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Abstract:

For larger software projects, it is increasingly important that builds are visible and
auditable. While GNU Make can be used for both legacy and modern projects, it has
historically offered limited visibility of command executions, dependency evaluations,
and file system accesses. Additionally, this inhibits debugging, reproducible builds, and
optimization for improved performance. This article presents a complete rethink of
GNU Make based upon an improved meta-log system. This enables us to transform it
from a rule executor to a build engine with rich observability of its inner workings and
performance. Information in the meta-log provides observability across several axes:
command executions with full arguments, working directories (for path resolution),
state transitions of dependencies (with change indicators), captured output streams, and
detailed analysis of use of the file system via system-call monitoring. The modular
architecture allows for separation of command logging, dependency state tracking, and
behavioral file access analysis. Their respective observability capabilities can be
enabled or disabled as needed for diagnostics or performance considerations. The tool
configuration allows a range of observability/overhead, including disabling globally in
production builds, targeting specific source files with detailed tracing, and masking the
program behavior of non-target programs. The tool has produced substantial benefit in
practice, substantially reducing the required proof effort and having stable performance.
The tool has also detected bugs with little training. Taking cues from distributed data
processing systems, an augmented meta-log can offer modern build-level requirements
like reproducibility across machines, distributed build coordination, and smart
automation. Implementation studies show that while logging all operations adds
important overhead for 1/0-heavy workloads, the log's size can be considerably reduced
through smart instrumentation without sacrificing its diagnostic value. Such
modernization brings GNU Make up to parity with other modern build systems while
keeping the original intent of being lightweight and extensible, which has kept it in use
for the last 40 years of software engineering development.

1. Introduction

As software systems grow in size and complexity,

environments becomes difficult, and principled
performance optimizations that depend on
guantitative resource consumption information

developers are in need of insights into how their
build tools are making decisions. In some
environments with build pipelines consisting of
many hundreds or thousands of interdependent
compilation units, potentially across multiple build
daemons and build infrastructure, GNU Make (used
in many legacy and new codebases) has a
historically poor story around command invocation,
dependency analysis, and filesystem interaction [1].
Consequently, debugging non-deterministic builds
and making reproducibility feasible between
heterogeneous  development and  production

become impossible. The meta-log addresses these
problems at their root by augmenting the customary
role of GNU Make as a rule executor with the
detailed observability and rich logging format
provided by a modern build engine that can record
traces of its execution. This modernization brings
GNU Make's introspection capabilities in line with
those of mainstream build systems in modern
software engineering, where observability is
increasingly a first-class architectural concern,
while retaining its lightweight design, negligible
runtime cost, and virtually unlimited extensibility.
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This extensibility is a key reason that GNU Make
has survived through four decades of changing
software engineering models [2]. The meta-log
system captures detailed machine-readable records
of command invocations, working-directory
contexts, transitions of dependency states, captured
output streams, and fine-grained file system access
patterns. These detailed logs can enable powerful
debugging, such as not needing to guess the cause
of a failure, accurate tracking of dependencies
including file dependencies not visible to static
Makefile analysis, and the distributed build system
model reliant on accurate tracking of input and
output between nodes executing the build tasks in a
network. These capabilities demand a modular
architecture to separate various components of
command logging, tracking of dependency state
changes, and system call-level file watching.

2. Core Meta Log Components and Data
Structures

2.1 Command Execution and Context Tracking

The meta-log system is a family of interrelated logs
that allow for complete build observability by
capturing structured data at a number of different
granularities. For example, CMD entry logs have
one entry for every command that was executed
and include several structured prefix fields, one for
each command. This structure makes it easy to see
exactly what the build did. In practice, these
commands are invoked hundreds to thousands of
times across the codebase of a large software
project. The commands, including command-line
arguments and flags, are recorded verbatim. This
provides a clear audit trail of build operations and
simplifies debugging when a build fails or produces
the wrong outputs. The CWD section also includes
the working directory for each rule, in addition to
the command logs. It is difficult to make a build
system observable, as the relative path resolution
context can vary [3]. However, this is a valuable
operation for debugging path-related failures that
make up a sizable percentage of build failures and
for debugging commands that were called from
within nested subdirectories of a hierarchical build
[3]. Together they create an unambiguous
description of the program's flow that is suitable for
human inspection during interactive debugging and
for machine analysis by continuous integration
systems that must scale to parsing and categorizing
build failures.

