

Copyright © IJCESEN

International Journal of Computational and Experimental

Science and ENgineering

(IJCESEN)

Vol. 12-No.1 (2026) pp. 572-581
http://www.ijcesen.com

ISSN: 2149-9144

 Research Article

Modern Table Formats for Data Lakehouse Architectures: A Comprehensive

Analysis of Apache Iceberg, Delta Lake, and Apache Hudi

Rahul Jain*

Cisco Systems Inc., USA
* Corresponding Author Email: rahul.j.profile@gmail.com - ORCID: 0000-0002-0047-4450

Article Info:

DOI: 10.22399/ijcesen.4867

Received : 02 December 2025

Revised : 30 January 2026

Accepted : 02 February 2026

Keywords

Lakehouse Architecture,

Acid Transactions,

Schema Evolution,

Streaming Ingestion,

Metadata Management

Abstract:

The transformation of enterprise data infrastructure has necessitated the creation of

sophisticated table formats bridging the gap between traditional data lakes and data

warehouses. Apache Iceberg, Delta Lake, and Apache Hudi have emerged as

revolutionary technologies providing ACID transactional semantics, schema evolution,

and advanced metadata management over cloud object storage systems. These formats

address fundamental constraints of traditional data lake systems by delivering database-

grade reliability without sacrificing cost-effectiveness and scalability of distributed

storage. Each format embodies distinct architectural philosophies: Iceberg emphasizes

engine neutrality with scalable metadata hierarchies, Delta Lake focuses on deep

Apache Spark integration with optimized analytical query performance, and Hudi

specializes in streaming ingestion patterns with efficient change data capture support.

The architectural foundations include hierarchical metadata structures, transaction log

mechanisms, and timeline-based state tracking, each presenting trade-offs in scalability,

consistency, and operational complexity. Schema evolution capabilities enable

structural adaptation without data rewrites, while sophisticated update and delete

mechanisms using Copy-On-Write and Merge-On-Read strategies optimize for diverse

workload characteristics. Streaming integration features facilitate real-time analytics

through incremental query interfaces, native Kafka integration, and unified batch-

streaming processing paradigms. However, these established formats encounter inherent

overhead when handling true real-time workloads with millisecond-level latency

requirements. Emerging technologies such as Apache Fluss and Apache Paimon

represent next-generation solutions specifically architected for real-time data lake use

cases, addressing limitations in existing frameworks through streaming-native

architectures, unified streaming-batch storage engines, and optimized real-time query

processing capabilities. Query optimization techniques, including hidden partitioning,

data skipping, Z-order clustering, and comprehensive indexing subsystems, provide

significant performance improvements for analytical workloads. The selection of

appropriate table formats constitutes a foundational architectural decision with lasting

implications for platform agility, operational complexity, and analytical capabilities,

requiring careful evaluation of workload patterns, real-time requirements, ecosystem

constraints, and strategic technology directions.

1. Introduction

The modern information landscape has witnessed a

fundamental shift in how organizations architect

their analytical infrastructure, moving away from

inflexible, siloed systems toward more fluid and

integrated models supporting diverse analytical

requirements. Traditional data lakes, while

providing cost-effective storage capabilities

through columnar formats such as Parquet and

ORC, have consistently failed to deliver the

reliability and management features that

contemporary enterprises demand. These

conventional systems lack core database

capabilities, including transactional consistency,

schema flexibility, and effective metadata

management, creating significant operational

challenges for organizations striving to construct

robust analytical platforms.

Apache Iceberg has emerged as a transformative

solution, characterized as a game-changing table

http://dergipark.org.tr/en/pub/ijcesen
http://www.ijcesen.com

Rahul Jain / IJCESEN 12-1(2026)572-581

573

format specifically designed for big data analytics

environments [1]. The format provides an open-

source table specification introducing critical

capabilities for managing large-scale data lakes,

addressing numerous limitations inherent in

traditional approaches. Iceberg's architecture

fundamentally reimagines how metadata and data

files interact, enabling organizations to achieve

warehouse-like reliability on data lake storage. The

lakehouse architecture concept represents a new

generation of open platforms that fundamentally

unify data warehousing and advanced analytics

capabilities, eliminating traditional separation

between these two paradigms [2]. This architectural

evolution addresses the longstanding tension

between systems optimized for business

intelligence and those designed for machine

learning and data science workflows.

Three dominant table formats have become central

technologies in this lakehouse movement: Apache

Iceberg, Delta Lake, and Apache Hudi. Each format

introduces sophisticated metadata management

layers built atop cloud object storage, enabling

ACID transactional semantics, snapshot isolation,

and time travel functionality. Despite fulfilling

shared goals of achieving database-grade reliability

in data lakes, these formats represent dramatically

different architectural philosophies reflecting their

origins and primary use cases. Apache Iceberg,

initially developed at Netflix, emphasizes engine

independence and scalable metadata architectures.

Delta Lake, created by Databricks, focuses on

profound integration with Apache Spark and

efficient query execution for analytical workloads.

Apache Hudi, originating from Uber's engineering

teams, concentrates on streaming data ingestion

patterns and effective change data capture handling.

