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Abstract:

Conversational Al agents have evolved from text-based agents into tool-using agents
that can perform computation and physical actions. This builds on the capabilities of
pre-trained language models by integrating them into tool-using systems, performing
accurate calculations, and supporting multi-agent systems, sometimes in conjunction
with human operators and sometimes independently. They all follow a similar pattern of
using self-supervised learning to allow agents to self-invoke and control external tools,
verifying tool execution using reasoning models, using hierarchical recovery to
counteract tool-using system failures, and accessing thousands of real-world APIs using
semantic retrieval mechanisms, as well as a wide variety of protocol standards.
Compositional emergence, a subset of emergent behavior, is the idea that complex
behaviors can emerge in a system composed of simple components engaging in
pipelining and parallelism. Examples include tree-based deliberative strategies that
converge on a solution with efficient exploration, world model planning, micro- to
meta-level error recovery, and graceful degradation in production contexts. Multi-agent
orchestration mechanisms allow modular components to communicate via a declarative
requirement and event-driven message systems. Limitations in the scalability,
hallucination, and explainability of these systems need to be addressed to create
effective multi-agent architectures. Future work could research online reinforcement
learning, quantum planning algorithms, and representational robotics that transfer
knowledge of tool use from simulations to real-world applications.

1. Introduction

LLMs provide a new

conversational agents,

not only by producing

the better answer to the question, whether it is
generated using parametric knowledge or using
tools.Second, the architecture of the model
becomes more complex, and it becomes easy to

way of building

coherent programmatic text one token at a time, but
also by controlling external tools, by contrast with
conventional language models that can only encode
parametric knowledge learned during the training
phase. They do not have access to knowledge of
current events, to information other than what they
were trained on, to accurate arithmetic, or to invoke
and control other software systems like LLMs can.
The ability to use external tools like the web or
orchestrate multiple special tools provides
conversational agents and chatbots with important
capabilities. The Toolformer paper showed that no
tool-calling mechanism is necessary: LMs can
simply learn to call tools by self-supervised
learning on a corpus of API calls. In this self-
deciding setup, the models decide which answer is

build end-to-end tools for all real-world APIs, so
that conversational agents are able to learn how to
interact with thousands of APIs across many
domains and ecosystems [2]. This leads to tool-
enabled agents. Given the natural language goal of
analyzing quarterly sales data, using market signals
to predict quarterly growth, and building a quarterly
dashboard, automatically created workflows can
use vector loaders to ingest files, discover
multimodal patterns and relationships, query live
APIs, and synthesize visualizations. These can be
done at any level of resolution using parallel
dispatching, speculative execution, and runtime
registration, respectively, while the Model Context
Protocol permits plug-and-play interoperability
between heterogeneous systems. Agent-to-Agent
protocols encourage spontaneous coordination
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models in multi-agent systems where agents
dynamically choose coordination mechanisms
tailored to the current task and environmental
conditions.

