Copyright © IJCESEN

International Journal of Computational and Experimental

WOESEN
Science and ENgineering - o ’
(IJCESEN) N

Vol. 12-No.1 (2026) pp. 572-581 —
http://www.ijcesen.com

ISSN: 2149-9144
Research Article

Modern Table Formats for Data Lakehouse Architectures: A Comprehensive
Analysis of Apache Iceberg, Delta Lake, and Apache Hudi

Rahul Jain*

Cisco Systems Inc., USA

* Corresponding Author Email: rahul.j.profile@gmail.com - ORCID: 0000-0002-0047-4450

Article Info:

DOI: 10.22399/ijcesen.4867
Received : 02 December 2025
Revised : 30 January 2026
Accepted : 02 February 2026

Keywords

Lakehouse Architecture,
Acid Transactions,
Schema Evolution,
Streaming Ingestion,
Metadata Management

Abstract:

The transformation of enterprise data infrastructure has necessitated the creation of
sophisticated table formats bridging the gap between traditional data lakes and data
warehouses. Apache Iceberg, Delta Lake, and Apache Hudi have emerged as
revolutionary technologies providing ACID transactional semantics, schema evolution,
and advanced metadata management over cloud object storage systems. These formats
address fundamental constraints of traditional data lake systems by delivering database-
grade reliability without sacrificing cost-effectiveness and scalability of distributed
storage. Each format embodies distinct architectural philosophies: Iceberg emphasizes
engine neutrality with scalable metadata hierarchies, Delta Lake focuses on deep
Apache Spark integration with optimized analytical query performance, and Hudi
specializes in streaming ingestion patterns with efficient change data capture support.
The architectural foundations include hierarchical metadata structures, transaction log
mechanisms, and timeline-based state tracking, each presenting trade-offs in scalability,
consistency, and operational complexity. Schema evolution capabilities enable
structural adaptation without data rewrites, while sophisticated update and delete
mechanisms using Copy-On-Write and Merge-On-Read strategies optimize for diverse
workload characteristics. Streaming integration features facilitate real-time analytics
through incremental query interfaces, native Kafka integration, and unified batch-
streaming processing paradigms. However, these established formats encounter inherent
overhead when handling true real-time workloads with millisecond-level latency
requirements. Emerging technologies such as Apache Fluss and Apache Paimon
represent next-generation solutions specifically architected for real-time data lake use
cases, addressing limitations in existing frameworks through streaming-native
architectures, unified streaming-batch storage engines, and optimized real-time query
processing capabilities. Query optimization techniques, including hidden partitioning,
data skipping, Z-order clustering, and comprehensive indexing subsystems, provide
significant performance improvements for analytical workloads. The selection of
appropriate table formats constitutes a foundational architectural decision with lasting
implications for platform agility, operational complexity, and analytical capabilities,
requiring careful evaluation of workload patterns, real-time requirements, ecosystem
constraints, and strategic technology directions.

1. Introduction

The modern information landscape has witnessed a

ORC, have consistently failed to deliver the
reliability —and management features that
contemporary enterprises demand. These

fundamental shift in how organizations architect
their analytical infrastructure, moving away from
inflexible, siloed systems toward more fluid and
integrated models supporting diverse analytical
requirements. Traditional data lakes, while
providing cost-effective storage capabilities
through columnar formats such as Parquet and

conventional systems lack core database
capabilities, including transactional consistency,
schema flexibility, and effective metadata
management, creating significant operational
challenges for organizations striving to construct
robust analytical platforms.

Apache Iceberg has emerged as a transformative
solution, characterized as a game-changing table

http://dergipark.org.tr/en/pub/ijcesen
http://www.ijcesen.com

Rahul Jain / IJCESEN 12-1(2026)572-581

format specifically designed for big data analytics
environments [1]. The format provides an open-
source table specification introducing critical
capabilities for managing large-scale data lakes,
addressing numerous limitations inherent in
traditional approaches. Iceberg's architecture
fundamentally reimagines how metadata and data
files interact, enabling organizations to achieve
warehouse-like reliability on data lake storage. The
lakehouse architecture concept represents a new
generation of open platforms that fundamentally
unify data warehousing and advanced analytics
capabilities, eliminating traditional separation
between these two paradigms [2]. This architectural
evolution addresses the longstanding tension
between systems optimized for business
intelligence and those designed for machine
learning and data science workflows.