While these established table formats have

revolutionized data lake capabilities, they encounter

inherent overhead when addressing true real-time

workloads requiring sub-second latency. Batch-

oriented architectures and periodic compaction

cycles introduce delays incompatible with

millisecond-level freshness requirements

increasingly demanded by modern applications.

Recognizing these limitations, the data engineering

community has developed next-generation

solutions specifically architected for real-time data

lake scenarios. Apache Fluss represents a

streaming-native storage system designed for real-

time analytics with unified streaming and batch

processing capabilities, eliminating architectural

compromises present in batch-first designs. Apache

Paimon introduces a streaming data lake platform

combining high-throughput streaming writes with

efficient batch query performance, bridging the gap

between real-time ingestion and analytical

processing through innovative storage engine

design. These emerging technologies address

fundamental constraints in established table

formats, offering millisecond-level data freshness,

optimized real-time query processing, and native

streaming semantics without sacrificing analytical

query performance.

This comprehensive examination analyzes the

architectural foundations, operational

characteristics, and performance profiles of

established table formats alongside emerging real-

time solutions, providing practitioners and

researchers with a structured framework for

evaluating their applicability to specific

organizational requirements and workload patterns

in modern data platform architectures.

2. Architectural Foundations and Metadata

Management

The fundamental architecture of modern table

formats determines their scalability boundaries,

consistency guarantees, and operational

complexity. Understanding these architectural

choices proves essential for organizations selecting

technologies that must support multi-petabyte

datasets while maintaining query performance and

data consistency.

Apache Iceberg introduces an innovative approach

to metadata management through its hierarchical

architecture, fundamentally separating concerns of

tracking table state from the physical layout of data

files [1]. This separation enables Iceberg to scale

efficiently across massive datasets without

encountering performance degradation typical of

traditional catalog-based approaches. The format

maintains a tree structure where snapshot metadata

files reference manifest lists, which subsequently

enumerate manifest files containing detailed

information about individual data files. This multi-

level indirection allows atomic commits through

simple pointer updates at the snapshot level,

avoiding expensive distributed coordination

protocols. Iceberg's design philosophy emphasizes

engine neutrality, ensuring diverse query engines

can interact with tables without requiring format-

specific adaptations. The metadata architecture

supports efficient pruning during query planning,

enabling engines to quickly identify relevant data

files based on partition information and column-

level statistics embedded within manifest

structures. This capability becomes particularly

critical in environments where tables contain

millions of files distributed across thousands of

partitions, scenarios increasingly common in

modern data platforms.However, Iceberg's batch-

oriented architecture introduces inherent overhead

Rahul Jain / IJCESEN 12-1(2026)572-581

574

for real-time workloads. The snapshot-based

commit model, while providing strong consistency

guarantees, requires coordination overhead that

limits transaction throughput for high-frequency

updates. Compaction operations necessary to

maintain optimal read performance introduce

periodic processing delays, creating temporal gaps

where newly written data remains inaccessible to

readers. These architectural characteristics, while

acceptable for minute-level freshness requirements,

prove inadequate for millisecond-latency scenarios

demanded by real-time applications.

The lakehouse architecture fundamentally

transforms how organizations conceptualize data

platform design by enabling direct analytical access

to data stored in open formats on low-cost object

storage [2]. This approach eliminates traditional

requirements to maintain separate copies of data in

warehouses and lakes, reducing both storage costs

and operational complexity. The architecture

achieves this unification through sophisticated

metadata management, providing database-like

capabilities including ACID transactions, schema

enforcement, and efficient query planning over

commodity storage systems. Modern table formats

serve as the enabling technology layer, making

lakehouse architectures practical, providing

structured abstractions necessary for query engines

to efficiently access data while maintaining

consistency guarantees.

Delta Lake implements metadata management

through a transaction log mechanism where each

modification to a table appends an entry to an

ordered log stored alongside data. This log-based

approach provides straightforward audit trails of all

changes and simplifies reasoning about table state

evolution over time. The transaction log captures

additions, removals, and metadata updates in JSON

format, enabling both humans and systems to

understand table history. To prevent unbounded

growth of transaction logs, Delta Lake periodically

generates checkpoint files consolidating cumulative

effects of historical transactions into Parquet-

encoded snapshots. These checkpoints enable query

engines to restore existing table state without

replaying full transaction history, maintaining

tolerable query planning latency even for long-lived

tables. The optimistic concurrency control protocol

implemented atop this log structure enables

multiple writers to safely commit changes

concurrently, with conflict detection ensuring

incompatible operations fail gracefully rather than

corrupting table state.

Despite these sophisticated capabilities, Delta

Lake's architecture introduces real-time processing

overhead. The transaction log replay mechanism,

while efficient for batch workloads, adds latency to

read operations as log size grows between

checkpoints. The OPTIMIZE and VACUUM

operations required for maintaining performance

necessitate exclusive table access periods,

temporarily blocking writes and introducing

unpredictable latency spikes. These architectural

characteristics limit Delta Lake's suitability for

applications requiring consistent sub-second

latency guarantees.