2. Architectural Foundations and Protocol
Standardization

Technical substrates include function-calling
architectures, which allow LLMs to call out to
external tools. These architectures expose tools to
LLMs via schemas that include the name of the
tool, typed parameters (validators and default
values), and async schemas for any output
generated by the LLM. Guided decoding is used in
state-of-the-art methods as a way of generating
compatible JSON, XML, or Pydantic schemas that
produce syntactically valid inputs to the tools.
Techniques for guiding LMs to use tools have led
to a variety of training models, as LMs have been
shown to generalize well across a variety of
specifications of APIs [1]. However, through the
use of comparisons to see whether calling a tool
improves model responses, it can be determined
when models actually learn to use tools.Platform
convergence has occurred around several models
that balance expressivity and computational
efficiency. OpenAl's tools framework automatically
batches and caches tools used multiple times.
Anthropic's Model Context Protocol dynamically
discovers tools, while Gemini includes multimodal
extensions for different data modalities. Open-
source frameworks such as LangChain, Haystack,
CrewAl (agent orchestration based on roles), and
AutoGen (conversational agents) implement the
canonical loop of tool registration, request parsing,
parallel invocation, stream-processing of tool
outputs, and reflective evaluation. As the number of
tools in the tooling system grows to tens of
thousands of tools, new challenges arise, such as
contextualizing tool documentation, instructing the
agent to use tools, and retrieving tools from large
inventories. Conversely, new approaches use
semantic tool retrieval, such as tool vector
embeddings, allowing agents to search for tools
with similar capabilities rather than enumerating
them all [2].The Model Context Protocol also
supports semantic search, stateful sessions, and
federated discovery for distributed tool registries,
which are used by agents to find models that have a
certain capability available to carry out a task (e.g.,
vector store, retrieval-augmented generation (RAG)
pipelines). Agent-to-Agent protocols simplify
higher-order communication, including swarm
coordination via gossip protocols, collective
reasoning via blackboard architectures, and
contract-based delegation subject to service-level
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agreement (SLA) constraints. Communication is
further supplemented by hierarchical agent
topologies enforced by planner agents via goal
decomposition. Meanwhile, the atomic actions
performed by worker agents are validated or
rejected by the critic agents against the quality
requirements. Thereby, the specialization of the
agents is achieved while maintaining the coherence
of their overall behavior. Initial architectures in the
tool learning literature have shown that diverse
documentation formats and instruction schemes can
considerably impact learning performance [2].
However, a more uniform and predictable
documentation format of diverse APIs can ease a
model's generalization and make it easier for users
to adapt to new tool specifications with low
cognitive costs. Such runtime patching mechanisms
provide support for schema drift and can maintain

APl compatibility against changes in tool
specifications.
3. Reasoning Mechanisms and Decision
Frameworks

A question in the design of conversational agents is
whether to reason over some external or internal
parametric knowledge. Hybrid reasoning systems
have been proposed using several sources of
knowledge and  incorporating  logit-based
probabilities to express epistemic uncertainty when
deciding between using external tools or internal
parametric knowledge. Dependency graphs identify
shortcomings in the agent's reasoning, allowing RL
policies to optimize correctness, latency, and tool
costs (if it is more efficient to call the tool rather
than reason [125, 129, 130]). Planning and action
interleaved in structured reasoning models have
changed how agents tackle complex reasoning
problems [3]. Such a log would help with
transparency and would make it easier to debug
unexpected outcomes when a particular method is
called and does not return the expected
result. Modern reasoning architectures beyond the
simple React model also support multi-shot
reasoning, interleaving, and reasoning traces for
interpretability and error diagnosis. They provide
advantages over internal reasoning, including the
ability to access information in real-time beyond
training cutoffs, exact computation,
compositionality across arbitrary subdomains, and
grounding rationales externally for verification or
falsification. They also help when combined with
reasoning to solve knowledge-intensive tasks,
where the model needs to retrieve and combine
information about different facts to answer a
question [3]. For instance, the empirical results on
the knowledge-intensive tasks in E2E show that the
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model is more successful at solving a task when it
reasons before taking the action rather than
predicting the action directly.Tool selection is
based on various ranking functions, which may rely
on semantic information or performance. It is
driven by similarity metrics based on embedding
methods and the success rate of the tools.
Hierarchical planning algorithms manage action
dependencies on previous actions, and can
parallelize independent actions by using fan-out to
quickly complete highly parallelizable actions. The
engine implements several parameter binding
techniques, including entity linking (mapping
natural language utterances to structure identifiers),
translating natural language into system types, and
checking calls for invalid ones prior to a call's
execution. The two systems constrain tool
invocation by user intent (what they want) and
system capability (what they can do). Systems must
check whether their intended use of a tool would be
correct before using it to avoid run-time failures. In
addition, reasoning systems offer configurational
advantages, especially in choosing the best tool for
the job, while external tools provide grounded, fact-
based outputs [3]. These components can be
combined, with reasoning and knowledge, to create
agents that are more capable and stronger across
several task domains.The balance between the
reasoning performed with the model and the tool is
task-dependent. For example, if a task demands
speed, then it might be better to use the tool to
obtain updated information rather than instantiating
reasoning in the model, whereas the opposite may
be true for older queries. Exact tools are required
for computation, but approximate reasoning
suffices for qualitative reasoning problems.
Benchmarks have shown that wusing tools
outperforms directly generating computations with
language models in arithmetic and symbolic
reasoning tasks. The differences arise due to (i)
scope: internal knowledge is limited to what the
model knows about the training domains, while the
tools support compositionality for arbitrary
problems; and (ii) verification: internal reasoning
requires internal coherence, while tool use provides
external verification that the reasoning has occurred
correctly via modification of the state of the system.
These frameworks allow agents to consider the
trade-offs between the cost of using a tool and the
value it provides.