Three dominant table formats have become central
technologies in this lakehouse movement: Apache
Iceberg, Delta Lake, and Apache Hudi. Each format
introduces sophisticated metadata management
layers built atop cloud object storage, enabling
ACID transactional semantics, snapshot isolation,
and time travel functionality. Despite fulfilling
shared goals of achieving database-grade reliability
in data lakes, these formats represent dramatically
different architectural philosophies reflecting their
origins and primary use cases. Apache Iceberg,
initially developed at Netflix, emphasizes engine
independence and scalable metadata architectures.
Delta Lake, created by Databricks, focuses on
profound integration with Apache Spark and
efficient query execution for analytical workloads.
Apache Hudi, originating from Uber's engineering
teams, concentrates on streaming data ingestion
patterns and effective change data capture handling.
While these established table formats have
revolutionized data lake capabilities, they encounter
inherent overhead when addressing true real-time
workloads requiring sub-second latency. Batch-
oriented architectures and periodic compaction
cycles introduce delays incompatible with
millisecond-level freshness requirements
increasingly demanded by modern applications.
Recognizing these limitations, the data engineering
community has developed next-generation
solutions specifically architected for real-time data
lake scenarios. Apache Fluss represents a
streaming-native storage system designed for real-
time analytics with unified streaming and batch
processing capabilities, eliminating architectural
compromises present in batch-first designs. Apache
Paimon introduces a streaming data lake platform
combining high-throughput streaming writes with
efficient batch query performance, bridging the gap
between real-time ingestion and analytical

573

processing through innovative storage engine
design. These emerging technologies address
fundamental constraints in established table
formats, offering millisecond-level data freshness,
optimized real-time query processing, and native
streaming semantics without sacrificing analytical
query performance.

This comprehensive examination analyzes the
architectural foundations, operational
characteristics, and performance profiles of
established table formats alongside emerging real-
time solutions, providing practitioners and
researchers with a structured framework for
evaluating their applicability to specific
organizational requirements and workload patterns
in modern data platform architectures.

2. Architectural Foundations and Metadata
Management

The fundamental architecture of modern table
formats determines their scalability boundaries,
consistency guarantees, and operational
complexity. Understanding these architectural
choices proves essential for organizations selecting
technologies that must support multi-petabyte
datasets while maintaining query performance and
data consistency.

Apache Iceberg introduces an innovative approach
to metadata management through its hierarchical
architecture, fundamentally separating concerns of
tracking table state from the physical layout of data
files [1]. This separation enables Iceberg to scale
efficiently across massive datasets without
encountering performance degradation typical of
traditional catalog-based approaches. The format
maintains a tree structure where snapshot metadata
files reference manifest lists, which subsequently
enumerate manifest files containing detailed
information about individual data files. This multi-
level indirection allows atomic commits through
simple pointer updates at the snapshot level,
avoiding expensive distributed coordination
protocols. Iceberg's design philosophy emphasizes
engine neutrality, ensuring diverse query engines
can interact with tables without requiring format-
specific adaptations. The metadata architecture
supports efficient pruning during query planning,
enabling engines to quickly identify relevant data
files based on partition information and column-
level statistics embedded within manifest
structures. This capability becomes particularly
critical in environments where tables contain
millions of files distributed across thousands of
partitions, scenarios increasingly common in
modern data platforms.However, Iceberg's batch-
oriented architecture introduces inherent overhead

Rahul Jain / IJCESEN 12-1(2026)572-581

for real-time workloads. The snapshot-based
commit model, while providing strong consistency
guarantees, requires coordination overhead that
limits transaction throughput for high-frequency
updates. Compaction operations necessary to
maintain optimal read performance introduce
periodic processing delays, creating temporal gaps
where newly written data remains inaccessible to
readers. These architectural characteristics, while
acceptable for minute-level freshness requirements,
prove inadequate for millisecond-latency scenarios
demanded by real-time applications.

The lakehouse architecture fundamentally
transforms how organizations conceptualize data
platform design by enabling direct analytical access
to data stored in open formats on low-cost object
storage [2]. This approach eliminates traditional
requirements to maintain separate copies of data in
warehouses and lakes, reducing both storage costs
and operational complexity. The architecture
achieves this unification through sophisticated
metadata management, providing database-like
capabilities including ACID transactions, schema
enforcement, and efficient query planning over
commodity storage systems. Modern table formats
serve as the enabling technology layer, making
lakehouse architectures practical, providing
structured abstractions necessary for query engines
to efficiently access data while maintaining
consistency guarantees.

Delta Lake implements metadata management
through a transaction log mechanism where each
modification to a table appends an entry to an
ordered log stored alongside data. This log-based
approach provides straightforward audit trails of all
changes and simplifies reasoning about table state
evolution over time. The transaction log captures
additions, removals, and metadata updates in JSON
format, enabling both humans and systems to
understand table history. To prevent unbounded
growth of transaction logs, Delta Lake periodically
generates checkpoint files consolidating cumulative
effects of historical transactions into Parquet-
encoded snapshots. These checkpoints enable query
engines to restore existing table state without
replaying full transaction history, maintaining
tolerable query planning latency even for long-lived
tables. The optimistic concurrency control protocol
implemented atop this log structure enables
multiple writers to safely commit changes
concurrently, with conflict detection ensuring
incompatible operations fail gracefully rather than
corrupting table state.

