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Abstract:  
 

Conversational AI agents have evolved from text-based agents into tool-using agents 

that can perform computation and physical actions. This builds on the capabilities of 

pre-trained language models by integrating them into tool-using systems, performing 

accurate calculations, and supporting multi-agent systems, sometimes in conjunction 

with human operators and sometimes independently. They all follow a similar pattern of 

using self-supervised learning to allow agents to self-invoke and control external tools, 

verifying tool execution using reasoning models, using hierarchical recovery to 

counteract tool-using system failures, and accessing thousands of real-world APIs using 

semantic retrieval mechanisms, as well as a wide variety of protocol standards. 

Compositional emergence, a subset of emergent behavior, is the idea that complex 

behaviors can emerge in a system composed of simple components engaging in 

pipelining and parallelism. Examples include tree-based deliberative strategies that 

converge on a solution with efficient exploration, world model planning, micro- to 

meta-level error recovery, and graceful degradation in production contexts. Multi-agent 

orchestration mechanisms allow modular components to communicate via a declarative 

requirement and event-driven message systems. Limitations in the scalability, 

hallucination, and explainability of these systems need to be addressed to create 

effective multi-agent architectures. Future work could research online reinforcement 

learning, quantum planning algorithms, and representational robotics that transfer 

knowledge of tool use from simulations to real-world applications. 

 

1. Introduction 
 

LLMs provide a new way of building 

conversational agents, not only by producing 

coherent programmatic text one token at a time, but 

also by controlling external tools, by contrast with 

conventional language models that can only encode 

parametric knowledge learned during the training 

phase. They do not have access to knowledge of 

current events, to information other than what they 

were trained on, to accurate arithmetic, or to invoke 

and control other software systems like LLMs can. 

The ability to use external tools like the web or 

orchestrate multiple special tools provides 

conversational agents and chatbots with important 

capabilities. The Toolformer paper showed that no 

tool-calling mechanism is necessary: LMs can 

simply learn to call tools by self-supervised 

learning on a corpus of API calls. In this self-

deciding setup, the models decide which answer is 

the better answer to the question, whether it is 

generated using parametric knowledge or using 

tools.Second, the architecture of the model 

becomes more complex, and it becomes easy to 

build end-to-end tools for all real-world APIs, so 

that conversational agents are able to learn how to 

interact with thousands of APIs across many 

domains and ecosystems [2]. This leads to tool-

enabled agents. Given the natural language goal of 

analyzing quarterly sales data, using market signals 

to predict quarterly growth, and building a quarterly 

dashboard, automatically created workflows can 

use vector loaders to ingest files, discover 

multimodal patterns and relationships, query live 

APIs, and synthesize visualizations. These can be 

done at any level of resolution using parallel 

dispatching, speculative execution, and runtime 

registration, respectively, while the Model Context 

Protocol permits plug-and-play interoperability 

between heterogeneous systems. Agent-to-Agent 

protocols encourage spontaneous coordination 
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models in multi-agent systems where agents 

dynamically choose coordination mechanisms 

tailored to the current task and environmental 

conditions. 

 

2. Architectural Foundations and Protocol 

Standardization 

 

Technical substrates include function-calling 

architectures, which allow LLMs to call out to 

external tools. These architectures expose tools to 

LLMs via schemas that include the name of the 

tool, typed parameters (validators and default 

values), and async schemas for any output 

generated by the LLM. Guided decoding is used in 

state-of-the-art methods as a way of generating 

compatible JSON, XML, or Pydantic schemas that 

produce syntactically valid inputs to the tools. 

Techniques for guiding LMs to use tools have led 

to a variety of training models, as LMs have been 

shown to generalize well across a variety of 

specifications of APIs [1]. However, through the 

use of comparisons to see whether calling a tool 

improves model responses, it can be determined 

when models actually learn to use tools.Platform 

convergence has occurred around several models 

that balance expressivity and computational 

efficiency. OpenAI's tools framework automatically 

batches and caches tools used multiple times. 