4. Error Handling, Resilience, and Recovery
Strategies

Successful and strong tool use requires wide-
ranging error handling for hallucinated invocations
where agents call non-existent tools, sandbox
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violations that cannot be triggered with the current
security mechanism, and semantic mismatches
between expected and actual tool behaviors.
Detection strategies include handling runtime
errors, validating tool invocations against schemas
of expected outputs, and judges implemented as
language models that identify whether an
invocation is appropriate or not. Diagnostics can
pinpoint the source of failure, such as a change of
API, based on error codes returned. An exploration
strategy based on tree search can enable agents to
efficiently find a successful path in the event of
failure, maintaining multiple plausible hypotheses
until further evidence is available [4]. This search
strategy provides additional leverage for novel
tasks, where the ideal strategies for each invocation
of the tool are unknown.These various recoveries
are nested according to the breadth and severity of
failure they attempt to recover from. The micro-
level recoveries use jittered, exponential backoff
retry mechanisms to cope with transient failures.
Recoveries also address timeouts. The meso-level
recovery strategies include strategies such as
reparameterization of invocations or replacing the
currently executing tool with another tool that
provides the same service and can effectively
complete the task. The agents perform macro-level
recovery through scratchpad-based replanning,
where agents reconfigure the decomposition when
initial plans have failed or time out. Meta-level
synthesis generates tools automatically using code
generation when existing tools are not sufficient.
This supports dynamic tool generation and a
deliberate search through intermediate reasoning
branches. This allows the system to cleverly
backtrack over intermediate reasoning states when
it reaches a dead end, increasing the rate of success
in difficult problems [4]. Remembering the
explored sequences and the actions taken allows
agents to avoid repeating bad decisions and to
allocate their resources to more promising
branches.Self-debugging techniques are promising
for addressing code execution failures. Error-
guided mutation-based strategies, which are
commonly applied to code correctness benchmarks,
achieve high success rates by iteratively
transforming the generated programs based on their
execution results. Standardized benchmarks used
by foundational code generation evaluation
frameworks enable researchers to measure and
compare the capabilities of models across various
programming tasks [7]. Despite these benchmarks,
researchers have identified that models are still not
perfect at algorithmic reasoning and very often
require multiple attempts to generate an
implementation. In security deployments, it is
important to use isolation mechanisms such as
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sandboxing and taint tracking to ensure that models
cannot compromise the system by maliciously
invoking the tools. Deployment of these systems
has shown that, in practice, the majority of
privilege escalation attempts are blocked with low
latency.The error recovery regime has a big
influence on the agents' robustness. The more errors
an agent can predict and recover from, the more
resilient its operation. In systems where error
recovery is weak, the agents become brittle: after
one error, an agent stops the task. Failure
propagation rates also indicate this brittleness. In
contrast, agents using hierarchical recovery provide
a graceful degradation of functioning when a
component fails, and are more suitable for use in
production settings where the demands of reliability
are greater than for a research prototype. Strategies
for deliberate exploration form the basis for an
efficient search space of possible solutions [4].
Instead of abandoning at the first signs of difficulty,
they maintain active explorations of possible
solutions along with the information to change their
search strategy. This combination of a tree-based
search with the generative capability of language
models makes it possible to construct systems that
navigate complex states with robustness to failures
and errors.