Apache Hudi distinguishes itself through a

timeline-based architecture explicitly modeling the

temporal evolution of table state through sequences

of discrete actions. The timeline tracks various

operation types, including commits, compactions,

cleans, and rollbacks, providing a comprehensive

history of table modifications. Hudi supports two

fundamentally different storage modes offering

distinct trade-offs between write performance and

read efficiency. Copy-On-Write mode generates

new versions of modified files during updates,

ensuring read queries never encounter merge

overhead, but incurring significant write

amplification. Merge-On-Read mode postpones

merging operations by writing updates to separate

delta logs, reducing write latency and storage

overhead for update-intensive workloads while

introducing merge complexity during query

execution. This architectural flexibility enables

organizations to optimize for specific latency and

throughput requirements, though it introduces

additional operational considerations around

compaction timing and file management.

While Hudi advances real-time capabilities beyond

traditional batch-oriented formats, it retains

inherent limitations. The compaction processes

required to maintain read performance in Merge-

On-Read mode introduce background processing

overhead, consuming cluster resources and

occasionally blocking writes. The indexing

mechanisms, while accelerating upsert operations,

add memory overhead and update latency for

maintaining index consistency. These architectural

trade-offs, though acceptable for minute-level

freshness, constrain Hudi's applicability to

millisecond-latency scenarios.

3. Emerging Real-Time Data Lake

Technologies: Apache Flussonet and Apache

Paimon

Recognizing limitations of batch-first table formats

for true real-time workloads, the data engineering

community has developed next-generation

technologies specifically architected for

millisecond-level latency requirements. Apache

Fluss and Apache Paimon represent innovative

approaches to real-time data lake architectures,

Rahul Jain / IJCESEN 12-1(2026)572-581

575

addressing fundamental constraints present in

established formats through streaming-native

designs and unified storage engines.

3.1 Apache Fluss: Streaming-Native Storage for

Real-Time Analytics

Apache Fluss emerges as a streaming-native

storage system designed specifically for real-time

analytics workloads requiring sub-second data

freshness. Unlike batch-oriented table formats

retrofitted with streaming capabilities, Fluss adopts

a streaming-first architecture where real-time

processing represents the primary design

consideration rather than an afterthought. The

system provides unified streaming and batch

processing capabilities through log-structured

storage optimized for continuous data ingestion

while maintaining efficient analytical query

performance.

Fluss architecture centers on distributed log storage,

enabling high-throughput append operations with

minimal write latency. The system maintains

separate log and table storage layers, where log

storage optimizes for streaming writes with

microsecond-level ingestion latency, while table

storage provides columnar formats optimized for

analytical queries. This separation enables Fluss to

simultaneously satisfy contradictory requirements

of streaming and batch workloads without

architectural compromises inherent in unified

designs. The log storage layer supports exact event-

time ordering and deterministic replay semantics

critical for complex event processing applications,

capabilities often absent or inefficient in batch-first

table formats.

Real-time query capabilities in Fluss leverage

streaming-aware query planning that accounts for

data freshness requirements during execution

planning. The system maintains real-time indexes

enabling millisecond-level point lookups and range

scans over streaming data, eliminating query

latency penalties associated with merging delta files

in traditional Merge-On-Read architectures. Fluss

implements continuous compaction processes that

operate concurrently with read and write

operations, avoiding blocking behaviors and

latency spikes characteristic of periodic batch

compaction in conventional table formats.

The streaming-native design philosophy extends to

consistency guarantees, where Fluss provides

exactly-once processing semantics without

requiring external coordination systems. This

contrasts with established table formats that often

delegate streaming consistency to external

frameworks like Apache Flink or Spark Structured

Streaming. By internalizing consistency

management, Fluss reduces operational complexity

and eliminates coordination overhead that limits

transaction throughput in batch-oriented designs.

3.2 Apache Paimon: Unified Streaming-Batch

Data Lake Platform

Apache Paimon introduces a streaming data lake

platform combining high-throughput streaming

writes with efficient batch query performance

through an innovative unified storage engine

design. Paimon addresses fundamental limitations

in existing table formats by treating streaming and

batch as equal first-class workloads rather than

optimizing primarily for one paradigm while

accommodating the other as a secondary

consideration.

The Paimon storage engine implements a multi-tier

architecture where recent data resides in memory-

optimized structures supporting millisecond-level

writes and queries, while historical data transitions

to columnar formats optimized for analytical

processing. This tiered approach eliminates trade-

offs between streaming write performance and

analytical query efficiency that constrain

conventional table formats. The system

automatically manages data placement across tiers

based on access patterns and freshness

requirements, transparently optimizing for both

real-time and historical query workloads without

manual intervention.

Paimon's changelog mechanism provides native

change data capture capabilities without the

overhead associated with delta log merging in

traditional Merge-On-Read implementations. The

system maintains separate changelog streams

tracking all data modifications, enabling

downstream consumers to efficiently process

incremental changes without scanning entire tables

or merging complex delta structures. This

architecture eliminates the read amplification

characteristic of conventional MoR

implementations, where query engines must merge

multiple delta files with base data during scan

operations.

The unified storage engine supports advanced

features, including primary key constraints,

aggregate materialized views, and lookup joins,

capabilities typically requiring separate systems in

traditional data lake architectures. Paimon

implements these features through streaming-aware

execution engines that incrementally maintain

derived datasets as source data arrives, providing

real-time materialized views without batch

recomputation overhead. This native integration of

streaming materialization contrasts sharply with

established table formats requiring external

Rahul Jain / IJCESEN 12-1(2026)572-581

576

processing frameworks to maintain derived

datasets.

