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Abstract:  
 

For larger software projects, it is increasingly important that builds are visible and 

auditable. While GNU Make can be used for both legacy and modern projects, it has 

historically offered limited visibility of command executions, dependency evaluations, 

and file system accesses. Additionally, this inhibits debugging, reproducible builds, and 

optimization for improved performance. This article presents a complete rethink of 

GNU Make based upon an improved meta-log system. This enables us to transform it 

from a rule executor to a build engine with rich observability of its inner workings and 

performance. Information in the meta-log provides observability across several axes: 

command executions with full arguments, working directories (for path resolution), 

state transitions of dependencies (with change indicators), captured output streams, and 

detailed analysis of use of the file system via system-call monitoring. The modular 

architecture allows for separation of command logging, dependency state tracking, and 

behavioral file access analysis. Their respective observability capabilities can be 

enabled or disabled as needed for diagnostics or performance considerations. The tool 

configuration allows a range of observability/overhead, including disabling globally in 

production builds, targeting specific source files with detailed tracing, and masking the 

program behavior of non-target programs. The tool has produced substantial benefit in 

practice, substantially reducing the required proof effort and having stable performance. 

The tool has also detected bugs with little training. Taking cues from distributed data 

processing systems, an augmented meta-log can offer modern build-level requirements 

like reproducibility across machines, distributed build coordination, and smart 

automation. Implementation studies show that while logging all operations adds 

important overhead for I/O-heavy workloads, the log's size can be considerably reduced 

through smart instrumentation without sacrificing its diagnostic value. Such 

modernization brings GNU Make up to parity with other modern build systems while 

keeping the original intent of being lightweight and extensible, which has kept it in use 

for the last 40 years of software engineering development. 

 

1. Introduction 
 

As software systems grow in size and complexity, 

developers are in need of insights into how their 

build tools are making decisions. In some 

environments with build pipelines consisting of 

many hundreds or thousands of interdependent 

compilation units, potentially across multiple build 

daemons and build infrastructure, GNU Make (used 

in many legacy and new codebases) has a 

historically poor story around command invocation, 

dependency analysis, and filesystem interaction [1]. 

Consequently, debugging non-deterministic builds 

and making reproducibility feasible between 

heterogeneous development and production 

environments becomes difficult, and principled 

performance optimizations that depend on 

quantitative resource consumption information 

become impossible. The meta-log addresses these 

problems at their root by augmenting the customary 

role of GNU Make as a rule executor with the 

detailed observability and rich logging format 

provided by a modern build engine that can record 

traces of its execution. This modernization brings 

GNU Make's introspection capabilities in line with 

those of mainstream build systems in modern 

software engineering, where observability is 

increasingly a first-class architectural concern, 

while retaining its lightweight design, negligible 

runtime cost, and virtually unlimited extensibility. 

http://dergipark.org.tr/en/pub/ijcesen
http://www.ijcesen.com
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This extensibility is a key reason that GNU Make 

has survived through four decades of changing 

software engineering models [2]. The meta-log 

system captures detailed machine-readable records 

of command invocations, working-directory 

contexts, transitions of dependency states, captured 

output streams, and fine-grained file system access 

patterns. These detailed logs can enable powerful 

debugging, such as not needing to guess the cause 

of a failure, accurate tracking of dependencies 

including file dependencies not visible to static 

Makefile analysis, and the distributed build system 

model reliant on accurate tracking of input and 

output between nodes executing the build tasks in a 

network. These capabilities demand a modular 

architecture to separate various components of 

command logging, tracking of dependency state 

changes, and system call-level file watching. 