5. Learning, Adaptation, and Compositional
Emergence

The in-context learning and long-term policy
adaptation properties of conversational agents
enable the model to improve its tool use with
experience. The in-context meta-learning property
allows a few-shot demonstration of tool use to
bootstrap the model and thus alleviate the need for
elaborate fine-tuning for the many types of tools
available. Meta-prompts also allow the encoding of
meta patterns to reuse tool schemas across tools of
similar capabilities, and novel approaches to isolate
different components of compositional reasoning
have had an important impact, such as
decomposing complex queries to atomic sub-
guestions, which improve performance on multi-
hop reasoning tasks [5]. This naturally gives rise to
tool-enabled architectures in which complex
objectives are decomposed into sequences of tool
invocations to solve sub-problems.Compositional
emergence is a case of higher-order emergence,
referring to cases where the capabilities of the
super-tool are richer than those of component tools
in isolation. This can occur in chains of tools, for
instance, where retrieval-augmented generation
systems query knowledge bases, pass context to a
language model, and execute generated code to
produce an output. Parallel forks find multiple
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solution paths and combine them, for example, via
aggregator functions that merge multiple views into
one conclusion. Tool discovery mechanisms may
be implemented through registry scans, dry runs
that evaluate the tools and performance benchmarks
for tool selection. This decomposition of the
reasoning problem into sub-problems is particularly
useful when the task is knowledge-intensive and
involves collating evidence from multiple sources
[5]. Decomposing monolithic queries into atomic
queries that can be solved in isolation results in
better performance than end-to-end approaches and
improves the interpretability of the solver.Real-time
ecosystem integration shows the benefits of tool-
using agents in practical applications. For instance,
the web search system combines sparse and dense
retrieval and supports multiple hops of reasoning
over documents, both of which require the use of
several  information-seeking  actions.  Code
execution environments maintain state between
invocations, federate library dependencies, support
differential debugging, and support iterative
refinement of complex programs. Database
interfaces convert natural language queries into
structured queries and have produced substantial
results on complex semantic parsing benchmarks in
recent years. This approach allows more flexible
manipulation of reasoning operations in relation to
sub-problems  [5]. Systems that contain
representations of which sub-problems rely on
which sub-problem solutions are more efficient
than those without, since new solutions can be
incrementally improved and errors can be directly
corrected on specific sub-problems.Orchestration
frameworks enable multi-agent workloads where
specialized components work together to achieve
more thanan individual agent can. E-commerce
systems, for example, deploy agent swarms where
specialized components handle inventory, dynamic
pricing, demand forecasting, supplier coordination,
and fulfillment  optimization. Production
deployments processing millions of transactions
show agent-based systems can provide orders of
magnitude more efficiency than rule-based systems.
Compositional reasoning enables agents to be built
from simpler ones, such that problems of
unprecedented scale and complexity can be solved
[5]. The use of modular tool ensembles and
principled decomposition techniques has allowed
for tools with flexibility and robustness that are
unattainable with monolithic systems. The
emergence of standard frameworks for declarative
specification of agent crews, together with event-
driven inter-agent communication architectures, has
made it easier to develop complex multi-agent
systems.
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Table 1: Tool Learning Paradigms and API Integration Strategies [1][2]

Learning Mechanism Training Approach Generalization Capability | Integration Complexity
Self-supervised tool | Autonomous determination of | Parametric vs. external tool Minimal manual
discovery invocation contexts decision-making specification
API documentation Structured schema Cross-domain tool usage Heterogeneous API
processing interpretation patterns standardization