3.3 Comparative Analysis: Real-Time

Capabilities

Apache Fluss and Apache Paimon address

fundamental architectural limitations in established

table formats regarding real-time processing.

Traditional formats like Iceberg, Delta Lake, and

Hudi, while providing streaming ingestion

capabilities, retain batch-oriented architectures,

introducing inherent latency overhead. Periodic

compaction cycles, transaction log replay, and delta

file merging create processing delays incompatible

with millisecond-level freshness requirements.

Fluss and Paimon eliminate these overhead sources

through streaming-native designs where real-time

processing constitutes the primary architectural

consideration. Continuous compaction, streaming-

aware query planning, and log-structured storage

enable these systems to provide millisecond-level

data freshness without sacrificing analytical query

performance. The unified storage engines avoid

architectural compromises present in batch-first

designs, supporting both real-time and historical

workloads with equivalent efficiency.

However, these emerging technologies introduce

trade-offs. The streaming-native architectures

require more sophisticated operational management

compared to established table formats. The multi-

tier storage systems demand careful capacity

planning and monitoring to ensure optimal data

placement. The continuous compaction processes

consume cluster resources that might otherwise

serve query workloads. Organizations must

carefully evaluate whether millisecond-level

latency requirements justify the additional

operational complexity compared to minute-level

freshness achievable with established formats.

4. Transactional Semantics and Schema

Evolution

Transactional capabilities over distributed object

storage represent defining achievements of modern

table formats, enabling reliable multi-user access

patterns previously impossible in traditional data

lake architectures. These guarantees prove essential

for production analytical systems where data

quality and consistency directly impact business

decision-making.

Schema evolution represents the process through

which data structures adapt over time to

accommodate changing business requirements

while maintaining compatibility with existing data

and downstream consumers [3]. Modern analytical

systems must gracefully handle schema

modifications as organizations continuously

improve their understanding of business entities,

introduce new data sources, and increase analytical

capabilities. Effective schema evolution strategies

reduce disruption to running pipelines while

ensuring historical data remains interpretable under

existing schema definitions. This becomes more

complicated in distributed environments with many

consumers potentially accessing tables with various

schema versions, necessitating careful coordination

to ensure incompatibilities do not occur.

Apache Iceberg addresses these issues by

implementing sophisticated schema versioning

mechanisms as part of its metadata snapshot

system. The format records and utilizes schema

changes as explicit metadata modifications instead

of making physical changes to underlying data,

enabling schema changes to occur instantly even in

petabyte-scale tables. Iceberg supports a wide

variety of evolution operations, including adding

and removing columns, rearranging them, and

promoting and demoting types, with automatic

validation ensuring proposed operations do not

impair compatibility with existing data. The hidden

partitioning mechanism further enhances flexibility

by allowing partition specifications to evolve

independently of schema changes, eliminating

common sources of migration complexity in

traditional systems.

Delta Lake provides robust schema enforcement

and evolution capabilities specifically designed to

prevent data quality issues while enabling

controlled structural changes [4]. The format

implements schema validation at write time,

automatically rejecting data failing to conform to

current table schemas unless explicit schema

evolution options are enabled. This enforcement

prevents silent data corruption scenarios where

incompatible data might otherwise be written

without validation, later causing query failures or

incorrect analytical results. When schema evolution

is explicitly requested, Delta Lake supports adding

new columns with optional default values and

widening column types to accommodate broader

value ranges. The merge operation provides

particularly powerful schema evolution capabilities,

allowing upsert workloads to automatically expand

target table schemas to accommodate new columns

appearing in source data streams. Delta Lake's

approach is flexible but safe, requiring opt-in for

potentially disruptive schema changes while

automatically implementing compatible

modifications. The format maintains schema

history in transaction logs, enabling time travel

queries to accurately read historical data with

schema versions in effect at query time, an essential

Rahul Jain / IJCESEN 12-1(2026)572-581

577

feature for regulatory compliance and analytical

reproducibility.

Apache Hudi applies schema evolution features to

its ingestion pipeline, acknowledging that

streaming data sources are often associated with

schema drift, requiring real-time accommodation.

The timeline-based architecture tracks schema

versions alongside data commits, ensuring

compaction operations correctly merge files created

under different schema versions. Hudi supports

backward-compatible schema changes through

metadata propagation mechanisms, ensuring all

table components remain synchronized as schemas

evolve. The format's focus on incremental ingestion

patterns requires especially robust schema handling

since continuous pipelines cannot endure downtime

associated with full table rewrites. Organizations

using Hudi in change data capture situations enjoy

the advantages of schema synchronization

mechanisms that automatically identify upstream

schema changes and propagate them downstream

with minimal manual intervention.

For real-time workloads, schema evolution

introduces additional complexity. The validation

and propagation overhead associated with schema

changes can temporarily impact write latency,

particularly in high-throughput streaming scenarios.

Emerging technologies like Apache Fluss and

Paimon address these concerns through optimized

schema validation pipelines and asynchronous

propagation mechanisms that minimize impact on

streaming write performance while maintaining

consistency guarantees.