Anthropic's Model Context Protocol dynamically 

discovers tools, while Gemini includes multimodal 

extensions for different data modalities. Open-

source frameworks such as LangChain, Haystack, 

CrewAI (agent orchestration based on roles), and 

AutoGen (conversational agents) implement the 

canonical loop of tool registration, request parsing, 

parallel invocation, stream-processing of tool 

outputs, and reflective evaluation. As the number of 

tools in the tooling system grows to tens of 

thousands of tools, new challenges arise, such as 

contextualizing tool documentation, instructing the 

agent to use tools, and retrieving tools from large 

inventories. Conversely, new approaches use 

semantic tool retrieval, such as tool vector 

embeddings, allowing agents to search for tools 

with similar capabilities rather than enumerating 

them all [2].The Model Context Protocol also 

supports semantic search, stateful sessions, and 

federated discovery for distributed tool registries, 

which are used by agents to find models that have a 

certain capability available to carry out a task (e.g., 

vector store, retrieval-augmented generation (RAG) 

pipelines). Agent-to-Agent protocols simplify 

higher-order communication, including swarm 

coordination via gossip protocols, collective 

reasoning via blackboard architectures, and 

contract-based delegation subject to service-level 

agreement (SLA) constraints. Communication is 

further supplemented by hierarchical agent 

topologies enforced by planner agents via goal 

decomposition. Meanwhile, the atomic actions 

performed by worker agents are validated or 

rejected by the critic agents against the quality 

requirements. Thereby, the specialization of the 

agents is achieved while maintaining the coherence 

of their overall behavior. Initial architectures in the 

tool learning literature have shown that diverse 

documentation formats and instruction schemes can 

considerably impact learning performance [2]. 

However, a more uniform and predictable 

documentation format of diverse APIs can ease a 

model's generalization and make it easier for users 

to adapt to new tool specifications with low 

cognitive costs. Such runtime patching mechanisms 

provide support for schema drift and can maintain 

API compatibility against changes in tool 

specifications. 

 

3. Reasoning Mechanisms and Decision 

Frameworks 

 

A question in the design of conversational agents is 

whether to reason over some external or internal 

parametric knowledge. Hybrid reasoning systems 

have been proposed using several sources of 

knowledge and incorporating logit-based 

probabilities to express epistemic uncertainty when 

deciding between using external tools or internal 

parametric knowledge. Dependency graphs identify 

shortcomings in the agent's reasoning, allowing RL 

policies to optimize correctness, latency, and tool 

costs (if it is more efficient to call the tool rather 

than reason [125, 129, 130]). Planning and action 

interleaved in structured reasoning models have 

changed how agents tackle complex reasoning 

problems [3]. Such a log would help with 

transparency and would make it easier to debug 

unexpected outcomes when a particular method is 

called and does not return the expected 

result.Modern reasoning architectures beyond the 

simple React model also support multi-shot 

reasoning, interleaving, and reasoning traces for 

interpretability and error diagnosis. They provide 

advantages over internal reasoning, including the 

ability to access information in real-time beyond 

training cutoffs, exact computation, 

compositionality across arbitrary subdomains, and 

grounding rationales externally for verification or 

falsification. They also help when combined with 

reasoning to solve knowledge-intensive tasks, 

where the model needs to retrieve and combine 

information about different facts to answer a 

question [3]. For instance, the empirical results on 

the knowledge-intensive tasks in E2E show that the 
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model is more successful at solving a task when it 

reasons before taking the action rather than 

predicting the action directly.Tool selection is 

based on various ranking functions, which may rely 

on semantic information or performance. It is 

driven by similarity metrics based on embedding 

methods and the success rate of the tools. 

Hierarchical planning algorithms manage action 

dependencies on previous actions, and can 

parallelize independent actions by using fan-out to 

quickly complete highly parallelizable actions. The 

engine implements several parameter binding 

techniques, including entity linking (mapping 

natural language utterances to structure identifiers), 

translating natural language into system types, and 

checking calls for invalid ones prior to a call's 

execution. The two systems constrain tool 

invocation by user intent (what they want) and 

system capability (what they can do). Systems must 

check whether their intended use of a tool would be 

correct before using it to avoid run-time failures. In 

addition, reasoning systems offer configurational 

advantages, especially in choosing the best tool for 

the job, while external tools provide grounded, fact-

based outputs [3]. These components can be 

combined, with reasoning and knowledge, to create 

agents that are more capable and stronger across 

several task domains.The balance between the 

reasoning performed with the model and the tool is 

task-dependent. For example, if a task demands 

speed, then it might be better to use the tool to 

obtain updated information rather than instantiating 

reasoning in the model, whereas the opposite may 

be true for older queries. Exact tools are required 

for computation, but approximate reasoning 

suffices for qualitative reasoning problems. 

