

Copyright © IJCESEN

International Journal of Computational and Experimental

Science and ENgineering

(IJCESEN)

Vol. 12-No.1 (2026) pp. 618-623
http://www.ijcesen.com

ISSN: 2149-9144

 Research Article

Tool Use and External System Integration in Conversational AI: From Function

Calling to Autonomous Agents

Panneer Selvam Viswanathan*

S Tech Mahindra Americas Inc, USA
* Corresponding Author Email: reachpanneerselvamv@gmail.com - ORCID: 0000-0002-0047-9950

Article Info:

DOI: 10.22399/ijcesen.4872

Received : 02 December 2025

Revised : 30 January 2026

Accepted : 02 February 2026

Keywords

Tool-Augmented Language Models,

Function Calling Architectures,

Autonomous Agent Coordination,

Compositional Reasoning

Frameworks,

Multi-Agent Orchestration Systems

Abstract:

Conversational AI agents have evolved from text-based agents into tool-using agents

that can perform computation and physical actions. This builds on the capabilities of

pre-trained language models by integrating them into tool-using systems, performing

accurate calculations, and supporting multi-agent systems, sometimes in conjunction

with human operators and sometimes independently. They all follow a similar pattern of

using self-supervised learning to allow agents to self-invoke and control external tools,

verifying tool execution using reasoning models, using hierarchical recovery to

counteract tool-using system failures, and accessing thousands of real-world APIs using

semantic retrieval mechanisms, as well as a wide variety of protocol standards.

Compositional emergence, a subset of emergent behavior, is the idea that complex

behaviors can emerge in a system composed of simple components engaging in

pipelining and parallelism. Examples include tree-based deliberative strategies that

converge on a solution with efficient exploration, world model planning, micro- to

meta-level error recovery, and graceful degradation in production contexts. Multi-agent

orchestration mechanisms allow modular components to communicate via a declarative

requirement and event-driven message systems. Limitations in the scalability,

hallucination, and explainability of these systems need to be addressed to create

effective multi-agent architectures. Future work could research online reinforcement

learning, quantum planning algorithms, and representational robotics that transfer

knowledge of tool use from simulations to real-world applications.

1. Introduction

LLMs provide a new way of building

conversational agents, not only by producing

coherent programmatic text one token at a time, but

also by controlling external tools, by contrast with

conventional language models that can only encode

parametric knowledge learned during the training

phase. They do not have access to knowledge of

current events, to information other than what they

were trained on, to accurate arithmetic, or to invoke

and control other software systems like LLMs can.

The ability to use external tools like the web or

orchestrate multiple special tools provides

conversational agents and chatbots with important

capabilities. The Toolformer paper showed that no

tool-calling mechanism is necessary: LMs can

simply learn to call tools by self-supervised

learning on a corpus of API calls. In this self-

deciding setup, the models decide which answer is

the better answer to the question, whether it is

generated using parametric knowledge or using

tools.Second, the architecture of the model

becomes more complex, and it becomes easy to

build end-to-end tools for all real-world APIs, so

that conversational agents are able to learn how to

interact with thousands of APIs across many

domains and ecosystems [2]. This leads to tool-

enabled agents. Given the natural language goal of

analyzing quarterly sales data, using market signals

to predict quarterly growth, and building a quarterly

dashboard, automatically created workflows can

use vector loaders to ingest files, discover

multimodal patterns and relationships, query live

APIs, and synthesize visualizations. These can be

done at any level of resolution using parallel

dispatching, speculative execution, and runtime

registration, respectively, while the Model Context

Protocol permits plug-and-play interoperability

between heterogeneous systems. Agent-to-Agent

protocols encourage spontaneous coordination

http://dergipark.org.tr/en/pub/ijcesen
http://www.ijcesen.com

Panneer Selvam Viswanathan / IJCESEN 12-1(2026)618-623

619

models in multi-agent systems where agents

dynamically choose coordination mechanisms

tailored to the current task and environmental

conditions.