5. Update, Delete, and Compaction

Strategies

The mechanisms through which table formats

handle row-level modifications fundamentally

determine their suitability for workloads involving

frequent updates, a requirement increasingly

common as organizations adopt near-real-time

analytics and synchronize operational databases

with analytical systems.

Apache Hudi was explicitly architected to address

challenges of managing data lakes with frequent

updates, use cases proving problematic for earlier

table format implementations [5]. The format's dual

storage mode architecture provides organizations

with flexibility to optimize for either read

performance or write efficiency based on workload

characteristics. Copy-On-Write mode completely

rewrites files containing modified records during

each update operation, ensuring read queries

encounter only fully consolidated data files without

merge overhead. This method is optimal when

working with read-intensive workloads where

update rates are moderate, and query performance

is more important than write latency. Merge-On-

Read mode represents a radical approach to

handling updates, where modifications are written

to small delta log files instead of overwriting full

base files, eliminating write operation amplification

and storage costs by significant factors. This

architecture enables sub-minute data freshness for

streaming ingestion pipelines while maintaining

acceptable query performance through efficient

merge algorithms combining base files with delta

logs during query execution. Hudi provides

comprehensive automation for compaction

processes necessary to maintain optimal file layouts

in Merge-On-Read tables, with background

services continuously monitoring file sizes and

merge ratios to trigger compaction operations when

thresholds are exceeded.

However, Hudi's compaction processes introduce

real-time processing constraints. Background

compaction consumes cluster resources, potentially

impacting concurrent query and ingestion

workloads. During compaction operations, affected

partitions may experience temporarily elevated

query latency as engines merge larger numbers of

delta files. Organizations requiring consistent

millisecond-level query latency must carefully tune

compaction schedules and resource allocation to

minimize impact on real-time workloads.

Deletion vectors represent storage optimization

techniques that significantly accelerate delete

operations by marking rows as logically deleted

rather than physically removing them immediately

[6]. This technique is especially useful in

workloads with selective deletes affecting small

fractions of files, typical in data retention processes

and regulatory compliance procedures.

Conventional delete schemes involve overwriting

entire files to physically delete rows, costly

operations causing large write amplification when

only small fractions of rows require deletion.

Deletion vectors eliminate this overhead by

maintaining separate metadata structures tracking

deleted row positions within each file, allowing

query engines to filter deleted rows during scan

operations without modifying base data files. Delta

Lake has incorporated deletion vectors as

optimizations for delete and merge operations,

achieving order-of-magnitude performance

improvements for operations affecting limited

subsets of table data. The technique introduces

trade-offs between write performance and read

complexity, as query engines must merge deletion

vectors with base files during execution, potentially

impacting scan performance when deletion ratios

become substantial. Organizations must balance

these considerations by scheduling periodic

Rahul Jain / IJCESEN 12-1(2026)572-581

578

optimization operations that physically apply

deletion vectors and consolidate small files,

maintenance patterns similar to database vacuum

operations.

The accumulation of deletion vectors creates real-

time query overhead as engines must evaluate

additional metadata during scan operations. This

overhead increases query latency proportionally to

deletion vector count and complexity, constraining

the format's suitability for latency-sensitive

applications. Emerging technologies address these

limitations through more efficient deletion tracking

mechanisms that minimize scan-time overhead.

Apache Iceberg implements flexible deletion

strategies through position deletes and equality

deletes, providing multiple mechanisms for

efficiently representing removed data. Position

deletes specify exact row positions within data files

that should be filtered during query execution,

offering precise control for delete operations

targeting specific records. Equality deletes define

predicate-based filters, removing all rows matching

specified column values, enabling efficient bulk

deletion patterns. This dual approach

accommodates diverse deletion patterns

encountered in production workloads while

maintaining acceptable query performance through

optimized merge algorithms in supporting query

engines. However, accumulation of deleted files

gradually degrades both read performance and

storage efficiency, necessitating periodic rewrite

operations that physically remove deleted data and

consolidate fragmented files into optimized layouts.

Similar to other established formats, Iceberg's

delete handling introduces real-time processing

overhead. The merge operations required during

query execution add latency proportional to the

delete file count and their size. Organizations with

strict latency requirements must implement

aggressive rewrite schedules to minimize delete file

accumulation, increasing operational complexity

and resource consumption.

6. Streaming Integration and Query

Optimization

The convergence of batch and streaming processing

paradigms represents recent trends in present-day

data architecture due to business demands for

increasingly fresh analytical information and real-

time decision-making functionality. Table formats

play central roles in enabling this convergence

through native support for streaming ingestion

patterns and incremental query interfaces.

Apache Hudi represents landmark achievements in

bringing enterprise-scale data lake management

capabilities to streaming-first architectures, as

recognized through its graduation to top-level

Apache project status [7]. The format emerged

from Uber's operational requirements for ingesting

massive streams of database change events into

analytical data lakes with minute-level latency

while maintaining full query consistency and

efficient storage utilization. Hudi's incremental

query capabilities enable downstream consumers to

efficiently retrieve only records modified since

specified commit timestamps, eliminating needs to

repeatedly scan entire tables for change detection.