Benchmarks have shown that using tools 

outperforms directly generating computations with 

language models in arithmetic and symbolic 

reasoning tasks. The differences arise due to (i) 

scope: internal knowledge is limited to what the 

model knows about the training domains, while the 

tools support compositionality for arbitrary 

problems; and (ii) verification: internal reasoning 

requires internal coherence, while tool use provides 

external verification that the reasoning has occurred 

correctly via modification of the state of the system. 

These frameworks allow agents to consider the 

trade-offs between the cost of using a tool and the 

value it provides. 

 

4. Error Handling, Resilience, and Recovery 

Strategies 

 

Successful and strong tool use requires wide-

ranging error handling for hallucinated invocations 

where agents call non-existent tools, sandbox 

violations that cannot be triggered with the current 

security mechanism, and semantic mismatches 

between expected and actual tool behaviors. 

Detection strategies include handling runtime 

errors, validating tool invocations against schemas 

of expected outputs, and judges implemented as 

language models that identify whether an 

invocation is appropriate or not. Diagnostics can 

pinpoint the source of failure, such as a change of 

API, based on error codes returned. An exploration 

strategy based on tree search can enable agents to 

efficiently find a successful path in the event of 

failure, maintaining multiple plausible hypotheses 

until further evidence is available [4]. This search 

strategy provides additional leverage for novel 

tasks, where the ideal strategies for each invocation 

of the tool are unknown.These various recoveries 

are nested according to the breadth and severity of 

failure they attempt to recover from. The micro-

level recoveries use jittered, exponential backoff 

retry mechanisms to cope with transient failures. 

Recoveries also address timeouts. The meso-level 

recovery strategies include strategies such as 

reparameterization of invocations or replacing the 

currently executing tool with another tool that 

provides the same service and can effectively 

complete the task. The agents perform macro-level 

recovery through scratchpad-based replanning, 

where agents reconfigure the decomposition when 

initial plans have failed or time out. Meta-level 

synthesis generates tools automatically using code 

generation when existing tools are not sufficient. 

This supports dynamic tool generation and a 

deliberate search through intermediate reasoning 

branches. This allows the system to cleverly 

backtrack over intermediate reasoning states when 

it reaches a dead end, increasing the rate of success 

in difficult problems [4]. Remembering the 

explored sequences and the actions taken allows 

agents to avoid repeating bad decisions and to 

allocate their resources to more promising 

branches.Self-debugging techniques are promising 

for addressing code execution failures. Error-

guided mutation-based strategies, which are 

commonly applied to code correctness benchmarks, 

achieve high success rates by iteratively 

transforming the generated programs based on their 

execution results. Standardized benchmarks used 

by foundational code generation evaluation 

frameworks enable researchers to measure and 

compare the capabilities of models across various 

programming tasks [7]. Despite these benchmarks, 

researchers have identified that models are still not 

perfect at algorithmic reasoning and very often 

require multiple attempts to generate an 

implementation. In security deployments, it is 

important to use isolation mechanisms such as 
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sandboxing and taint tracking to ensure that models 

cannot compromise the system by maliciously 

invoking the tools. Deployment of these systems 

has shown that, in practice, the majority of 

privilege escalation attempts are blocked with low 

latency.The error recovery regime has a big 

influence on the agents' robustness. The more errors 

an agent can predict and recover from, the more 

resilient its operation. In systems where error 

recovery is weak, the agents become brittle: after 

one error, an agent stops the task. Failure 

propagation rates also indicate this brittleness. In 

contrast, agents using hierarchical recovery provide 

a graceful degradation of functioning when a 

component fails, and are more suitable for use in 

production settings where the demands of reliability 

are greater than for a research prototype. Strategies 

for deliberate exploration form the basis for an 

efficient search space of possible solutions [4]. 