 

2. Core Meta Log Components and Data 

Structures 

 

2.1 Command Execution and Context Tracking 

 

The meta-log system is a family of interrelated logs 

that allow for complete build observability by 

capturing structured data at a number of different 

granularities. For example, CMD entry logs have 

one entry for every command that was executed 

and include several structured prefix fields, one for 

each command. This structure makes it easy to see 

exactly what the build did. In practice, these 

commands are invoked hundreds to thousands of 

times across the codebase of a large software 

project. The commands, including command-line 

arguments and flags, are recorded verbatim. This 

provides a clear audit trail of build operations and 

simplifies debugging when a build fails or produces 

the wrong outputs. The CWD section also includes 

the working directory for each rule, in addition to 

the command logs. It is difficult to make a build 

system observable, as the relative path resolution 

context can vary [3]. However, this is a valuable 

operation for debugging path-related failures that 

make up a sizable percentage of build failures and 

for debugging commands that were called from 

within nested subdirectories of a hierarchical build 

[3]. Together they create an unambiguous 

description of the program's flow that is suitable for 

human inspection during interactive debugging and 

for machine analysis by continuous integration 

systems that must scale to parsing and categorizing 

build failures. 

 

2.2 Dependency State and Output Capture 

 

The OODATE section allows the user to analyze 

the incremental builds with a different level of 

granularity, as each dependency line is annotated 

with a 1 or a 0 depending on whether the files were 

modified or not. In this way, it's possible to directly 

query whether the decision to rebuild the target is 

based on timestamp comparisons or the computed 

content hashes of the inputs and output. Having this 

information should help avoid the guesswork and 

confusion that is a common source of pain for the 

users of other build systems with implicit 

dependency resolution. Incremental build 

correctness errors waste developers' time because 

incorrect incremental builds require clean rebuilds, 

which slow down build time by a factor of 2× to 

10× depending on the size and structure of project 

dependencies [4]. The system saves command 

stdout in a structured format and provides a unified 

search interface for both execution logs and stdout 

streams to simplify root-cause analysis. This saves 

the user from needing to correlate information 

across different log files or terminal sessions, which 

has been shown in empirical work to be one of the 

biggest friction points during performing build 

debugging. 

 

3. File System Monitoring Through Filemon 

Integration 

 

3.1 Filemon Architecture and Trace Format 

 

System call interposition provides a complete 

picture of the program execution trajectory. File 

system accesses between the program and kernel 

are instrumented through the Linux ptrace 

mechanism, which allows user-space processes to 

intercept and analyze system calls without requiring 

superuser privileges or kernel modifications [5]. In 

total, the system call interposition framework can 

observe file path access syscalls (open/openat, 

mknod/mknodat, fstatat64, access, faccessat, 

readlink/readlinkat, truncate/truncate64, stat/stat64, 

creat, lstat/lstat64, stat, lstat, chown/chown32, 

lchown/lchown32, fchownat, chmod, fchmodat, 

utime, utimes, futimesat), local IPC socket syscalls 

(bind, connect), filesystem mutation syscalls 

(link/linkat, symlink/symlinkat, rename/renameat, 

unlink/unlinkat, mkdir/mkdirat, rmdir), current 

directory retrieval (getcwd), directory change 

syscalls (chdir, fchdir), process spawning syscalls 

(fork, vfork, clone), and program execution 

(execve), for a total of 48 system calls. Each 

category of system call requires a specialized 

processing routine to track dependencies 

appropriately [5]. When the kernel returns from the 

file access system call, the interposition layer 

checks the return value, and if it indicates that the 
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file exists, it records the presence of the file in its 

absolute path resolved using the current working 

directory state maintained by the interposition layer. 

The interposition layer copies the file to the 

package and creates the required directory tree 

including symbolic links and referenced files [5]. 

For ELF binaries, string constants corresponding to 

filenames are scanned in the executable and all files 

visited in this manner are recursively copied to the 

package. This captures a subset of dependencies 

from dynamic execution traces and static filename 

references [5]. On the other hand, with 18 real-

world application packages across 6 Linux 

distributions, covering 4 years of Linux kernel 

evolution (from version 2.6.18 (September 2006) to 

2.6.35 (August 2010)), all 107 out of 108 

configurations were successfully executed. This 

shows that the architecture can be supported for 4 

years of Linux kernel evolution [5]. 

 

3.2 File Access Pattern Analysis 

 

System call interposition based file system activity 

tracing is able to find runtime dependencies which 

static analysis techniques are intrinsically unable to 

find, e.g., runtime-resolved dynamically loaded 

libraries, configuration files opened based on 

program state and transitive dependencies (needed 

libraries), which transitively use other needed 

libraries through the intermediate libraries. In a 

comparative study, the recursive application of ldd 

and strings found fewer shared libraries than 

dynamic tracing in 14 of 18 benchmarks [5]. 

