaining acceptable query performance through 

optimized merge algorithms in supporting query 

engines. However, accumulation of deleted files 

gradually degrades both read performance and 

storage efficiency, necessitating periodic rewrite 

operations that physically remove deleted data and 

consolidate fragmented files into optimized layouts. 

Similar to other established formats, Iceberg's 

delete handling introduces real-time processing 

overhead. The merge operations required during 

query execution add latency proportional to the 

delete file count and their size. Organizations with 

strict latency requirements must implement 

aggressive rewrite schedules to minimize delete file 

accumulation, increasing operational complexity 

and resource consumption. 

 

6. Streaming Integration and Query 

Optimization 
 

The convergence of batch and streaming processing 

paradigms represents recent trends in present-day 

data architecture due to business demands for 

increasingly fresh analytical information and real-

time decision-making functionality. Table formats 

play central roles in enabling this convergence 

through native support for streaming ingestion 

patterns and incremental query interfaces. 

Apache Hudi represents landmark achievements in 

bringing enterprise-scale data lake management 

capabilities to streaming-first architectures, as 

recognized through its graduation to top-level 

Apache project status [7]. The format emerged 

from Uber's operational requirements for ingesting 

massive streams of database change events into 

analytical data lakes with minute-level latency 

while maintaining full query consistency and 

efficient storage utilization. Hudi's incremental 

query capabilities enable downstream consumers to 

efficiently retrieve only records modified since 

specified commit timestamps, eliminating needs to 

repeatedly scan entire tables for change detection. 

This functionality proves essential for continuous 

ETL pipelines, materialized view maintenance 

workflows, and real-time feature engineering for 

machine learning systems. The extensive indexing 

subsystem comprising Bloom filters, hash-based 

indices, and B-tree structures allows record-level 

lookups to be performed much faster during upsert 

operations without scanning entire tables, which 

would make streaming ingestion impractical at 

scale. Hudi supports native integration with Apache 

Kafka for source-to-lake ingestion patterns, with 

automatic exactly-once semantics ensuring pipeline 

failures never produce duplicated or missing 

records. 

While Hudi advances streaming capabilities 

significantly beyond traditional batch formats, 

inherent architectural constraints limit its 

applicability to true real-time scenarios. The 

minute-level latency achieved in production 

deployments, though impressive for data lake 

contexts, proves inadequate for applications 

requiring sub-second freshness. The periodic 

compaction processes necessary to maintain read 

performance introduce processing delays, creating 

temporal gaps between data ingestion and query 

availability. The indexing mechanisms, while 

accelerating upsert operations, add memory 

overhead and update latency for maintaining index 

consistency across distributed nodes. 

Apache Iceberg has become an appealing option for 

organizations seeking to future-proof their data lake 

investments through open, engine-neutral designs 

and strong community support [8]. The wide 

support of the format across all query engines, 

including Apache Spark, Apache Flink, Trino, 

Presto, and Impala, gives organizations flexibility 

to change their technology preferences without 

undergoing costly migration efforts. The snapshot-

based design of Iceberg automatically provides 

time travel ability, allowing analysts to query 

previous table states for reproducing analytics, 

regulatory compliance, and debugging. Partition 

evolution capabilities are distinguishing features of 

the format, meaning tables can change partitioning 

strategies without rewriting data, an important 

feature for long-lived analytical data whose access 
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patterns change over time. Partitions can be 

rearranged as new dimensions are introduced or 

scaled to smaller time ranges based on shifting 

query patterns or switched to hourly partitioning 

based on changing patterns. The hidden partitioning 

abstraction eradicates frequent causes of query 

performance problems where users manually apply 

partition pruning predicates based on query 

predicates, ensuring user error does not result in 

costly full table scans. 

However, Iceberg's batch-oriented architecture 

introduces real-time processing overhead. The 

snapshot commit mechanism, while providing 

strong consistency guarantees, requires 

coordination overhead, limiting transaction 

throughput for high-frequency updates. The 

metadata tree traversal necessary during query 

planning adds latency that, while negligible for 

batch workloads, becomes significant for latency-

sensitive applications. Organizations requiring 

consistent sub-second query latency must evaluate 

whether Iceberg's architectural characteristics align 

with their real-time requirements. 