2. Architectural Foundations and Protocol

Standardization

Technical substrates include function-calling

architectures, which allow LLMs to call out to

external tools. These architectures expose tools to

LLMs via schemas that include the name of the

tool, typed parameters (validators and default

values), and async schemas for any output

generated by the LLM. Guided decoding is used in

state-of-the-art methods as a way of generating

compatible JSON, XML, or Pydantic schemas that

produce syntactically valid inputs to the tools.

Techniques for guiding LMs to use tools have led

to a variety of training models, as LMs have been

shown to generalize well across a variety of

specifications of APIs [1]. However, through the

use of comparisons to see whether calling a tool

improves model responses, it can be determined

when models actually learn to use tools.Platform

convergence has occurred around several models

that balance expressivity and computational

efficiency. OpenAI's tools framework automatically

batches and caches tools used multiple times.

Anthropic's Model Context Protocol dynamically

discovers tools, while Gemini includes multimodal

extensions for different data modalities. Open-

source frameworks such as LangChain, Haystack,

CrewAI (agent orchestration based on roles), and

AutoGen (conversational agents) implement the

canonical loop of tool registration, request parsing,

parallel invocation, stream-processing of tool

outputs, and reflective evaluation. As the number of

tools in the tooling system grows to tens of

thousands of tools, new challenges arise, such as

contextualizing tool documentation, instructing the

agent to use tools, and retrieving tools from large

inventories. Conversely, new approaches use

semantic tool retrieval, such as tool vector

embeddings, allowing agents to search for tools

with similar capabilities rather than enumerating

them all [2].The Model Context Protocol also

supports semantic search, stateful sessions, and

federated discovery for distributed tool registries,

which are used by agents to find models that have a

certain capability available to carry out a task (e.g.,

vector store, retrieval-augmented generation (RAG)

pipelines). Agent-to-Agent protocols simplify

higher-order communication, including swarm

coordination via gossip protocols, collective

reasoning via blackboard architectures, and

contract-based delegation subject to service-level

agreement (SLA) constraints. Communication is

further supplemented by hierarchical agent

topologies enforced by planner agents via goal

decomposition. Meanwhile, the atomic actions

performed by worker agents are validated or

rejected by the critic agents against the quality

requirements. Thereby, the specialization of the

agents is achieved while maintaining the coherence

of their overall behavior. Initial architectures in the

tool learning literature have shown that diverse

documentation formats and instruction schemes can

considerably impact learning performance [2].

However, a more uniform and predictable

documentation format of diverse APIs can ease a

model's generalization and make it easier for users

to adapt to new tool specifications with low

cognitive costs. Such runtime patching mechanisms

provide support for schema drift and can maintain

API compatibility against changes in tool

specifications.

3. Reasoning Mechanisms and Decision

Frameworks

A question in the design of conversational agents is

whether to reason over some external or internal

parametric knowledge. Hybrid reasoning systems

have been proposed using several sources of

knowledge and incorporating logit-based

probabilities to express epistemic uncertainty when

deciding between using external tools or internal

parametric knowledge. Dependency graphs identify

shortcomings in the agent's reasoning, allowing RL

policies to optimize correctness, latency, and tool

costs (if it is more efficient to call the tool rather

than reason [125, 129, 130]). Planning and action

interleaved in structured reasoning models have

changed how agents tackle complex reasoning

problems [3]. Such a log would help with

transparency and would make it easier to debug

unexpected outcomes when a particular method is

called and does not return the expected

result.Modern reasoning architectures beyond the

simple React model also support multi-shot

reasoning, interleaving, and reasoning traces for

interpretability and error diagnosis. They provide

advantages over internal reasoning, including the

ability to access information in real-time beyond

training cutoffs, exact computation,

compositionality across arbitrary subdomains, and

grounding rationales externally for verification or

falsification. They also help when combined with

reasoning to solve knowledge-intensive tasks,

where the model needs to retrieve and combine

information about different facts to answer a

question [3]. For instance, the empirical results on

the knowledge-intensive tasks in E2E show that the

Panneer Selvam Viswanathan / IJCESEN 12-1(2026)618-623

620

model is more successful at solving a task when it

reasons before taking the action rather than

predicting the action directly.Tool selection is

based on various ranking functions, which may rely

on semantic information or performance. It is

driven by similarity metrics based on embedding

methods and the success rate of the tools.