Despite these sophisticated capabilities, Delta
Lake's architecture introduces real-time processing
overhead. The transaction log replay mechanism,
while efficient for batch workloads, adds latency to

574

read operations as log size grows between
checkpoints. The OPTIMIZE and VACUUM
operations required for maintaining performance
necessitate exclusive table access periods,
temporarily blocking writes and introducing
unpredictable latency spikes. These architectural
characteristics limit Delta Lake's suitability for

applications requiring consistent sub-second
latency guarantees.
Apache Hudi distinguishes itself through a

timeline-based architecture explicitly modeling the
temporal evolution of table state through sequences
of discrete actions. The timeline tracks various
operation types, including commits, compactions,
cleans, and rollbacks, providing a comprehensive
history of table modifications. Hudi supports two
fundamentally different storage modes offering
distinct trade-offs between write performance and
read efficiency. Copy-On-Write mode generates
new versions of modified files during updates,
ensuring read queries never encounter merge
overhead, but incurring significant write
amplification. Merge-On-Read mode postpones
merging operations by writing updates to separate
delta logs, reducing write latency and storage
overhead for update-intensive workloads while
introducing merge complexity during query
execution. This architectural flexibility enables
organizations to optimize for specific latency and
throughput requirements, though it introduces
additional operational considerations around
compaction timing and file management.

While Hudi advances real-time capabilities beyond
traditional batch-oriented formats, it retains
inherent limitations. The compaction processes
required to maintain read performance in Merge-
On-Read mode introduce background processing
overhead, consuming cluster resources and
occasionally blocking writes. The indexing
mechanisms, while accelerating upsert operations,
add memory overhead and update latency for
maintaining index consistency. These architectural
trade-offs, though acceptable for minute-level
freshness, constrain Hudi's applicability to
millisecond-latency scenarios.

3. Emerging Real-Time Data Lake
Technologies: Apache Flussonet and Apache
Paimon

Recognizing limitations of batch-first table formats
for true real-time workloads, the data engineering
community has developed next-generation
technologies specifically architected for
millisecond-level latency requirements. Apache
Fluss and Apache Paimon represent innovative
approaches to real-time data lake architectures,

Rahul Jain / IJCESEN 12-1(2026)572-581

addressing fundamental constraints present in
established formats through streaming-native
designs and unified storage engines.

3.1 Apache Fluss: Streaming-Native Storage for
Real-Time Analytics

Apache Fluss emerges as a streaming-native
storage system designed specifically for real-time
analytics workloads requiring sub-second data
freshness. Unlike batch-oriented table formats
retrofitted with streaming capabilities, Fluss adopts
a streaming-first architecture where real-time
processing represents the primary design
consideration rather than an afterthought. The
system provides unified streaming and batch
processing capabilities through log-structured
storage optimized for continuous data ingestion
while maintaining efficient analytical query
performance.

Fluss architecture centers on distributed log storage,
enabling high-throughput append operations with
minimal write latency. The system maintains
separate log and table storage layers, where log
storage optimizes for streaming writes with
microsecond-level ingestion latency, while table
storage provides columnar formats optimized for
analytical queries. This separation enables Fluss to
simultaneously satisfy contradictory requirements
of streaming and batch workloads without
architectural compromises inherent in unified
designs. The log storage layer supports exact event-
time ordering and deterministic replay semantics
critical for complex event processing applications,
capabilities often absent or inefficient in batch-first
table formats.

Real-time query capabilities in Fluss leverage
streaming-aware query planning that accounts for
data freshness requirements during execution
planning. The system maintains real-time indexes
enabling millisecond-level point lookups and range
scans over streaming data, eliminating query
latency penalties associated with merging delta files
in traditional Merge-On-Read architectures. Fluss
implements continuous compaction processes that
operate concurrently with read and write
operations, avoiding blocking behaviors and
latency spikes characteristic of periodic batch
compaction in conventional table formats.

The streaming-native design philosophy extends to
consistency guarantees, where Fluss provides
exactly-once processing semantics without
requiring external coordination systems. This
contrasts with established table formats that often
delegate streaming consistency to external
frameworks like Apache Flink or Spark Structured
Streaming. By internalizing consistency

575

management, Fluss reduces operational complexity
and eliminates coordination overhead that limits
transaction throughput in batch-oriented designs.

3.2 Apache Paimon: Unified Streaming-Batch
Data Lake Platform

Apache Paimon introduces a streaming data lake
platform combining high-throughput streaming
writes with efficient batch query performance
through an innovative unified storage engine
design. Paimon addresses fundamental limitations
in existing table formats by treating streaming and
batch as equal first-class workloads rather than
optimizing primarily for one paradigm while
accommodating the other as a secondary
consideration.

The Paimon storage engine implements a multi-tier
architecture where recent data resides in memory-
optimized structures supporting millisecond-level
writes and queries, while historical data transitions
to columnar formats optimized for analytical
processing. This tiered approach eliminates trade-
offs between streaming write performance and
analytical query efficiency that constrain
conventional table formats. The system
automatically manages data placement across tiers
based on access patterns and freshness
requirements, transparently optimizing for both
real-time and historical query workloads without
manual intervention.

Paimon's changelog mechanism provides native
change data capture capabilities without the
overhead associated with delta log merging in
traditional Merge-On-Read implementations. The
system maintains separate changelog streams
tracking all data modifications, enabling
downstream consumers to efficiently process
incremental changes without scanning entire tables
or merging complex delta structures. This
architecture eliminates the read amplification
characteristic of conventional MoR
implementations, where query engines must merge
multiple delta files with base data during scan
operations.