This functionality proves essential for continuous

ETL pipelines, materialized view maintenance

workflows, and real-time feature engineering for

machine learning systems. The extensive indexing

subsystem comprising Bloom filters, hash-based

indices, and B-tree structures allows record-level

lookups to be performed much faster during upsert

operations without scanning entire tables, which

would make streaming ingestion impractical at

scale. Hudi supports native integration with Apache

Kafka for source-to-lake ingestion patterns, with

automatic exactly-once semantics ensuring pipeline

failures never produce duplicated or missing

records.

While Hudi advances streaming capabilities

significantly beyond traditional batch formats,

inherent architectural constraints limit its

applicability to true real-time scenarios. The

minute-level latency achieved in production

deployments, though impressive for data lake

contexts, proves inadequate for applications

requiring sub-second freshness. The periodic

compaction processes necessary to maintain read

performance introduce processing delays, creating

temporal gaps between data ingestion and query

availability. The indexing mechanisms, while

accelerating upsert operations, add memory

overhead and update latency for maintaining index

consistency across distributed nodes.

Apache Iceberg has become an appealing option for

organizations seeking to future-proof their data lake

investments through open, engine-neutral designs

and strong community support [8]. The wide

support of the format across all query engines,

including Apache Spark, Apache Flink, Trino,

Presto, and Impala, gives organizations flexibility

to change their technology preferences without

undergoing costly migration efforts. The snapshot-

based design of Iceberg automatically provides

time travel ability, allowing analysts to query

previous table states for reproducing analytics,

regulatory compliance, and debugging. Partition

evolution capabilities are distinguishing features of

the format, meaning tables can change partitioning

strategies without rewriting data, an important

feature for long-lived analytical data whose access

Rahul Jain / IJCESEN 12-1(2026)572-581

579

patterns change over time. Partitions can be

rearranged as new dimensions are introduced or

scaled to smaller time ranges based on shifting

query patterns or switched to hourly partitioning

based on changing patterns. The hidden partitioning

abstraction eradicates frequent causes of query

performance problems where users manually apply

partition pruning predicates based on query

predicates, ensuring user error does not result in

costly full table scans.

However, Iceberg's batch-oriented architecture

introduces real-time processing overhead. The

snapshot commit mechanism, while providing

strong consistency guarantees, requires

coordination overhead, limiting transaction

throughput for high-frequency updates. The

metadata tree traversal necessary during query

planning adds latency that, while negligible for

batch workloads, becomes significant for latency-

sensitive applications. Organizations requiring

consistent sub-second query latency must evaluate

whether Iceberg's architectural characteristics align

with their real-time requirements.

Delta Lake is optimally scaled in Spark-focused

settings via strong incorporation of Spark query

planning frameworks and execution patterns of

popular analytics designs. The data skipping

properties of the format take advantage of file-level

statistics to aggressively filter away irrelevant data

at query planning, building selective queries with

vastly smaller I/O requirements. Z-order clustering

offers grouping of multi-dimensional data, sharing

similar records across arrays of sort keys, which

offers significant performance enhancements for

queries with complicated multi-column filter

predicates. These are especially useful in interactive

analytical workloads where query latency directly

influences user productivity and analytical iteration

speed. The at-once support of Spark Structured

Streaming helps Delta offer unified batch and

streaming pipelines where both historical and

current data are handled using the same code paths,

allowing streamlined application development and

management.

Despite these sophisticated optimizations, Delta

Lake retains batch-oriented characteristics,

introducing real-time processing constraints. The

transaction log replay mechanism, while efficient

for batch workloads, adds latency to read

operations as log size grows between checkpoints.

The OPTIMIZE and VACUUM operations required

for maintaining performance necessitate exclusive

table access periods, temporarily blocking writes

and introducing unpredictable latency spikes. These

architectural characteristics limit Delta Lake's

suitability for applications requiring consistent sub-

second latency guarantees.

6.1 Real-Time Query Optimization in Emerging

Technologies

Apache Fluss and Apache Paimon address query

optimization for real-time workloads through

streaming-native architectures, eliminating

overhead sources present in batch-oriented formats.

Fluss implements streaming-aware query planning

that accounts for data freshness requirements

during execution planning, optimizing scan

strategies based on whether queries target recent

streaming data or historical analytical datasets. The

real-time indexes maintained by Fluss enable

millisecond-level point lookups and range scans

over streaming data without the delta file merging

overhead characteristic of traditional Merge-On-

Read architectures.

Paimon's multi-tier storage architecture

automatically optimizes query execution based on

data location and access patterns. Recent data

residing in memory-optimized structures supports

millisecond-level queries without disk I/O

overhead, while historical data in columnar formats

benefits from traditional analytical optimizations,

including predicate pushdown and columnar

scanning. The unified query planning engine

transparently spans both tiers, providing consistent

performance regardless of data age or storage tier.

These emerging technologies demonstrate that true

real-time query optimization requires architectural

designs where streaming represents the primary

consideration rather than a retrofit onto batch-

oriented foundations. Organizations with strict

latency requirements should carefully evaluate

whether established table formats can meet their

needs or whether streaming-native solutions like

Fluss and Paimon offer more appropriate

architectural foundations.