2.2 Dependency State and Output Capture

706

The OODATE section allows the user to analyze
the incremental builds with a different level of
granularity, as each dependency line is annotated
with a 1 or a 0 depending on whether the files were
modified or not. In this way, it's possible to directly
query whether the decision to rebuild the target is
based on timestamp comparisons or the computed
content hashes of the inputs and output. Having this
information should help avoid the guesswork and
confusion that is a common source of pain for the
users of other build systems with implicit
dependency  resolution.  Incremental  build
correctness errors waste developers' time because
incorrect incremental builds require clean rebuilds,
which slow down build time by a factor of 2x to
10x depending on the size and structure of project
dependencies [4]. The system saves command
stdout in a structured format and provides a unified
search interface for both execution logs and stdout
streams to simplify root-cause analysis. This saves
the user from needing to correlate information
across different log files or terminal sessions, which
has been shown in empirical work to be one of the
biggest friction points during performing build
debugging.

3. File System Monitoring Through Filemon
Integration

3.1 Filemon Architecture and Trace Format

System call interposition provides a complete
picture of the program execution trajectory. File
system accesses between the program and kernel
are instrumented through the Linux ptrace
mechanism, which allows user-space processes to
intercept and analyze system calls without requiring
superuser privileges or kernel modifications [5]. In
total, the system call interposition framework can
observe file path access syscalls (open/openat,
mknod/mknodat, fstatat64, access, faccessat,
readlink/readlinkat, truncate/truncate64, stat/stat64,
creat, lIstat/Istat64, stat, Istat, chown/chown32,
Ichown/Ichown32, fchownat, chmod, fchmodat,
utime, utimes, futimesat), local IPC socket syscalls
(bind, connect), filesystem mutation syscalls
(link/linkat, symlink/symlinkat, rename/renameat,
unlink/unlinkat, mkdir/mkdirat, rmdir), current
directory retrieval (getcwd), directory change
syscalls (chdir, fchdir), process spawning syscalls
(fork, wvfork, clone), and program execution
(execve), for a total of 48 system calls. Each
category of system call requires a specialized
processing routine to track dependencies
appropriately [5]. When the kernel returns from the
file access system call, the interposition layer
checks the return value, and if it indicates that the
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file exists, it records the presence of the file in its
absolute path resolved using the current working
directory state maintained by the interposition layer.
The interposition layer copies the file to the
package and creates the required directory tree
including symbolic links and referenced files [5].
For ELF binaries, string constants corresponding to
filenames are scanned in the executable and all files
visited in this manner are recursively copied to the
package. This captures a subset of dependencies
from dynamic execution traces and static filename
references [5]. On the other hand, with 18 real-
world application packages across 6 Linux
distributions, covering 4 years of Linux kernel
evolution (from version 2.6.18 (September 2006) to
2.6.35 (August 2010)), all 107 out of 108
configurations were successfully executed. This
shows that the architecture can be supported for 4
years of Linux kernel evolution [5].