The unified storage engine supports advanced
features, including primary key constraints,
aggregate materialized views, and lookup joins,
capabilities typically requiring separate systems in
traditional data lake architectures. Paimon
implements these features through streaming-aware
execution engines that incrementally maintain
derived datasets as source data arrives, providing
real-time materialized views without batch
recomputation overhead. This native integration of
streaming materialization contrasts sharply with
established table formats requiring external

Rahul Jain / IJCESEN 12-1(2026)572-581

processing frameworks to maintain derived
datasets.
3.3 Comparative Analysis: Real-Time

Capabilities

Apache Fluss and Apache Paimon address
fundamental architectural limitations in established
table formats regarding real-time processing.
Traditional formats like Iceberg, Delta Lake, and
Hudi, while providing streaming ingestion
capabilities, retain batch-oriented architectures,
introducing inherent latency overhead. Periodic
compaction cycles, transaction log replay, and delta
file merging create processing delays incompatible
with millisecond-level freshness requirements.
Fluss and Paimon eliminate these overhead sources
through streaming-native designs where real-time
processing constitutes the primary architectural
consideration. Continuous compaction, streaming-
aware query planning, and log-structured storage
enable these systems to provide millisecond-level
data freshness without sacrificing analytical query
performance. The unified storage engines avoid
architectural compromises present in batch-first
designs, supporting both real-time and historical
workloads with equivalent efficiency.

However, these emerging technologies introduce
trade-offs. The streaming-native architectures
require more sophisticated operational management
compared to established table formats. The multi-
tier storage systems demand careful capacity
planning and monitoring to ensure optimal data
placement. The continuous compaction processes
consume cluster resources that might otherwise
serve query workloads. Organizations must
carefully evaluate whether millisecond-level
latency requirements justify the additional
operational complexity compared to minute-level
freshness achievable with established formats.

4. Transactional Semantics and Schema
Evolution

Transactional capabilities over distributed object
storage represent defining achievements of modern
table formats, enabling reliable multi-user access
patterns previously impossible in traditional data
lake architectures. These guarantees prove essential
for production analytical systems where data
quality and consistency directly impact business
decision-making.

Schema evolution represents the process through
which data structures adapt over time to
accommodate changing business requirements
while maintaining compatibility with existing data
and downstream consumers [3]. Modern analytical

576

systems must gracefully handle schema
modifications as organizations continuously
improve their understanding of business entities,
introduce new data sources, and increase analytical
capabilities. Effective schema evolution strategies
reduce disruption to running pipelines while
ensuring historical data remains interpretable under
existing schema definitions. This becomes more
complicated in distributed environments with many
consumers potentially accessing tables with various
schema versions, necessitating careful coordination
to ensure incompatibilities do not occur.

Apache Iceberg addresses these issues by
implementing sophisticated schema versioning
mechanisms as part of its metadata snapshot
system. The format records and utilizes schema
changes as explicit metadata modifications instead
of making physical changes to underlying data,
enabling schema changes to occur instantly even in
petabyte-scale tables. lceberg supports a wide
variety of evolution operations, including adding
and removing columns, rearranging them, and
promoting and demoting types, with automatic
validation ensuring proposed operations do not
impair compatibility with existing data. The hidden
partitioning mechanism further enhances flexibility
by allowing partition specifications to evolve
independently of schema changes, eliminating
common sources of migration complexity in
traditional systems.

Delta Lake provides robust schema enforcement
and evolution capabilities specifically designed to
prevent data quality issues while enabling
controlled structural changes [4]. The format
implements schema validation at write time,
automatically rejecting data failing to conform to
current table schemas unless explicit schema
evolution options are enabled. This enforcement
prevents silent data corruption scenarios where
incompatible data might otherwise be written
without validation, later causing query failures or
incorrect analytical results. When schema evolution
is explicitly requested, Delta Lake supports adding
new columns with optional default values and
widening column types to accommodate broader
value ranges. The merge operation provides
particularly powerful schema evolution capabilities,
allowing upsert workloads to automatically expand
target table schemas to accommodate new columns
appearing in source data streams. Delta Lake's
approach is flexible but safe, requiring opt-in for

potentially disruptive schema changes while
automatically implementing compatible
modifications. The format maintains schema

history in transaction logs, enabling time travel
queries to accurately read historical data with
schema versions in effect at query time, an essential

Rahul Jain / IJCESEN 12-1(2026)572-581

feature for regulatory compliance and analytical
reproducibility.

Apache Hudi applies schema evolution features to
its ingestion pipeline, acknowledging that
streaming data sources are often associated with
schema drift, requiring real-time accommodation.
The timeline-based architecture tracks schema
versions alongside data commits, ensuring
compaction operations correctly merge files created
under different schema versions. Hudi supports
backward-compatible schema changes through
metadata propagation mechanisms, ensuring all
table components remain synchronized as schemas
evolve. The format's focus on incremental ingestion
patterns requires especially robust schema handling
since continuous pipelines cannot endure downtime
associated with full table rewrites. Organizations
using Hudi in change data capture situations enjoy
the advantages of schema synchronization
mechanisms that automatically identify upstream
schema changes and propagate them downstream
with minimal manual intervention.