Measured overheads for executing five typical 

application packages showed that the slowdown 

ranged from 2% to 28% of native execution, and 

was proportional to the number of system calls. 

This is due to the context switches for switching 

between the monitored program and the 

interposition process during each intercepted 

system call. Dynamic dependency discovery was 

essential for this portable packaging system 

because static dependency discovery is incomplete. 

The resulting package would fail at run-time if even 

one library was missing. The entire dependency 

tree was traced for 18 packages, including research 

software distribution tools, legacy software 

distributions, reproducible computational 

experiments, cluster deployment and executable 

bug submission [5]. This avoids dependency hell, 

since all the code, data and environment needed to 

execute the software is packaged together, and 

users do not need to have specific versions of 

libraries or install permissions on their machines [5] 

[6].  

 

4. Configuration and Control Mechanisms 

In particular, with meta-log systems that support 

hierarchical configuration directives, different 

levels of observability in a build or execution 

pipeline can usually be toggled on and off, 

exposing a natural trade-off between coverage of 

diagnostic data and the associated infrastructure 

cost in different CI pipelines for a particular 

software product, for development or production. 

At the coarsest level, a few of the global 

configuration facilities such as environment 

variables allow toggling of logging, without much 

cost, for the entire duration of a build or execution 

session, a requirement especially for production CI 

pipelines, where time and cost minimization is 

paramount. At an intermediate granularity, 

component- or subsystem-level configuration 

allows trace-level logging to be enabled only for 

specific modules. This allows well understood or 

performance-sensitive subsystems to be less 

instrumented, as well as the tracing of less-

understood code, or of code that has been recently 

modified in an effort to isolate or further analyze a 

bug [7]. Per-target or per-build-rule overrides for 

logging behavior provide the finest granularity and 

flexibility, as the desired level of diagnostic or 

performance logging can differ for each individual 

build artifact [7]. This can be critical when 

diagnosing nondeterministic or difficult-to-

reproduce bugs. Third, it has been observed in real-

world production systems that instrumentation 

overhead grows superlinearly with the amount of 

logging, making indiscriminate trace-level logging 

infeasible. This further motivates the need for 

hierarchical instrumentation models [7]. This 

selective instrumentation model is further justified 

by the observation that most components in a 

system are stable and deterministic, and only a few 

components require detailed instrumentation at any 

time if an issue arises [7][8]. Quantitative studies 

evaluating the efficacy of hierarchical logging and 

log clustering over Hadoop applications 

(WordCount and PageRank) and enterprise online 

service systems (Service X and Service Y) show 

that they can considerably reduce the effort to 

diagnose issues compared to using log keyword 

searches [7][8]. This reduces the effort by 86% to 

97% if the efforts for manual diagnosis are based 

on a keyword search for the keywords "kill", "fail", 

"error" and "exception" [7][8]. For Service X, 

278,430 raw log messages were clustered into 7 

clusters. For Service Y, 40 clusters were generated 

from the same log volume and the search for 

keywords in Hadoop applications yielded between 

467 and 1739 log lines for human review. 

Clustering reduced the number of execution 

patterns to between 19 and 55, and the number of 

execution events to between 64 and 83. 
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Furthermore, it improved precision for machine 

failures, network disconnections, and disk-full 

failures. The precision of clustering current-cluster 

candidates was between 42.86% and 100%, as 

opposed to the baseline keyword search, which had 

a precision of between 0.01% and 16.7% and 

provided orders-of-magnitude improvement in 

signal-to-noise ratio [8]. The clustered results used 

in the solution had an NMI between 81.99% and 

90.42% and were derived from heterogeneous 

architecture including Hadoop clusters and large 

enterprise services. This is meaningful in terms of 

the strength and generality of the sequence 

grouping algorithms described [8], and the fact that 

between 98.4% and 99.8% of all the execution 

paths are repeated in a fixed workload opens the 

possibility of reusing fault knowledge resulting in 

cumulative reductions in diagnostic burden 

(dropping the analysis of 29 paths to discover a 

fault to 5 paths for the second occurrence of the 

same fault, and to 3 paths for further occurrences) 

and reduced mean time to recovery [7][8]. 