Table 1: Architectural Characteristics of Apache Iceberg and Lakehouse Platforms [1], [2]

Characteristic Apache Iceberg Lakehouse Architecture

Metadata

Organization

Hierarchical tree structure with

snapshot files, manifest lists, and

manifest files

Unified metadata layer providing database

capabilities over object storage

Engine

Compatibility

Engine-neutral design supporting

Spark, Flink, Trino, Presto, Impala

Platform-agnostic, enabling multiple query

engines on shared storage

Rahul Jain / IJCESEN 12-1(2026)572-581

580

Atomic Operations
Pointer-based atomic commits at the

snapshot level

ACID transaction support eliminates data

duplication requirements

Scalability

Approach

Multi-level indirection avoiding

distributed coordination

Direct analytical access to open formats on

low-cost storage

Query Planning
Efficient pruning via partition

information and column statistics

Schema enforcement and efficient planning

over commodity systems

Table 2: Schema Evolution Mechanisms in Modern Table Formats [3], [4]

Feature Schema Evolution Process Delta Lake Implementation

Evolution Approach
Adapting data structures over time while

maintaining compatibility

Schema validation at write time with explicit

evolution controls

Backward

Compatibility

Ensuring historical data remains

interpretable under current schemas

Schema history is maintained in the

transaction log for time travel

Modification Types
Column additions, deletions, reorderings,

and type promotions

Adding columns with defaults, widening

types, and merge-based expansion

Validation Strategy
Careful coordination to prevent

incompatibilities across versions

Automatic rejection of non-conforming data

unless explicitly enabled

Operational Impact
Minimizing disruption to pipelines during

structural changes

Balancing flexibility with safety through opt-

in mechanisms

Table 3: Update and Delete Optimization Techniques [5], [6]

Technique Apache Hudi Storage Modes Deletion Vectors
Primary Strategy

Dual-mode architecture with CoW and

MoR options

Logical deletion marking without

physical removal

Write Optimization
MoR writes to the delta logs, reducing

amplification

Separate metadata structures tracking

deleted positions

Read Characteristics CoW optimizes reads; MoR introduces

merge overhead

Query engines filter deleted rows during

scan operations
Maintenance

Requirements

Automated compaction services monitor

and trigger optimization

Periodic operations physically apply

vectors and consolidate files
Performance Trade-offs Balancing write latency against read

performance

Write acceleration versus read

complexity considerations

Table 4: Streaming Integration and Real-Time Capabilities [7], [8]

Capability Apache Hudi Streaming Features Apache Iceberg Flexibility
Design Origin

Uber's operational requirements for minute-

level latency

Engine-agnostic design with broad

ecosystem adoption

Incremental Processing Native incremental queries retrieving

modified records

Snapshot-based architecture supporting

incremental scans
Indexing Support Bloom filters, hash-based indices, B-tree

structures

Partition evolution without data rewriting
Integration Patterns

Native Kafka integration with exactly-once

semantics

Multi-engine support across Spark, Flink,

Trino, Presto

Time Travel Timeline-based commit references for

historical access

Snapshot metadata enabling reproducible

analytics

7. Conclusions

The introduction of Apache Iceberg, Apache Delta

Lake, and Apache Hudi as key technologies in the

current data platform designs is one of the

fundamental changes in the way organisations look

at data analytics management. These tabular

formats can effectively overcome the long-standing

constraints of conventional data lake deployments

by adding transactional assurances, schema

flexibility, and advanced metadata control over

cost-effective object stores. Although these formats

have similar aims of introducing database-grade

reliability to data lakes, the architectural

philosophies produce significant distinctions in the

characteristics of operation, performance, and

workload appropriateness. Apache Iceberg also

stands out with neutral principles of engine design

and scalable metadata designs that support a wide

variety of query engines and large-scale datasets,

making it especially valuable to organizations with

complex workloads on analytical processing that

requires vendor-independence and long-term

flexibility of architecture. Delta Lake brings

unparalleled value to organizations that have made

significant investments in Apache Spark

environments, offering optimizations that are

deeply integrated and operational patterns that are

easy to operate with transaction log designs that

offer strong ACID guarantees and significantly

boost performance with data skipping and Z-order

clustering of analytical workloads. Apache Hudi

has been designed to address streaming ingestion

and change data capture applications with a novel

Merge-On-Read architecture and advanced

indexing features, which reduce the write

amplification of update-intensive workloads with

automated maintenance functions that decrease the

operational load of organizations with continuous

ingestion pipelines that need sub-minute data

Rahul Jain / IJCESEN 12-1(2026)572-581

581

freshness. The choice of proper table formats are

foundational architectural choice with long-term

ramifications, in terms of agility of platform,

operational complexity, and analytics, based upon

prudent considerations of workload patterns,

ecosystem constraints, operational capabilities, and

strategies in technology choices, not being

universal choices. With the maturation of lakehouse

architectures, further innovation grows the table

format capabilities, enhances cross-engine

interoperability, and offers more sophisticated

analytical and machine learning workloads, making

table formats a central enabling technology to the

next-generation analytical platform, integrating

batch processing, streaming ingestion, and

advanced analytics into unified architectural

structures to meet the needs of modern enterprise.