Hierarchical planning algorithms manage action

dependencies on previous actions, and can

parallelize independent actions by using fan-out to

quickly complete highly parallelizable actions. The

engine implements several parameter binding

techniques, including entity linking (mapping

natural language utterances to structure identifiers),

translating natural language into system types, and

checking calls for invalid ones prior to a call's

execution. The two systems constrain tool

invocation by user intent (what they want) and

system capability (what they can do). Systems must

check whether their intended use of a tool would be

correct before using it to avoid run-time failures. In

addition, reasoning systems offer configurational

advantages, especially in choosing the best tool for

the job, while external tools provide grounded, fact-

based outputs [3]. These components can be

combined, with reasoning and knowledge, to create

agents that are more capable and stronger across

several task domains.The balance between the

reasoning performed with the model and the tool is

task-dependent. For example, if a task demands

speed, then it might be better to use the tool to

obtain updated information rather than instantiating

reasoning in the model, whereas the opposite may

be true for older queries. Exact tools are required

for computation, but approximate reasoning

suffices for qualitative reasoning problems.

Benchmarks have shown that using tools

outperforms directly generating computations with

language models in arithmetic and symbolic

reasoning tasks. The differences arise due to (i)

scope: internal knowledge is limited to what the

model knows about the training domains, while the

tools support compositionality for arbitrary

problems; and (ii) verification: internal reasoning

requires internal coherence, while tool use provides

external verification that the reasoning has occurred

correctly via modification of the state of the system.

These frameworks allow agents to consider the

trade-offs between the cost of using a tool and the

value it provides.

4. Error Handling, Resilience, and Recovery

Strategies

Successful and strong tool use requires wide-

ranging error handling for hallucinated invocations

where agents call non-existent tools, sandbox

violations that cannot be triggered with the current

security mechanism, and semantic mismatches

between expected and actual tool behaviors.

Detection strategies include handling runtime

errors, validating tool invocations against schemas

of expected outputs, and judges implemented as

language models that identify whether an

invocation is appropriate or not. Diagnostics can

pinpoint the source of failure, such as a change of

API, based on error codes returned. An exploration

strategy based on tree search can enable agents to

efficiently find a successful path in the event of

failure, maintaining multiple plausible hypotheses

until further evidence is available [4]. This search

strategy provides additional leverage for novel

tasks, where the ideal strategies for each invocation

of the tool are unknown.These various recoveries

are nested according to the breadth and severity of

failure they attempt to recover from. The micro-

level recoveries use jittered, exponential backoff

retry mechanisms to cope with transient failures.

Recoveries also address timeouts. The meso-level

recovery strategies include strategies such as

reparameterization of invocations or replacing the

currently executing tool with another tool that

provides the same service and can effectively

complete the task. The agents perform macro-level

recovery through scratchpad-based replanning,

where agents reconfigure the decomposition when

initial plans have failed or time out. Meta-level

synthesis generates tools automatically using code

generation when existing tools are not sufficient.

This supports dynamic tool generation and a

deliberate search through intermediate reasoning

branches. This allows the system to cleverly

backtrack over intermediate reasoning states when

it reaches a dead end, increasing the rate of success

in difficult problems [4]. Remembering the

explored sequences and the actions taken allows

agents to avoid repeating bad decisions and to

allocate their resources to more promising

branches.Self-debugging techniques are promising

for addressing code execution failures. Error-

guided mutation-based strategies, which are

commonly applied to code correctness benchmarks,

achieve high success rates by iteratively

transforming the generated programs based on their

execution results. Standardized benchmarks used

by foundational code generation evaluation

frameworks enable researchers to measure and

compare the capabilities of models across various

programming tasks [7]. Despite these benchmarks,

researchers have identified that models are still not

perfect at algorithmic reasoning and very often

require multiple attempts to generate an

implementation. In security deployments, it is

important to use isolation mechanisms such as

Panneer Selvam Viswanathan / IJCESEN 12-1(2026)618-623

621

sandboxing and taint tracking to ensure that models

cannot compromise the system by maliciously

invoking the tools. Deployment of these systems

has shown that, in practice, the majority of

privilege escalation attempts are blocked with low

latency.The error recovery regime has a big

influence on the agents' robustness. The more errors

an agent can predict and recover from, the more

resilient its operation. In systems where error

recovery is weak, the agents become brittle: after

one error, an agent stops the task. Failure

propagation rates also indicate this brittleness. In

contrast, agents using hierarchical recovery provide

a graceful degradation of functioning when a

component fails, and are more suitable for use in

production settings where the demands of reliability

are greater than for a research prototype. Strategies

for deliberate exploration form the basis for an

efficient search space of possible solutions [4].