Delta Lake is optimally scaled in Spark-focused 

settings via strong incorporation of Spark query 

planning frameworks and execution patterns of 

popular analytics designs. The data skipping 

properties of the format take advantage of file-level 

statistics to aggressively filter away irrelevant data 

at query planning, building selective queries with 

vastly smaller I/O requirements. Z-order clustering 

offers grouping of multi-dimensional data, sharing 

similar records across arrays of sort keys, which 

offers significant performance enhancements for 

queries with complicated multi-column filter 

predicates. These are especially useful in interactive 

analytical workloads where query latency directly 

influences user productivity and analytical iteration 

speed. The at-once support of Spark Structured 

Streaming helps Delta offer unified batch and 

streaming pipelines where both historical and 

current data are handled using the same code paths, 

allowing streamlined application development and 

management. 

Despite these sophisticated optimizations, Delta 

Lake retains batch-oriented characteristics, 

introducing real-time processing constraints. The 

transaction log replay mechanism, while efficient 

for batch workloads, adds latency to read 

operations as log size grows between checkpoints. 

The OPTIMIZE and VACUUM operations required 

for maintaining performance necessitate exclusive 

table access periods, temporarily blocking writes 

and introducing unpredictable latency spikes. These 

architectural characteristics limit Delta Lake's 

suitability for applications requiring consistent sub-

second latency guarantees. 

 

6.1 Real-Time Query Optimization in Emerging 

Technologies 

 

Apache Fluss and Apache Paimon address query 

optimization for real-time workloads through 

streaming-native architectures, eliminating 

overhead sources present in batch-oriented formats. 

Fluss implements streaming-aware query planning 

that accounts for data freshness requirements 

during execution planning, optimizing scan 

strategies based on whether queries target recent 

streaming data or historical analytical datasets. The 

real-time indexes maintained by Fluss enable 

millisecond-level point lookups and range scans 

over streaming data without the delta file merging 

overhead characteristic of traditional Merge-On-

Read architectures. 

Paimon's multi-tier storage architecture 

automatically optimizes query execution based on 

data location and access patterns. Recent data 

residing in memory-optimized structures supports 

millisecond-level queries without disk I/O 

overhead, while historical data in columnar formats 

benefits from traditional analytical optimizations, 

including predicate pushdown and columnar 

scanning. The unified query planning engine 

transparently spans both tiers, providing consistent 

performance regardless of data age or storage tier. 

These emerging technologies demonstrate that true 

real-time query optimization requires architectural 

designs where streaming represents the primary 

consideration rather than a retrofit onto batch-

oriented foundations. Organizations with strict 

latency requirements should carefully evaluate 

whether established table formats can meet their 

needs or whether streaming-native solutions like 

Fluss and Paimon offer more appropriate 

architectural foundations. 
 

Table 1: Architectural Characteristics of Apache Iceberg and Lakehouse Platforms [1], [2] 

Characteristic Apache Iceberg Lakehouse Architecture 

Metadata 

Organization 

Hierarchical tree structure with 

snapshot files, manifest lists, and 

manifest files 

Unified metadata layer providing database 

capabilities over object storage 

Engine 

Compatibility 

Engine-neutral design supporting 

Spark, Flink, Trino, Presto, Impala 

Platform-agnostic, enabling multiple query 

engines on shared storage 
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Atomic Operations 
Pointer-based atomic commits at the 

snapshot level 

ACID transaction support eliminates data 

duplication requirements 

Scalability 

Approach 

Multi-level indirection avoiding 

distributed coordination 

Direct analytical access to open formats on 

low-cost storage 

Query Planning 
Efficient pruning via partition 

information and column statistics 

Schema enforcement and efficient planning 

over commodity systems 

 

Table 2: Schema Evolution Mechanisms in Modern Table Formats [3], [4] 