For real-time workloads, schema evolution
introduces additional complexity. The validation
and propagation overhead associated with schema
changes can temporarily impact write latency,
particularly in high-throughput streaming scenarios.
Emerging technologies like Apache Fluss and
Paimon address these concerns through optimized
schema validation pipelines and asynchronous
propagation mechanisms that minimize impact on
streaming write performance while maintaining
consistency guarantees.

5. Update, and
Strategies

Delete, Compaction

The mechanisms through which table formats
handle row-level modifications fundamentally
determine their suitability for workloads involving
frequent updates, a requirement increasingly
common as organizations adopt near-real-time
analytics and synchronize operational databases
with analytical systems.

Apache Hudi was explicitly architected to address
challenges of managing data lakes with frequent
updates, use cases proving problematic for earlier
table format implementations [5]. The format's dual
storage mode architecture provides organizations
with flexibility to optimize for either read
performance or write efficiency based on workload
characteristics. Copy-On-Write mode completely
rewrites files containing modified records during
each update operation, ensuring read queries
encounter only fully consolidated data files without
merge overhead. This method is optimal when
working with read-intensive workloads where

577

update rates are moderate, and query performance
IS more important than write latency. Merge-On-
Read mode represents a radical approach to
handling updates, where modifications are written
to small delta log files instead of overwriting full
base files, eliminating write operation amplification
and storage costs by significant factors. This
architecture enables sub-minute data freshness for
streaming ingestion pipelines while maintaining
acceptable query performance through efficient
merge algorithms combining base files with delta
logs during query execution. Hudi provides
comprehensive automation for compaction
processes necessary to maintain optimal file layouts
in Merge-On-Read tables, with background
services continuously monitoring file sizes and
merge ratios to trigger compaction operations when
thresholds are exceeded.

However, Hudi's compaction processes introduce
real-time processing constraints. Background
compaction consumes cluster resources, potentially
impacting concurrent query and ingestion
workloads. During compaction operations, affected
partitions may experience temporarily elevated
query latency as engines merge larger numbers of
delta files. Organizations requiring consistent
millisecond-level query latency must carefully tune
compaction schedules and resource allocation to
minimize impact on real-time workloads.

Deletion vectors represent storage optimization
techniques that significantly accelerate delete
operations by marking rows as logically deleted
rather than physically removing them immediately
[6]. This technique is especially useful in
workloads with selective deletes affecting small
fractions of files, typical in data retention processes
and regulatory compliance procedures.
Conventional delete schemes involve overwriting
entire files to physically delete rows, costly
operations causing large write amplification when
only small fractions of rows require deletion.
Deletion vectors eliminate this overhead by
maintaining separate metadata structures tracking
deleted row positions within each file, allowing
query engines to filter deleted rows during scan
operations without modifying base data files. Delta
Lake has incorporated deletion vectors as
optimizations for delete and merge operations,
achieving order-of-magnitude performance
improvements for operations affecting limited
subsets of table data. The technique introduces
trade-offs between write performance and read
complexity, as query engines must merge deletion
vectors with base files during execution, potentially
impacting scan performance when deletion ratios
become substantial. Organizations must balance
these considerations by scheduling periodic

Rahul Jain / IJCESEN 12-1(2026)572-581

optimization operations that physically apply
deletion vectors and consolidate small files,
maintenance patterns similar to database vacuum
operations.

The accumulation of deletion vectors creates real-
time query overhead as engines must evaluate
additional metadata during scan operations. This
overhead increases query latency proportionally to
deletion vector count and complexity, constraining
the format's suitability for latency-sensitive
applications. Emerging technologies address these
limitations through more efficient deletion tracking
mechanisms that minimize scan-time overhead.
Apache Iceberg implements flexible deletion
strategies through position deletes and equality
deletes, providing multiple mechanisms for
efficiently representing removed data. Position
deletes specify exact row positions within data files
that should be filtered during query execution,
offering precise control for delete operations
targeting specific records. Equality deletes define
predicate-based filters, removing all rows matching
specified column values, enabling efficient bulk

deletion patterns. This dual approach
accommodates diverse deletion patterns
encountered in production workloads while

maintaining acceptable query performance through
optimized merge algorithms in supporting query
engines. However, accumulation of deleted files
gradually degrades both read performance and
storage efficiency, necessitating periodic rewrite
operations that physically remove deleted data and
consolidate fragmented files into optimized layouts.
Similar to other established formats, Iceberg's
delete handling introduces real-time processing
overhead. The merge operations required during
guery execution add latency proportional to the
delete file count and their size. Organizations with
strict latency requirements must implement
aggressive rewrite schedules to minimize delete file
accumulation, increasing operational complexity
and resource consumption.

6. Streaming
Optimization

Integration and Query

The convergence of batch and streaming processing
paradigms represents recent trends in present-day
data architecture due to business demands for
increasingly fresh analytical information and real-
time decision-making functionality. Table formats
play central roles in enabling this convergence
through native support for streaming ingestion
patterns and incremental query interfaces.