Instead of abandoning at the first signs of difficulty,

they maintain active explorations of possible

solutions along with the information to change their

search strategy. This combination of a tree-based

search with the generative capability of language

models makes it possible to construct systems that

navigate complex states with robustness to failures

and errors.

5. Learning, Adaptation, and Compositional

Emergence

The in-context learning and long-term policy

adaptation properties of conversational agents

enable the model to improve its tool use with

experience. The in-context meta-learning property

allows a few-shot demonstration of tool use to

bootstrap the model and thus alleviate the need for

elaborate fine-tuning for the many types of tools

available. Meta-prompts also allow the encoding of

meta patterns to reuse tool schemas across tools of

similar capabilities, and novel approaches to isolate

different components of compositional reasoning

have had an important impact, such as

decomposing complex queries to atomic sub-

questions, which improve performance on multi-

hop reasoning tasks [5]. This naturally gives rise to

tool-enabled architectures in which complex

objectives are decomposed into sequences of tool

invocations to solve sub-problems.Compositional

emergence is a case of higher-order emergence,

referring to cases where the capabilities of the

super-tool are richer than those of component tools

in isolation. This can occur in chains of tools, for

instance, where retrieval-augmented generation

systems query knowledge bases, pass context to a

language model, and execute generated code to

produce an output. Parallel forks find multiple

solution paths and combine them, for example, via

aggregator functions that merge multiple views into

one conclusion. Tool discovery mechanisms may

be implemented through registry scans, dry runs

that evaluate the tools and performance benchmarks

for tool selection. This decomposition of the

reasoning problem into sub-problems is particularly

useful when the task is knowledge-intensive and

involves collating evidence from multiple sources

[5]. Decomposing monolithic queries into atomic

queries that can be solved in isolation results in

better performance than end-to-end approaches and

improves the interpretability of the solver.Real-time

ecosystem integration shows the benefits of tool-

using agents in practical applications. For instance,

the web search system combines sparse and dense

retrieval and supports multiple hops of reasoning

over documents, both of which require the use of

several information-seeking actions. Code

execution environments maintain state between

invocations, federate library dependencies, support

differential debugging, and support iterative

refinement of complex programs. Database

interfaces convert natural language queries into

structured queries and have produced substantial

results on complex semantic parsing benchmarks in

recent years. This approach allows more flexible

manipulation of reasoning operations in relation to

sub-problems [5]. Systems that contain

representations of which sub-problems rely on

which sub-problem solutions are more efficient

than those without, since new solutions can be

incrementally improved and errors can be directly

corrected on specific sub-problems.Orchestration

frameworks enable multi-agent workloads where

specialized components work together to achieve

more than an individual agent can. E-commerce

systems, for example, deploy agent swarms where

specialized components handle inventory, dynamic

pricing, demand forecasting, supplier coordination,

and fulfillment optimization. Production

deployments processing millions of transactions

show agent-based systems can provide orders of

magnitude more efficiency than rule-based systems.

Compositional reasoning enables agents to be built

from simpler ones, such that problems of

unprecedented scale and complexity can be solved

[5]. The use of modular tool ensembles and

principled decomposition techniques has allowed

for tools with flexibility and robustness that are

unattainable with monolithic systems. The

emergence of standard frameworks for declarative

specification of agent crews, together with event-

driven inter-agent communication architectures, has

made it easier to develop complex multi-agent

systems.