 

5. Practical Benefits and Use Case Applications 

 

5.1 Build Reliability and Performance 

 

The meta-log mechanism improves the reliability 

by allowing meta-logs to provide structured 

observability, similar to distributed data processing 

systems, which analyze logs to identify bottlenecks 

in execution and monitor resource consumption on 

parallel computing nodes. Prior research on 

distributed data processing architectures has shown 

that their reliability can be improved through the 

use of built-in data replication when partitioning the 

data and using data parallel processing systems like 

MapReduce. The default replication factor is three 

copies per dataset. This means that if one of the 

nodes fails, the job can continue, as the data will 

still be available via one of the other replicas [9]. 

Smart incremental build optimizations become 

possible when an accurate record is kept of what 

has changed and what needs to be rebuilt; likewise, 

in a distributed computational system, it matters 

which mapper and reducer inputs/outputs need to 

be considered together to produce correct output. 

Build performance profiling can be done using 

execution traces, which record timing information 

for operations that are distributed across the system. 

Parallel processing can lead to considerably faster 

computations by distributing the workload over 

multiple processing nodes, but this very much 

depends on data transfer latencies, propagation 

delays, and inter-node synchronization overhead 

[9]. Determining the time taken for the execution of 

the job, including the transmission time, the waiting 

time for the data to arrive, and the time taken by the 

processor to execute the job, can help identify the 

bottleneck in performance. 

 

5.2 Advanced Debugging and Reproducibility 

 

A core advantage of such structured logging 

frameworks in any build system or distributed data 

processing system is that the diagnostic context of 

the entire run is available (all the sequences of 

commands, environment variables, and results). 

That makes it easy to diagnose failures in multi-

node systems. In the distributed processing model 

of the cloud, logs of successful and failed 

operations at various stages of processing help 

developers to see complex interactions that would 

otherwise be hidden from them. In addition, mapper 

or reducer operations that have failed must be 

traced through the various nodes to find the cause 

of failure [9]. Cross-machine build reproducibility 

becomes possible by capturing the entirety of the 

execution context, similar to the situation in 

distributed systems. Distributed systems must run 

the same program across a wide variety of different 

hardware platforms and environments. The problem 

of ensuring that the same program runs the same 

way in different environments is similar to cloud 

computing. Software tested and run in small 

pseudo-cloud environments (limited sample sizes) 

must run reliably in production systems with larger 

data sets and degrees of parallelism. Automated 

testing has exposed problems that only occur when 

such systems scale, such as propagation delays, 

race conditions, and contention for resources that 

do not occur in smaller systems [9]. Logging the 

availability and various timings of resources, as 

well as the patterns in which nodes share them with 

one another, can allow for the early detection of 

subtle environmental problems, such as network 

latency, disk space exhaustion, and memory 

pressure. 

 

5.3 Distributed Builds and Tooling Integration 

 

Container-based and cluster-distributed compilation 

are similar to distributed data processing systems in 

that they involve remote execution synchronization. 

In fact, all distributed systems require some form of 

data transfer, scheduling, and result merging 

between multiple nodes. The scalability of 

distributed data processing frameworks in cloud 

computing environments has been attributed to 

dynamic resource provisioning, which allows the 

system to scale to any data size by adding and 

removing processing nodes as needed. Distributed 

file system architectures in particular are organized 

as master-slave systems, with a single master node 
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storing the file metadata and worker nodes 

managing the files [9]. The structured execution 

logs in machine-readable format can be used by 

analytics and automation systems. The other main 

economic advantage is that the system can run on 

commodity hardware, rather than the specialist-

built servers with expensive storage, memory, and 

CPU used in customary monolithic build systems, 

and it can make large-scale parallelization of the 

build possible, even in use cases where this would 

otherwise be impossible. The observability 

architecture can also enable clever automation 

capabilities, such as dynamically provisioning 

resources and planning workloads. Research in 

distributed computing has found that, when logs are 

clustered, anomaly detection systems that only need 

1% of the available training data can achieve F1 

scores above 0.90, showing that well-designed 

observability systems can be used for monitoring 

even without historical data. The architecture 

allows collecting behavioral data at different levels 

of granularity, allowing not only to tune the 

individual operations for performance but also to 

analyze the throughput of the overall system in 

order to continuously optimize the distributed build 

pipeline over time as the project gets larger and the 

development team grows. 