Instruction generation Automated usage pattern . Dynamic documentation
° Novel tool bootstrapping
systems synthesis formats
Semantic tool retrieval | Vector embedding similarity Large-sca_le repository Scalable d|§covery
navigation mechanisms

Table 2: Reasoning Frameworks and Deliberation Strategies [3][4]

Framework

Component Cognitive Process

Error Mitigation Solution Quality

Verbal reasoning traces | Explicit thought documentation

Enhanced

Transparent failure diagnosis interpretability

Action interleaving Synchronous deliberation-

Real-time error detection Grotntet decisions

execution making
Tree-based exploration [Systematic solution space search Multlp_le hypothesis EXhaUSt'V? path
maintenance evaluation
Scratchpad replanning | Dynamic strategy restructuring Fundamen'ga_l approach Adaptive problem-
revision solving

Table 3: Compositional Reasoning and Decomposition Techniques [5][6]

Compositional Strategy Decomposition Method

Information Synthesis | Architectural Pattern

Atomic sub-question Complex query Independent component Modular problem
generation segmentation addressing decomposition
Sequential tool pipelining Operation chaining Context prgtr:;geztlon across Super-tool emergence
Parallel solution exploration Slmultan_eou_s path Aggregator—b_ased result Multl—perspgctlve
investigation merging synthesis
Sub-problem erendency Explicit rela}tlonshlp Targeted error correction | Incremental refinement
tracking modeling

Table 4: Code Generation and Debugging Mechanisms [7][8]

Evaluation Dimension Synthesis Capability

Error Recovery Iterative Refinement

Complex logic

Algorithmic reasoning implementation

Execution feedback analysis| Error-guided mutation

Benchmark standardization Systematic capability

Failure pattern identification| Multi-attempt correction

assessment
Domain knowledge - . S Contextual error Incremental code
. . Specialized library utilization . : .
integration interpretation improvement
. . Decision process Post-hoc rationalization Transparent reasoning
Explanation faithfulness L .
verbalization detection traces

6. Conclusions

From parametric knowledge systems to tool-
empowered autonomous agents, conversational
artificial intelligence is a model shift in the
capabilities of machine intelligence. Language
models can autonomously discover optimal tool
usage through self-supervised learning, engage in

multi-step  reasoning  with  deliberate  path
explorations in the solution space, and recover from
failures with the aid of hierarchical intervention.
Architectural advances enable access to a varied set
of API ecosystems containing thousands of real-
world tools. Compositional reasoning frameworks
enable the combination of simpler components into
higher-order tools for more complex tasks.
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Combined with tool access, these enable a
symbiosis in which reasoning and tool usage
reinforce each other: reasoning informs tool usage,
and tool outputs inform reasoning. Multi-agent
orchestration ~ frameworks  can  coordinate
specialized components over standard protocols to
articulate solutions to problems that would
otherwise be impossible to accomplish on a single
agent. When deployed in production, high-stakes
environments, challenges such as hallucination
mitigation, scalability, and explanation generation
will be important areas of inquiry. With the
additions of tree-based search, world model
planning, and error-driven fine-tuning, possible
applications are opened up across a wide variety of
tasks. Online RL algorithms, quantum optimization
methods, and represented robotics could extend the
idea of tool-enabled agency beyond digital spaces
and into the world of physical manipulation.
Standardized declarative agent specifications and
event-driven communications channels expand
existing end-to-end processes while preserving
domain flexibility. The unification of large
language models, high-fidelity error-handling
protocols, adaptive learning architectures, and
compositional reasoning makes the tool use the
foundational technology of artificial general
intelligence. His experience in deploying services
and designing architectures for goal-directed
autonomy has provided the level of autonomous
machine agency needed to operate in complex real-
world environments, subserving human cognition
through human-Al collaboration.
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