Instead of abandoning at the first signs of difficulty, 

they maintain active explorations of possible 

solutions along with the information to change their 

search strategy. This combination of a tree-based 

search with the generative capability of language 

models makes it possible to construct systems that 

navigate complex states with robustness to failures 

and errors. 

 

5. Learning, Adaptation, and Compositional 

Emergence 

 

The in-context learning and long-term policy 

adaptation properties of conversational agents 

enable the model to improve its tool use with 

experience. The in-context meta-learning property 

allows a few-shot demonstration of tool use to 

bootstrap the model and thus alleviate the need for 

elaborate fine-tuning for the many types of tools 

available. Meta-prompts also allow the encoding of 

meta patterns to reuse tool schemas across tools of 

similar capabilities, and novel approaches to isolate 

different components of compositional reasoning 

have had an important impact, such as 

decomposing complex queries to atomic sub-

questions, which improve performance on multi-

hop reasoning tasks [5]. This naturally gives rise to 

tool-enabled architectures in which complex 

objectives are decomposed into sequences of tool 

invocations to solve sub-problems.Compositional 

emergence is a case of higher-order emergence, 

referring to cases where the capabilities of the 

super-tool are richer than those of component tools 

in isolation. This can occur in chains of tools, for 

instance, where retrieval-augmented generation 

systems query knowledge bases, pass context to a 

language model, and execute generated code to 

produce an output. Parallel forks find multiple 

solution paths and combine them, for example, via 

aggregator functions that merge multiple views into 

one conclusion. Tool discovery mechanisms may 

be implemented through registry scans, dry runs 

that evaluate the tools and performance benchmarks 

for tool selection. This decomposition of the 

reasoning problem into sub-problems is particularly 

useful when the task is knowledge-intensive and 

involves collating evidence from multiple sources 

[5]. Decomposing monolithic queries into atomic 

queries that can be solved in isolation results in 

better performance than end-to-end approaches and 

improves the interpretability of the solver.Real-time 

ecosystem integration shows the benefits of tool-

using agents in practical applications. For instance, 

the web search system combines sparse and dense 

retrieval and supports multiple hops of reasoning 

over documents, both of which require the use of 

several information-seeking actions. Code 

execution environments maintain state between 

invocations, federate library dependencies, support 

differential debugging, and support iterative 

refinement of complex programs. Database 

interfaces convert natural language queries into 

structured queries and have produced substantial 

results on complex semantic parsing benchmarks in 

recent years. This approach allows more flexible 

manipulation of reasoning operations in relation to 

sub-problems [5]. Systems that contain 

representations of which sub-problems rely on 

which sub-problem solutions are more efficient 

than those without, since new solutions can be 

incrementally improved and errors can be directly 

corrected on specific sub-problems.Orchestration 

frameworks enable multi-agent workloads where 

specialized components work together to achieve 

more than an individual agent can. E-commerce 

systems, for example, deploy agent swarms where 

specialized components handle inventory, dynamic 

pricing, demand forecasting, supplier coordination, 

and fulfillment optimization. Production 

deployments processing millions of transactions 

show agent-based systems can provide orders of 

magnitude more efficiency than rule-based systems. 

Compositional reasoning enables agents to be built 

from simpler ones, such that problems of 

unprecedented scale and complexity can be solved 

[5]. The use of modular tool ensembles and 

principled decomposition techniques has allowed 

for tools with flexibility and robustness that are 

unattainable with monolithic systems. The 

emergence of standard frameworks for declarative 

specification of agent crews, together with event-

driven inter-agent communication architectures, has 

made it easier to develop complex multi-agent 

systems. 
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Table 1: Tool Learning Paradigms and API Integration Strategies [1][2] 

Learning Mechanism Training Approach Generalization Capability Integration Complexity 