Apache Hudi represents landmark achievements in
bringing enterprise-scale data lake management
capabilities to streaming-first architectures, as

578

recognized through its graduation to top-level
Apache project status [7]. The format emerged
from Uber's operational requirements for ingesting
massive streams of database change events into
analytical data lakes with minute-level latency
while maintaining full query consistency and
efficient storage utilization. Hudi's incremental
query capabilities enable downstream consumers to
efficiently retrieve only records modified since
specified commit timestamps, eliminating needs to
repeatedly scan entire tables for change detection.
This functionality proves essential for continuous
ETL pipelines, materialized view maintenance
workflows, and real-time feature engineering for
machine learning systems. The extensive indexing
subsystem comprising Bloom filters, hash-based
indices, and B-tree structures allows record-level
lookups to be performed much faster during upsert
operations without scanning entire tables, which
would make streaming ingestion impractical at
scale. Hudi supports native integration with Apache
Kafka for source-to-lake ingestion patterns, with
automatic exactly-once semantics ensuring pipeline
failures never produce duplicated or missing
records.

While Hudi advances streaming capabilities
significantly beyond traditional batch formats,
inherent architectural constraints limit its
applicability to true real-time scenarios. The
minute-level latency achieved in production
deployments, though impressive for data lake
contexts, proves inadequate for applications
requiring sub-second freshness. The periodic
compaction processes necessary to maintain read
performance introduce processing delays, creating
temporal gaps between data ingestion and query
availability. The indexing mechanisms, while
accelerating upsert operations, add memory
overhead and update latency for maintaining index
consistency across distributed nodes.

Apache Iceberg has become an appealing option for
organizations seeking to future-proof their data lake
investments through open, engine-neutral designs
and strong community support [8]. The wide
support of the format across all query engines,
including Apache Spark, Apache Flink, Trino,
Presto, and Impala, gives organizations flexibility
to change their technology preferences without
undergoing costly migration efforts. The snapshot-
based design of Iceberg automatically provides
time travel ability, allowing analysts to query
previous table states for reproducing analytics,
regulatory compliance, and debugging. Partition
evolution capabilities are distinguishing features of
the format, meaning tables can change partitioning
strategies without rewriting data, an important
feature for long-lived analytical data whose access

Rahul Jain / IJCESEN 12-1(2026)572-581

patterns change over time. Partitions can be
rearranged as new dimensions are introduced or
scaled to smaller time ranges based on shifting
query patterns or switched to hourly partitioning
based on changing patterns. The hidden partitioning
abstraction eradicates frequent causes of query
performance problems where users manually apply
partition pruning predicates based on query
predicates, ensuring user error does not result in
costly full table scans.

However, Iceberg's batch-oriented architecture
introduces real-time processing overhead. The
snapshot commit mechanism, while providing
strong consistency guarantees, requires
coordination overhead, limiting transaction
throughput for high-frequency updates. The
metadata tree traversal necessary during query
planning adds latency that, while negligible for
batch workloads, becomes significant for latency-
sensitive applications. Organizations requiring
consistent sub-second query latency must evaluate
whether Iceberg's architectural characteristics align
with their real-time requirements.

Delta Lake is optimally scaled in Spark-focused
settings via strong incorporation of Spark query
planning frameworks and execution patterns of
popular analytics designs. The data skipping
properties of the format take advantage of file-level
statistics to aggressively filter away irrelevant data
at query planning, building selective queries with
vastly smaller 1/0O requirements. Z-order clustering
offers grouping of multi-dimensional data, sharing
similar records across arrays of sort keys, which
offers significant performance enhancements for
queries with complicated multi-column filter
predicates. These are especially useful in interactive
analytical workloads where query latency directly
influences user productivity and analytical iteration
speed. The at-once support of Spark Structured
Streaming helps Delta offer unified batch and
streaming pipelines where both historical and
current data are handled using the same code paths,
allowing streamlined application development and
management.

Despite these sophisticated optimizations, Delta
Lake retains batch-oriented characteristics,
introducing real-time processing constraints. The
transaction log replay mechanism, while efficient

for batch workloads, adds latency to read
operations as log size grows between checkpoints.
The OPTIMIZE and VACUUM operations required
for maintaining performance necessitate exclusive
table access periods, temporarily blocking writes
and introducing unpredictable latency spikes. These
architectural characteristics limit Delta Lake's
suitability for applications requiring consistent sub-
second latency guarantees.

6.1 Real-Time Query Optimization in Emerging
Technologies

Apache Fluss and Apache Paimon address query
optimization for real-time workloads through
streaming-native architectures, eliminating
overhead sources present in batch-oriented formats.
Fluss implements streaming-aware query planning
that accounts for data freshness requirements
during execution planning, optimizing scan
strategies based on whether queries target recent
streaming data or historical analytical datasets. The
real-time indexes maintained by Fluss enable
millisecond-level point lookups and range scans
over streaming data without the delta file merging
overhead characteristic of traditional Merge-On-
Read architectures.