Panneer Selvam Viswanathan / IJCESEN 12-1(2026)618-623

622

Table 1: Tool Learning Paradigms and API Integration Strategies [1][2]

Learning Mechanism Training Approach Generalization Capability Integration Complexity

Self-supervised tool

discovery

Autonomous determination of

invocation contexts

Parametric vs. external tool

decision-making

Minimal manual

specification

API documentation

processing

Structured schema

interpretation

Cross-domain tool usage

patterns

Heterogeneous API

standardization

Instruction generation

systems

Automated usage pattern

synthesis
Novel tool bootstrapping

Dynamic documentation

formats

Semantic tool retrieval Vector embedding similarity
Large-scale repository

navigation

Scalable discovery

mechanisms

Table 2: Reasoning Frameworks and Deliberation Strategies [3][4]

Framework

Component
Cognitive Process Error Mitigation Solution Quality

Verbal reasoning traces Explicit thought documentation Transparent failure diagnosis
Enhanced

interpretability

Action interleaving
Synchronous deliberation-

execution
Real-time error detection

Grounded decision-

making

Tree-based exploration Systematic solution space search
Multiple hypothesis

maintenance

Exhaustive path

evaluation

Scratchpad replanning Dynamic strategy restructuring
Fundamental approach

revision

Adaptive problem-

solving

Table 3: Compositional Reasoning and Decomposition Techniques [5][6]

Compositional Strategy Decomposition Method Information Synthesis Architectural Pattern

Atomic sub-question

generation

Complex query

segmentation

Independent component

addressing

Modular problem

decomposition

Sequential tool pipelining Operation chaining
Context propagation across

stages
Super-tool emergence

Parallel solution exploration
Simultaneous path

investigation

Aggregator-based result

merging

Multi-perspective

synthesis

Sub-problem dependency

tracking

Explicit relationship

modeling
Targeted error correction Incremental refinement

Table 4: Code Generation and Debugging Mechanisms [7][8]

Evaluation Dimension Synthesis Capability Error Recovery Iterative Refinement

Algorithmic reasoning
Complex logic

implementation
Execution feedback analysis Error-guided mutation

Benchmark standardization
Systematic capability

assessment
Failure pattern identification Multi-attempt correction

Domain knowledge

integration
Specialized library utilization

Contextual error

interpretation

Incremental code

improvement

Explanation faithfulness
Decision process

verbalization

Post-hoc rationalization

detection

Transparent reasoning

traces

6. Conclusions

From parametric knowledge systems to tool-

empowered autonomous agents, conversational

artificial intelligence is a model shift in the

capabilities of machine intelligence. Language

models can autonomously discover optimal tool

usage through self-supervised learning, engage in

multi-step reasoning with deliberate path

explorations in the solution space, and recover from

failures with the aid of hierarchical intervention.

Architectural advances enable access to a varied set

of API ecosystems containing thousands of real-

world tools. Compositional reasoning frameworks

enable the combination of simpler components into

higher-order tools for more complex tasks.

Panneer Selvam Viswanathan / IJCESEN 12-1(2026)618-623

623

Combined with tool access, these enable a

symbiosis in which reasoning and tool usage

reinforce each other: reasoning informs tool usage,

and tool outputs inform reasoning. Multi-agent

orchestration frameworks can coordinate

specialized components over standard protocols to

articulate solutions to problems that would

otherwise be impossible to accomplish on a single

agent. When deployed in production, high-stakes

environments, challenges such as hallucination

mitigation, scalability, and explanation generation

will be important areas of inquiry. With the

additions of tree-based search, world model

planning, and error-driven fine-tuning, possible

applications are opened up across a wide variety of

tasks. Online RL algorithms, quantum optimization

methods, and represented robotics could extend the

idea of tool-enabled agency beyond digital spaces

and into the world of physical manipulation.

Standardized declarative agent specifications and

event-driven communications channels expand

existing end-to-end processes while preserving

domain flexibility. The unification of large

language models, high-fidelity error-handling

protocols, adaptive learning architectures, and

compositional reasoning makes the tool use the

foundational technology of artificial general

intelligence. His experience in deploying services

and designing architectures for goal-directed

autonomy has provided the level of autonomous

machine agency needed to operate in complex real-

world environments, subserving human cognition

through human-AI collaboration.