Author Statements:

 Ethical approval: The conducted research is

not related to either human or animal use.

 Conflict of interest: The authors declare that

they have no known competing financial

interests or personal relationships that could

have appeared to influence the work reported in

this paper

 Acknowledgement: The authors declare that

they have nobody or no-company to

acknowledge.

 Author contributions: The authors declare that

they have equal right on this paper.

 Funding information: The authors declare that

there is no funding to be acknowledged.

 Data availability statement: The data that

support the findings of this study are available

on request from the corresponding author. The

data are not publicly available due to privacy or

ethical restrictions.

 Use of AI Tools: The author(s) declare that no

generative AI or AI-assisted technologies were

used in the writing process of this manuscript.

References

[1] BlueOrange Digital, "Apache Iceberg: A game-

changer table format for big data analytics."

[Online]. Available:

https://blueorange.digital/blog/apache-iceberg-a-

game-changer-table-format-for-big-data-analytics/

[2] Ali Ghodsi et al., "Lakehouse: A New Generation of

Open Platforms that Unify Data Warehousing and

Advanced Analytics," in Proc. 11th Biennial Conf.

Innovative Data Systems Research (CIDR), 2021.

[Online]. Available:

https://www.cidrdb.org/cidr2021/papers/cidr2021_

paper17.pdf

[3] Dremio, "Schema evolution," 2024. [Online].

Available: https://www.dremio.com/wiki/schema-

evolution/

[4] Databricks, "Diving into Delta Lake: Schema

enforcement and evolution," 2019. [Online].

Available:

https://www.databricks.com/blog/2019/09/24/divin

g-into-delta-lake-schema-enforcement-

evolution.html

[5] Kuldeep Pal, "A beginner's guide to using Apache

Hudi for data lake management," Walmart Global

Tech Blog, Medium, 2023. [Online]. Available:

https://medium.com/walmartglobaltech/a-

beginners-guide-to-using-apache-hudi-for-data-

lake-management-6af50ade43ad

[6] Databricks, "What are deletion vectors?" 2025.

[Online]. Available:

https://docs.databricks.com/aws/en/delta/deletion-

vectors

[7] Uber Blog, "Apache Hudi graduation," 2020.

[Online]. Available: https://www.uber.com/en-

IN/blog/apache-hudi-graduation/

[8] Lindsay MacDonald, "Are Apache Iceberg tables

right for your data lake? 6 reasons why," Monte

Carlo Data Blog, 2024. [Online]. Available:

https://www.montecarlodata.com/blog-are-apache-

iceberg-tables-right-for-your-data-lake-6-reasons-

why/

[9] Michael Armbrust, et al., "Delta Lake: high-

performance ACID table storage over cloud object

stores," ACM Digital Library, 2020. [Online].

Available:

https://dl.acm.org/doi/10.14778/3415478.3415560

[10] Michael Armbrust et al., "Delta Lake: high-

performance ACID table storage over cloud object

stores," ACM Digital Library, 2020. [Online].

Available:

https://www.cidrdb.org/cidr2021/papers/cidr2021_

paper17.pdf

https://blueorange.digital/blog/apache-iceberg-a-game-changer-table-format-for-big-data-analytics/
https://blueorange.digital/blog/apache-iceberg-a-game-changer-table-format-for-big-data-analytics/
https://www.cidrdb.org/cidr2021/papers/cidr2021_paper17.pdf
https://www.cidrdb.org/cidr2021/papers/cidr2021_paper17.pdf
https://www.dremio.com/wiki/schema-evolution/
https://www.dremio.com/wiki/schema-evolution/
https://www.databricks.com/blog/2019/09/24/diving-into-delta-lake-schema-enforcement-evolution.html
https://www.databricks.com/blog/2019/09/24/diving-into-delta-lake-schema-enforcement-evolution.html
https://www.databricks.com/blog/2019/09/24/diving-into-delta-lake-schema-enforcement-evolution.html
https://medium.com/walmartglobaltech/a-beginners-guide-to-using-apache-hudi-for-data-lake-management-6af50ade43ad
https://medium.com/walmartglobaltech/a-beginners-guide-to-using-apache-hudi-for-data-lake-management-6af50ade43ad
https://medium.com/walmartglobaltech/a-beginners-guide-to-using-apache-hudi-for-data-lake-management-6af50ade43ad
https://docs.databricks.com/aws/en/delta/deletion-vectors
https://docs.databricks.com/aws/en/delta/deletion-vectors
https://www.uber.com/en-IN/blog/apache-hudi-graduation/
https://www.uber.com/en-IN/blog/apache-hudi-graduation/
https://www.montecarlodata.com/blog-are-apache-iceberg-tables-right-for-your-data-lake-6-reasons-why/
https://www.montecarlodata.com/blog-are-apache-iceberg-tables-right-for-your-data-lake-6-reasons-why/
https://www.montecarlodata.com/blog-are-apache-iceberg-tables-right-for-your-data-lake-6-reasons-why/
https://dl.acm.org/doi/10.14778/3415478.3415560
https://www.cidrdb.org/cidr2021/papers/cidr2021_paper17.pdf
https://www.cidrdb.org/cidr2021/papers/cidr2021_paper17.pdf