Paimon's multi-tier storage architecture
automatically optimizes query execution based on
data location and access patterns. Recent data
residing in memory-optimized structures supports
millisecond-level queries without disk 1/O
overhead, while historical data in columnar formats
benefits from traditional analytical optimizations,
including predicate pushdown and columnar
scanning. The unified query planning engine
transparently spans both tiers, providing consistent
performance regardless of data age or storage tier.
These emerging technologies demonstrate that true
real-time query optimization requires architectural
designs where streaming represents the primary
consideration rather than a retrofit onto batch-
oriented foundations. Organizations with strict
latency requirements should carefully evaluate
whether established table formats can meet their
needs or whether streaming-native solutions like
Fluss and Paimon offer more appropriate
architectural foundations.

Table 1: Architectural Characteristics of Apache Iceberg and Lakehouse Platforms [1], [2]

Characteristic Apache Iceberg

Lakehouse Architecture

Metadata

Organization manifest files

Hierarchical tree structure with
snapshot files, manifest lists, and

Unified metadata layer providing database
capabilities over object storage

Engine
Compatibility

Engine-neutral design supporting
Spark, Flink, Trino, Presto, Impala

Platform-agnostic, enabling multiple query
engines on shared storage

579

Rahul Jain / IJCESEN 12-1(2026)572-581

Atomic Operations snapshot level

Pointer-based atomic commits at the

ACID transaction support eliminates data
duplication requirements

Scalability
Approach

Multi-level indirection avoiding
distributed coordination

Direct analytical access to open formats on
low-cost storage

Query Planning

Efficient pruning via partition
information and column statistics

Schema enforcement and efficient planning
over commodity systems

Table 2: Schema Evolution Mechanisms in Modern Table Formats [3], [4]

Feature

Schema Evolution Process

Delta Lake Implementation

Evolution Approach

Adapting data structures over time while
maintaining compatibility

Schema validation at write time with explicit
evolution controls

Backward
Compatibility

Ensuring historical data remains
interpretable under current schemas

Schema history is maintained in the
transaction log for time travel

Modification Types

Column additions, deletions, reorderings,
and type promotions

Adding columns with defaults, widening
types, and merge-based expansion

Validation Strategy

Careful coordination to prevent
incompatibilities across versions

Automatic rejection of non-conforming data
unless explicitly enabled

Operational Impact

Minimizing disruption to pipelines during
structural changes

Balancing flexibility with safety through opt-
in mechanisms

Table 3: Update and Delete Optimization Techniques [5], [6]

Primary Strategy

Dual-mode architecture with CoW and
MoR options

Logical deletion marking without
physical removal

Write Optimization

MoR writes to the delta logs, reducing
amplification

Separate metadata structures tracking
deleted positions

Table 4: Streaming Integration and Real-Time Capabilities [7], [8]

Design Origin level latency

Uber's operational requirements for minute-

Engine-agnostic design with broad
ecosystem adoption

Integration Patterns

semantics

Native Kafka integration with exactly-once

Multi-engine support across Spark, Flink,
Trino, Presto

7. Conclusions

The introduction of Apache Iceberg, Apache Delta
Lake, and Apache Hudi as key technologies in the
current data platform designs is one of the
fundamental changes in the way organisations look
at data analytics management. These tabular
formats can effectively overcome the long-standing
constraints of conventional data lake deployments
by adding transactional assurances, schema
flexibility, and advanced metadata control over
cost-effective object stores. Although these formats
have similar aims of introducing database-grade
reliability to data lakes, the architectural
philosophies produce significant distinctions in the
characteristics of operation, performance, and
workload appropriateness. Apache Iceberg also
stands out with neutral principles of engine design
and scalable metadata designs that support a wide
variety of query engines and large-scale datasets,

580

making it especially valuable to organizations with
complex workloads on analytical processing that
requires vendor-independence and long-term
flexibility of architecture. Delta Lake brings
unparalleled value to organizations that have made
significant investments in Apache Spark
environments, offering optimizations that are
deeply integrated and operational patterns that are
easy to operate with transaction log designs that
offer strong ACID guarantees and significantly
boost performance with data skipping and Z-order
clustering of analytical workloads. Apache Hudi
has been designed to address streaming ingestion
and change data capture applications with a novel
Merge-On-Read architecture and advanced
indexing features, which reduce the write
amplification of update-intensive workloads with
automated maintenance functions that decrease the
operational load of organizations with continuous
ingestion pipelines that need sub-minute data

Rahul Jain / IJCESEN 12-1(2026)572-581

freshness. The choice of proper table formats are
foundational architectural choice with long-term
ramifications, in terms of agility of platform,
operational complexity, and analytics, based upon
prudent considerations of workload patterns,
ecosystem constraints, operational capabilities, and
strategies in technology choices, not being
universal choices. With the maturation of lakehouse
architectures, further innovation grows the table
format capabilities, enhances cross-engine
interoperability, and offers more sophisticated
analytical and machine learning workloads, making
table formats a central enabling technology to the
next-generation analytical platform, integrating
batch processing, streaming ingestion, and
advanced analytics into unified architectural
structures to meet the needs of modern enterprise.