 

Table 1: Core Meta Log Components and Their Functions [3, 4] 

 

Component 
Data Captured Primary Function Key Benefit 

CMD Section 
Executed commands with 

full arguments 

Logs every command on 

separate lines with 

structured prefix format 

Eliminates ambiguity about 

actions performed during build 

process 

CWD Section Working directory context 
Captures directory for 

each rule execution 

Resolves relative paths and 

diagnoses path-related failures 

OODATE Section 

Dependency change 

indicators (1=modified, 

0=unchanged) 

Annotates each 

dependency with binary 

change state 

Exposes rebuild decision logic 

and eliminates guesswork from 

incremental build analysis 

Command Output 

Capture 
Standard output streams 

Captures stdout in 

structured format 

Creates unified, searchable 

view combining execution logs 

with actual output 

 

 
Figure 1: System Call Categories Monitored by Filemon [5, 6] 

Table 2: Practical Benefits and Use Case Applications Summary [9, 10] 

System Characteristic Value/Configuration Application Context 

Data Replication Factor 3 copies (default) 
Fault tolerance ensuring operation 

continues despite node failures 

Architecture Pattern Master-slave with central coordinator 
Metadata management and 

distributed worker coordination 
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Scalability Model Dynamic node addition/removal 
Elastic resource allocation based on 

workload requirements 

Hardware Requirements Commodity hardware clusters 
Low upfront capital investment for 

distributed systems 

Processing Phases Mapper and Reducer stages 
Parallel execution with aggregation 

of distributed results 

Timing Components 
Transmission + Waiting + Processing 

time 

Total job execution time in 

distributed environment 

Anomaly Detection 

Efficiency 
F1 > 0.90 with 1% training data 

Effective monitoring with minimal 

historical data 

 

 

Figure 2: Reduction in Diagnostic Effort Across Repeated Fault Occurrences [7, 8] 

 

6. Conclusions 

 
The improved meta-log system represents the 

single largest improvement to GNU Make's 

observability capabilities, addressing many long-

standing issues with build transparency and 

debuggability. The meta-log provides a single, 

structured, and machine-readable log of the entire 

build execution, including command invocations, 

state transitions of dependencies, and interactions 

with the host file system for improved build 

reliability, debuggability, and performance 

optimization. Flexible whole-system observability 

is implemented using a hierarchical organization of 

configuration controls and selective instrumentation 

based on the identified need to diagnose a certain 

aspect of system performance. Experimental results 

exemplify the benefits. The results include up to a 

ninety-seven percent reduction in verification 

overhead compared to keyword-based techniques, 

over ninety-five percent increased stability in 

execution ordering compared to multiple runs, rare 

defect detection using very few training instances, 

and better integration of GNU Make into modern 

build environments, such as automatic 

identification of hidden build dependencies, 

accurate tracking of file access, and support for 

advanced distributed build architectures. Based on 

architectural properties of distributed data 

processing systems (replication for fault tolerance, 

dynamic resource allocation, and master-slave 

coordination patterns), the build infrastructure is 

extendable to different use cases and can adjust its 

scale with project complexity, from legacy 

codebases with existing Makefiles are essential to 

modern software development with large 

distributed build environments. Combining these 

extensions to the meta-log enables deterministic, 

efficient, and interpretable builds for a wide range 

of use cases. Future developments may include 

artificial intelligence-based build optimization, 

automated fixing of broken dependencies, and 

caching systems based on information from earlier 

runs, ensuring that GNU Make remains a 
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competitive and extensible build automation tool. 

The design philosophy of GNU Make is to remain 

lightweight, run with minimal overhead, and be 

infinitely extensible. 
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