Feature Schema Evolution Process Delta Lake Implementation 

Evolution Approach 
Adapting data structures over time while 

maintaining compatibility 

Schema validation at write time with explicit 

evolution controls 

Backward 

Compatibility 

Ensuring historical data remains 

interpretable under current schemas 

Schema history is maintained in the 

transaction log for time travel 

Modification Types 
Column additions, deletions, reorderings, 

and type promotions 

Adding columns with defaults, widening 

types, and merge-based expansion 

Validation Strategy 
Careful coordination to prevent 

incompatibilities across versions 

Automatic rejection of non-conforming data 

unless explicitly enabled 

Operational Impact 
Minimizing disruption to pipelines during 

structural changes 

Balancing flexibility with safety through opt-

in mechanisms 

 

Table 3: Update and Delete Optimization Techniques [5], [6] 

Technique Apache Hudi Storage Modes Deletion Vectors 
Primary Strategy 

Dual-mode architecture with CoW and 

MoR options 

Logical deletion marking without 

physical removal 

Write Optimization 
MoR writes to the delta logs, reducing 

amplification 

Separate metadata structures tracking 

deleted positions 

Read Characteristics CoW optimizes reads; MoR introduces 

merge overhead 

Query engines filter deleted rows during 

scan operations 
Maintenance 

Requirements 

Automated compaction services monitor 

and trigger optimization 

Periodic operations physically apply 

vectors and consolidate files 
Performance Trade-offs Balancing write latency against read 

performance 

Write acceleration versus read 

complexity considerations 
 

Table 4: Streaming Integration and Real-Time Capabilities [7], [8] 

Capability Apache Hudi Streaming Features Apache Iceberg Flexibility 
Design Origin 

Uber's operational requirements for minute-

level latency 

Engine-agnostic design with broad 

ecosystem adoption 

Incremental Processing Native incremental queries retrieving 

modified records 

Snapshot-based architecture supporting 

incremental scans 
Indexing Support Bloom filters, hash-based indices, B-tree 

structures 

Partition evolution without data rewriting 
Integration Patterns 

Native Kafka integration with exactly-once 

semantics 

Multi-engine support across Spark, Flink, 

Trino, Presto 

Time Travel Timeline-based commit references for 

historical access 

Snapshot metadata enabling reproducible 

analytics 
 

7. Conclusions 

 
The introduction of Apache Iceberg, Apache Delta 

Lake, and Apache Hudi as key technologies in the 

current data platform designs is one of the 

fundamental changes in the way organisations look 

at data analytics management. These tabular 

formats can effectively overcome the long-standing 

constraints of conventional data lake deployments 

by adding transactional assurances, schema 

flexibility, and advanced metadata control over 

cost-effective object stores. Although these formats 

have similar aims of introducing database-grade 

reliability to data lakes, the architectural 

philosophies produce significant distinctions in the 

characteristics of operation, performance, and 

workload appropriateness. Apache Iceberg also 

stands out with neutral principles of engine design 

and scalable metadata designs that support a wide 

variety of query engines and large-scale datasets, 

making it especially valuable to organizations with 

complex workloads on analytical processing that 

requires vendor-independence and long-term 

flexibility of architecture. Delta Lake brings 

unparalleled value to organizations that have made 

significant investments in Apache Spark 

environments, offering optimizations that are 

deeply integrated and operational patterns that are 

easy to operate with transaction log designs that 

offer strong ACID guarantees and significantly 

boost performance with data skipping and Z-order 

clustering of analytical workloads. Apache Hudi 

has been designed to address streaming ingestion 

and change data capture applications with a novel 

Merge-On-Read architecture and advanced 

indexing features, which reduce the write 

amplification of update-intensive workloads with 

automated maintenance functions that decrease the 

operational load of organizations with continuous 

ingestion pipelines that need sub-minute data 
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freshness. The choice of proper table formats are 

foundational architectural choice with long-term 

ramifications, in terms of agility of platform, 

operational complexity, and analytics, based upon 

prudent considerations of workload patterns, 

ecosystem constraints, operational capabilities, and 

strategies in technology choices, not being 

universal choices. With the maturation of lakehouse 

architectures, further innovation grows the table 

format capabilities, enhances cross-engine 

interoperability, and offers more sophisticated 

analytical and machine learning workloads, making 

table formats a central enabling technology to the 

next-generation analytical platform, integrating 

batch processing, streaming ingestion, and 

advanced analytics into unified architectural 

structures to meet the needs of modern enterprise. 
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