Author Statements:

 Ethical approval: The conducted research is

not related to either human or animal use.

 Conflict of interest: The authors declare that

they have no known competing financial

interests or personal relationships that could

have appeared to influence the work reported in

this paper

 Acknowledgement: The authors declare that

they have nobody or no-company to

acknowledge.

 Author contributions: The authors declare that

they have equal right on this paper.

 Funding information: The authors declare that

there is no funding to be acknowledged.

 Data availability statement: The data that

support the findings of this study are available

on request from the corresponding author. The

data are not publicly available due to privacy or

ethical restrictions.

 Use of AI Tools: The author(s) declare that no

generative AI or AI-assisted technologies were

used in the writing process of this manuscript.

References

[1] Timo Schick, et al., "Toolformer: Language models

can teach themselves to use tools," arxiv, 2023.

Available: https://arxiv.org/abs/2302.04761

[2] Yujia Qin, et al., "ToolLLM: Facilitating Large

Language Models to Master 16000+ Real-world

APIs," ResearchGate, 2023. Available:

https://www.researchgate.net/publication/37278450

5_ToolLLM_Facilitating_Large_Language_Models

_to_Master_16000_Real-world_APIs

[3] Pan Lu, et al., "Chameleon: Plug-and-Play

Compositional Reasoning with Large Language

Models," arxiv, 2023. Available:

https://arxiv.org/abs/2304.09842

[4] Shishir G. Patil, et al., "Gorilla: large language

model connected with massive APIs,” ACM Digital

Library, 2023. Available:

https://dl.acm.org/doi/10.5555/3737916.3741936

[5] Lorenz Kuhn, et al., "Semantic Uncertainty:

Linguistic Invariances for Uncertainty Estimation

in Natural Language Generation," arxiv, 2023.

Available: https://arxiv.org/abs/2302.09664

[6] Shunyu Yao, et al., "Tree of thoughts: deliberate

problem solving with large language models,"

ACM Digital Library, 2022. Available:

https://dl.acm.org/doi/abs/10.5555/3666122.366663

9

[7] Mark Chen, "Evaluating large language models

trained on code," arXiv, 2021. Available:

https://arxiv.org/abs/2107.03374

[8] Noah Shinn, et al., "Reflexion: Language agents with

verbal reinforcement learning," ACM Digital

Library, 2023. Available:

https://dl.acm.org/doi/10.5555/3666122.3666499

[9] Shibo Hao et al., "Reasoning with language model is

planning with world model," arXiv, 2023.

Available:

https://www.researchgate.net/publication/37100967

5_Reasoning_with_Language_Model_is_Planning_

with_World_Model

[10] Mohammadreza Pourreza, Davood Rafiei, "DIN-

SQL: Decomposed in-context learning of text-to-

SQL with self-correction," arXiv, 2023. Available:

https://arxiv.org/abs/2304.11015

https://arxiv.org/abs/2302.04761
https://www.researchgate.net/publication/372784505_ToolLLM_Facilitating_Large_Language_Models_to_Master_16000_Real-world_APIs
https://www.researchgate.net/publication/372784505_ToolLLM_Facilitating_Large_Language_Models_to_Master_16000_Real-world_APIs
https://www.researchgate.net/publication/372784505_ToolLLM_Facilitating_Large_Language_Models_to_Master_16000_Real-world_APIs
https://arxiv.org/abs/2304.09842
https://dl.acm.org/doi/10.5555/3737916.3741936
https://arxiv.org/abs/2302.09664
https://dl.acm.org/doi/abs/10.5555/3666122.3666639
https://dl.acm.org/doi/abs/10.5555/3666122.3666639
https://arxiv.org/abs/2107.03374
https://dl.acm.org/doi/10.5555/3666122.3666499
https://www.researchgate.net/publication/371009675_Reasoning_with_Language_Model_is_Planning_with_World_Model
https://www.researchgate.net/publication/371009675_Reasoning_with_Language_Model_is_Planning_with_World_Model
https://www.researchgate.net/publication/371009675_Reasoning_with_Language_Model_is_Planning_with_World_Model
https://arxiv.org/abs/2304.11015