3.2 File Access Pattern Analysis

System call interposition based file system activity
tracing is able to find runtime dependencies which
static analysis techniques are intrinsically unable to
find, e.g., runtime-resolved dynamically loaded
libraries, configuration files opened based on
program state and transitive dependencies (needed
libraries), which transitively use other needed
libraries through the intermediate libraries. In a
comparative study, the recursive application of Idd
and strings found fewer shared libraries than
dynamic tracing in 14 of 18 benchmarks [5].
Measured overheads for executing five typical
application packages showed that the slowdown
ranged from 2% to 28% of native execution, and
was proportional to the number of system calls.
This is due to the context switches for switching
between the monitored program and the
interposition process during each intercepted
system call. Dynamic dependency discovery was
essential for this portable packaging system
because static dependency discovery is incomplete.
The resulting package would fail at run-time if even
one library was missing. The entire dependency
tree was traced for 18 packages, including research
software distribution tools, legacy software
distributions, reproducible computational
experiments, cluster deployment and executable
bug submission [5]. This avoids dependency hell,
since all the code, data and environment needed to
execute the software is packaged together, and
users do not need to have specific versions of
libraries or install permissions on their machines [5]

[6].

4. Configuration and Control Mechanisms
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In particular, with meta-log systems that support
hierarchical configuration directives, different
levels of observability in a build or execution
pipeline can usually be toggled on and off,
exposing a natural trade-off between coverage of
diagnostic data and the associated infrastructure
cost in different CI pipelines for a particular
software product, for development or production.
At the coarsest level, a few of the global
configuration facilities such as environment
variables allow toggling of logging, without much
cost, for the entire duration of a build or execution
session, a requirement especially for production CI
pipelines, where time and cost minimization is
paramount. At an intermediate granularity,
component- or subsystem-level configuration
allows trace-level logging to be enabled only for
specific modules. This allows well understood or
performance-sensitive subsystems to be less
instrumented, as well as the tracing of less-
understood code, or of code that has been recently
modified in an effort to isolate or further analyze a
bug [7]. Per-target or per-build-rule overrides for
logging behavior provide the finest granularity and
flexibility, as the desired level of diagnostic or
performance logging can differ for each individual
build artifact [7]. This can be critical when
diagnosing nondeterministic or difficult-to-
reproduce bugs. Third, it has been observed in real-
world production systems that instrumentation
overhead grows superlinearly with the amount of
logging, making indiscriminate trace-level logging
infeasible. This further motivates the need for
hierarchical instrumentation models [7]. This
selective instrumentation model is further justified
by the observation that most components in a
system are stable and deterministic, and only a few
components require detailed instrumentation at any
time if an issue arises [7][8]. Quantitative studies
evaluating the efficacy of hierarchical logging and
log clustering over Hadoop applications
(WordCount and PageRank) and enterprise online
service systems (Service X and Service Y) show
that they can considerably reduce the effort to
diagnose issues compared to using log keyword
searches [7][8]. This reduces the effort by 86% to
97% if the efforts for manual diagnosis are based
on a keyword search for the keywords "kill", "fail",
"error" and "exception" [7][8]. For Service X,
278,430 raw log messages were clustered into 7
clusters. For Service Y, 40 clusters were generated
from the same log volume and the search for
keywords in Hadoop applications yielded between
467 and 1739 log lines for human review.
Clustering reduced the number of execution
patterns to between 19 and 55, and the number of
execution events to between 64 and 83.
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Furthermore, it improved precision for machine
failures, network disconnections, and disk-full
failures. The precision of clustering current-cluster
candidates was between 42.86% and 100%, as
opposed to the baseline keyword search, which had
a precision of between 0.01% and 16.7% and
provided orders-of-magnitude improvement in
signal-to-noise ratio [8]. The clustered results used
in the solution had an NMI between 81.99% and
90.42% and were derived from heterogeneous
architecture including Hadoop clusters and large
enterprise services. This is meaningful in terms of
the strength and generality of the sequence
grouping algorithms described [8], and the fact that
between 98.4% and 99.8% of all the execution
paths are repeated in a fixed workload opens the
possibility of reusing fault knowledge resulting in
cumulative reductions in diagnostic burden
(dropping the analysis of 29 paths to discover a
fault to 5 paths for the second occurrence of the
same fault, and to 3 paths for further occurrences)
and reduced mean time to recovery [7][8].