Author Statements:

e Ethical approval: The conducted research is
not related to either human or animal use.

e Conflict of interest: The authors declare that
they have no known competing financial
interests or personal relationships that could
have appeared to influence the work reported in
this paper

o Acknowledgement: The authors declare that
they have nobody or no-company to
acknowledge.

e Author contributions: The authors declare that
they have equal right on this paper.

¢ Funding information: The authors declare that
there is no funding to be acknowledged.

e Data availability statement: The data that
support the findings of this study are available
on request from the corresponding author. The
data are not publicly available due to privacy or
ethical restrictions.

e Use of Al Tools: The author(s) declare that no
generative Al or Al-assisted technologies were
used in the writing process of this manuscript.

References

[1] BlueOrange Digital, "Apache Iceberg: A game-
changer table format for big data analytics."
[Online]. Available:
https://blueorange.digital/blog/apache-iceberg-a-
game-changer-table-format-for-big-data-analytics/

[2] Ali Ghodsi et al., "Lakehouse: A New Generation of
Open Platforms that Unify Data Warehousing and
Advanced Analytics," in Proc. 11th Biennial Conf.
Innovative Data Systems Research (CIDR), 2021.
[Online]. Available:
https://www.cidrdb.org/cidr2021/papers/cidr2021

paperl7.pdf

581

[3] Dremio, "Schema evolution,” 2024. [Online].
Available: https://www.dremio.com/wiki/schema-
evolution/

[4] Databricks, "Diving into Delta Lake: Schema
enforcement and evolution,” 2019. [Online].
Available:

https://www.databricks.com/blog/2019/09/24/divin
g-into-delta-lake-schema-enforcement-
evolution.html

[5] Kuldeep Pal, "A beginner's guide to using Apache
Hudi for data lake management," Walmart Global
Tech Blog, Medium, 2023. [Online]. Available:
https://medium.com/walmartglobaltech/a-
beginners-quide-to-using-apache-hudi-for-data-
lake-management-6af50ade43ad

[6] Databricks, "What are deletion vectors?" 2025.
[Online]. Available:
https://docs.databricks.com/aws/en/delta/deletion-
vectors

[7] Uber Blog, "Apache Hudi graduation,” 2020.
[Online]. Available: https://www.uber.com/en-

IN/blog/apache-hudi-graduation/
[8] Lindsay MacDonald, "Are Apache Iceberg tables
right for your data lake? 6 reasons why,” Monte
Carlo Data Blog, 2024. [Online]. Available:
https://www.montecarlodata.com/blog-are-apache-
iceberg-tables-right-for-your-data-lake-6-reasons-
why/
Michael Armbrust, et al., "Delta Lake: high-
performance ACID table storage over cloud object
stores,” ACM Digital Library, 2020. [Online].
Available:
https://dl.acm.org/doi/10.14778/3415478.3415560
[10] Michael Armbrust et al., "Delta Lake: high-
performance ACID table storage over cloud object
stores,” ACM Digital Library, 2020. [Online].
Available:
https://www.cidrdb.org/cidr2021/papers/cidr2021

paper17.pdf

(9]

https://blueorange.digital/blog/apache-iceberg-a-game-changer-table-format-for-big-data-analytics/
https://blueorange.digital/blog/apache-iceberg-a-game-changer-table-format-for-big-data-analytics/
https://www.cidrdb.org/cidr2021/papers/cidr2021_paper17.pdf
https://www.cidrdb.org/cidr2021/papers/cidr2021_paper17.pdf
https://www.dremio.com/wiki/schema-evolution/
https://www.dremio.com/wiki/schema-evolution/
https://www.databricks.com/blog/2019/09/24/diving-into-delta-lake-schema-enforcement-evolution.html
https://www.databricks.com/blog/2019/09/24/diving-into-delta-lake-schema-enforcement-evolution.html
https://www.databricks.com/blog/2019/09/24/diving-into-delta-lake-schema-enforcement-evolution.html
https://medium.com/walmartglobaltech/a-beginners-guide-to-using-apache-hudi-for-data-lake-management-6af50ade43ad
https://medium.com/walmartglobaltech/a-beginners-guide-to-using-apache-hudi-for-data-lake-management-6af50ade43ad
https://medium.com/walmartglobaltech/a-beginners-guide-to-using-apache-hudi-for-data-lake-management-6af50ade43ad
https://docs.databricks.com/aws/en/delta/deletion-vectors
https://docs.databricks.com/aws/en/delta/deletion-vectors
https://www.uber.com/en-IN/blog/apache-hudi-graduation/
https://www.uber.com/en-IN/blog/apache-hudi-graduation/
https://www.montecarlodata.com/blog-are-apache-iceberg-tables-right-for-your-data-lake-6-reasons-why/
https://www.montecarlodata.com/blog-are-apache-iceberg-tables-right-for-your-data-lake-6-reasons-why/
https://www.montecarlodata.com/blog-are-apache-iceberg-tables-right-for-your-data-lake-6-reasons-why/
https://dl.acm.org/doi/10.14778/3415478.3415560
https://www.cidrdb.org/cidr2021/papers/cidr2021_paper17.pdf
https://www.cidrdb.org/cidr2021/papers/cidr2021_paper17.pdf