Self-supervised tool 

discovery 

Autonomous determination of 

invocation contexts 

Parametric vs. external tool 

decision-making 

Minimal manual 

specification 

API documentation 

processing 

Structured schema 

interpretation 

Cross-domain tool usage 

patterns 

Heterogeneous API 

standardization 

Instruction generation 

systems 

Automated usage pattern 

synthesis 
Novel tool bootstrapping 

Dynamic documentation 

formats 

Semantic tool retrieval Vector embedding similarity 
Large-scale repository 

navigation 

Scalable discovery 

mechanisms 

 

Table 2: Reasoning Frameworks and Deliberation Strategies [3][4] 

Framework 

Component 
Cognitive Process Error Mitigation Solution Quality 

Verbal reasoning traces Explicit thought documentation Transparent failure diagnosis 
Enhanced 

interpretability 

Action interleaving 
Synchronous deliberation-

execution 
Real-time error detection 

Grounded decision-

making 

Tree-based exploration Systematic solution space search 
Multiple hypothesis 

maintenance 

Exhaustive path 

evaluation 

Scratchpad replanning Dynamic strategy restructuring 
Fundamental approach 

revision 

Adaptive problem-

solving 

 

Table 3: Compositional Reasoning and Decomposition Techniques [5][6] 

Compositional Strategy Decomposition Method Information Synthesis Architectural Pattern 

Atomic sub-question 

generation 

Complex query 

segmentation 

Independent component 

addressing 

Modular problem 

decomposition 

Sequential tool pipelining Operation chaining 
Context propagation across 

stages 
Super-tool emergence 

Parallel solution exploration 
Simultaneous path 

investigation 

Aggregator-based result 

merging 

Multi-perspective 

synthesis 

Sub-problem dependency 

tracking 

Explicit relationship 

modeling 
Targeted error correction Incremental refinement 

 

Table 4: Code Generation and Debugging Mechanisms [7][8] 

Evaluation Dimension Synthesis Capability Error Recovery Iterative Refinement 

Algorithmic reasoning 
Complex logic 

implementation 
Execution feedback analysis Error-guided mutation 

Benchmark standardization 
Systematic capability 

assessment 
Failure pattern identification Multi-attempt correction 

Domain knowledge 

integration 
Specialized library utilization 

Contextual error 

interpretation 

Incremental code 

improvement 

Explanation faithfulness 
Decision process 

verbalization 

Post-hoc rationalization 

detection 

Transparent reasoning 

traces 

 

6. Conclusions 

 
From parametric knowledge systems to tool-

empowered autonomous agents, conversational 

artificial intelligence is a model shift in the 

capabilities of machine intelligence. Language 

models can autonomously discover optimal tool 

usage through self-supervised learning, engage in 

multi-step reasoning with deliberate path 

explorations in the solution space, and recover from 

failures with the aid of hierarchical intervention. 

Architectural advances enable access to a varied set 

of API ecosystems containing thousands of real-

world tools. Compositional reasoning frameworks 

enable the combination of simpler components into 

higher-order tools for more complex tasks. 
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Combined with tool access, these enable a 

symbiosis in which reasoning and tool usage 

reinforce each other: reasoning informs tool usage, 

and tool outputs inform reasoning. Multi-agent 

orchestration frameworks can coordinate 

specialized components over standard protocols to 

articulate solutions to problems that would 

otherwise be impossible to accomplish on a single 

agent. When deployed in production, high-stakes 

environments, challenges such as hallucination 

mitigation, scalability, and explanation generation 

will be important areas of inquiry. With the 

additions of tree-based search, world model 

planning, and error-driven fine-tuning, possible 

applications are opened up across a wide variety of 

tasks. Online RL algorithms, quantum optimization 

methods, and represented robotics could extend the 

idea of tool-enabled agency beyond digital spaces 

and into the world of physical manipulation. 

Standardized declarative agent specifications and 

event-driven communications channels expand 

existing end-to-end processes while preserving 

domain flexibility. The unification of large 

language models, high-fidelity error-handling 

protocols, adaptive learning architectures, and 

compositional reasoning makes the tool use the 

foundational technology of artificial general 

intelligence. His experience in deploying services 

and designing architectures for goal-directed 

autonomy has provided the level of autonomous 

machine agency needed to operate in complex real-

world environments, subserving human cognition 

through human-AI collaboration. 
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