5. Practical Benefits and Use Case Applications
5.1 Build Reliability and Performance

The meta-log mechanism improves the reliability
by allowing meta-logs to provide structured
observability, similar to distributed data processing
systems, which analyze logs to identify bottlenecks
in execution and monitor resource consumption on
parallel computing nodes. Prior research on
distributed data processing architectures has shown
that their reliability can be improved through the
use of built-in data replication when partitioning the
data and using data parallel processing systems like
MapReduce. The default replication factor is three
copies per dataset. This means that if one of the
nodes fails, the job can continue, as the data will
still be available via one of the other replicas [9].
Smart incremental build optimizations become
possible when an accurate record is kept of what
has changed and what needs to be rebuilt; likewise,
in a distributed computational system, it matters
which mapper and reducer inputs/outputs need to
be considered together to produce correct output.
Build performance profiling can be done using
execution traces, which record timing information
for operations that are distributed across the system.
Parallel processing can lead to considerably faster
computations by distributing the workload over
multiple processing nodes, but this very much
depends on data transfer latencies, propagation
delays, and inter-node synchronization overhead
[9]. Determining the time taken for the execution of
the job, including the transmission time, the waiting
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time for the data to arrive, and the time taken by the
processor to execute the job, can help identify the
bottleneck in performance.

5.2 Advanced Debugging and Reproducibility

A core advantage of such structured logging
frameworks in any build system or distributed data
processing system is that the diagnostic context of
the entire run is available (all the sequences of
commands, environment variables, and results).
That makes it easy to diagnose failures in multi-
node systems. In the distributed processing model
of the cloud, logs of successful and failed
operations at various stages of processing help
developers to see complex interactions that would
otherwise be hidden from them. In addition, mapper
or reducer operations that have failed must be
traced through the various nodes to find the cause
of failure [9]. Cross-machine build reproducibility
becomes possible by capturing the entirety of the
execution context, similar to the situation in
distributed systems. Distributed systems must run
the same program across a wide variety of different
hardware platforms and environments. The problem
of ensuring that the same program runs the same
way in different environments is similar to cloud
computing. Software tested and run in small
pseudo-cloud environments (limited sample sizes)
must run reliably in production systems with larger
data sets and degrees of parallelism. Automated
testing has exposed problems that only occur when
such systems scale, such as propagation delays,
race conditions, and contention for resources that
do not occur in smaller systems [9]. Logging the
availability and various timings of resources, as
well as the patterns in which nodes share them with
one another, can allow for the early detection of
subtle environmental problems, such as network
latency, disk space exhaustion, and memory
pressure.

5.3 Distributed Builds and Tooling Integration

Container-based and cluster-distributed compilation
are similar to distributed data processing systems in
that they involve remote execution synchronization.
In fact, all distributed systems require some form of
data transfer, scheduling, and result merging
between multiple nodes. The scalability of
distributed data processing frameworks in cloud
computing environments has been attributed to
dynamic resource provisioning, which allows the
system to scale to any data size by adding and
removing processing nodes as needed. Distributed
file system architectures in particular are organized
as master-slave systems, with a single master node



Shameer Erakkath Saidumuhammed / IJCESEN 12-1(2026)705-711

storing the file metadata and worker nodes
managing the files [9]. The structured execution
logs in machine-readable format can be used by
analytics and automation systems. The other main
economic advantage is that the system can run on
commodity hardware, rather than the specialist-
built servers with expensive storage, memory, and
CPU used in customary monolithic build systems,
and it can make large-scale parallelization of the
build possible, even in use cases where this would
otherwise be impossible. The observability
architecture can also enable clever automation
capabilities, such as dynamically provisioning
resources and planning workloads. Research in

distributed computing has found that, when logs are
clustered, anomaly detection systems that only need
1% of the available training data can achieve F1
scores above 0.90, showing that well-designed
observability systems can be used for monitoring
even without historical data. The architecture
allows collecting behavioral data at different levels
of granularity, allowing not only to tune the
individual operations for performance but also to
analyze the throughput of the overall system in
order to continuously optimize the distributed build
pipeline over time as the project gets larger and the
development team grows.

Table 1: Core Meta Log Components and Their Functions [3, 4]

0=unchanged)

Data Captured Primary Function Key Benefit
Component
. Executed commands with Logs every cpmmapd on E_Ilmlnates amblgwty abou_t
CMD Section separate lines with actions performed during build
full arguments .
structured prefix format process
CWD Section Working directory context Captures dlrectory for _Resolves relative paths _and
each rule execution diagnoses path-related failures
Dependency change Annotates each Exposes rebuild decision logic
OODATE Section | indicators (1=modified, dependency with binary and eliminates guesswork from

change state

incremental build analysis

Command Output Standard output streams

Captures stdout in

Creates unified, searchable
view combining execution logs

Capture structured format .
P with actual output
System Call Categories Monitored by Filemon
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Figure 1: System Call Categories Monitored by Filemon [5, 6]

Table 2: Practical Benefits and Use Case Applications Summary [9, 10]

System Characteristic

Value/Configuration

Application Context

Data Replication Factor 3 copies (default)

Fault tolerance ensuring operation
continues despite node failures

Architecture Pattern

Master-slave with central coordinator

Metadata management and
distributed worker coordination
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Scalability Model

Dynamic node addition/removal

Elastic resource allocation based on
workload requirements

Hardware Requirements

Commodity hardware clusters

Low upfront capital investment for
distributed systems

Processing Phases

Mapper and Reducer stages

Parallel execution with aggregation
of distributed results

Timing Components time

Transmission + Waiting + Processing

Total job execution time in
distributed environment

Anomaly Detection
Efficiency

F1 > 0.90 with 1% training data

Effective monitoring with minimal
historical data

Impact of Fault Knowledge Reuse on Diagnostic Effort

29

-

Number of Execution Paths Analyzed

First occurrence

Second occurrence

3
~—e

Subsequent occurrences

Fault Occurrence Index

Figure 2: Reduction in Diagnostic Effort Across Repeated Fault Occurrences [7, 8]

6. Conclusions

The improved meta-log system represents the
single largest improvement to GNU Make's
observability capabilities, addressing many long-
standing issues with build transparency and
debuggability. The meta-log provides a single,
structured, and machine-readable log of the entire
build execution, including command invocations,
state transitions of dependencies, and interactions
with the host file system for improved build
reliability,  debuggability, and performance
optimization. Flexible whole-system observability
is implemented using a hierarchical organization of
configuration controls and selective instrumentation
based on the identified need to diagnose a certain
aspect of system performance. Experimental results
exemplify the benefits. The results include up to a
ninety-seven percent reduction in verification
overhead compared to keyword-based techniques,
over ninety-five percent increased stability in
execution ordering compared to multiple runs, rare
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defect detection using very few training instances,
and better integration of GNU Make into modern
build  environments, such as  automatic
identification of hidden build dependencies,
accurate tracking of file access, and support for
advanced distributed build architectures. Based on
architectural  properties of distributed data
processing systems (replication for fault tolerance,
dynamic resource allocation, and master-slave
coordination patterns), the build infrastructure is
extendable to different use cases and can adjust its
scale with project complexity, from legacy
codebases with existing Makefiles are essential to
modern  software development with large
distributed build environments. Combining these
extensions to the meta-log enables deterministic,
efficient, and interpretable builds for a wide range
of use cases. Future developments may include
artificial intelligence-based build optimization,
automated fixing of broken dependencies, and
caching systems based on information from earlier
runs, ensuring that GNU Make remains a
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competitive and extensible build automation tool.
The design philosophy of GNU Make is to remain
lightweight, run with minimal overhead, and be
infinitely extensible.
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