

Copyright © IJCESEN

International Journal of Computational and Experimental

Science and ENgineering

(IJCESEN)

Vol. 12-No.1 (2026) pp. 705-711
http://www.ijcesen.com

ISSN: 2149-9144

 Research Article

Modernizing GNU Make's Meta Log System

Shameer Erakkath Saidumuhammed*

Independent Researcher, USA
* Corresponding Author Email: shameer.techdev@gmail.com - ORCID: 0000-0002-0047-6650

Article Info:

DOI: 10.22399/ijcesen.4897

Received : 29 November 2025

Revised : 25 January 2026

Accepted : 02 February 2026

Keywords

Build System Observability,

GNU Make Modernization,

Meta-Log Architecture,

Dependency Tracking,

System-Call Monitoring

Abstract:

For larger software projects, it is increasingly important that builds are visible and

auditable. While GNU Make can be used for both legacy and modern projects, it has

historically offered limited visibility of command executions, dependency evaluations,

and file system accesses. Additionally, this inhibits debugging, reproducible builds, and

optimization for improved performance. This article presents a complete rethink of

GNU Make based upon an improved meta-log system. This enables us to transform it

from a rule executor to a build engine with rich observability of its inner workings and

performance. Information in the meta-log provides observability across several axes:

command executions with full arguments, working directories (for path resolution),

state transitions of dependencies (with change indicators), captured output streams, and

detailed analysis of use of the file system via system-call monitoring. The modular

architecture allows for separation of command logging, dependency state tracking, and

behavioral file access analysis. Their respective observability capabilities can be

enabled or disabled as needed for diagnostics or performance considerations. The tool

configuration allows a range of observability/overhead, including disabling globally in

production builds, targeting specific source files with detailed tracing, and masking the

program behavior of non-target programs. The tool has produced substantial benefit in

practice, substantially reducing the required proof effort and having stable performance.

The tool has also detected bugs with little training. Taking cues from distributed data

processing systems, an augmented meta-log can offer modern build-level requirements

like reproducibility across machines, distributed build coordination, and smart

automation. Implementation studies show that while logging all operations adds

important overhead for I/O-heavy workloads, the log's size can be considerably reduced

through smart instrumentation without sacrificing its diagnostic value. Such

modernization brings GNU Make up to parity with other modern build systems while

keeping the original intent of being lightweight and extensible, which has kept it in use

for the last 40 years of software engineering development.

1. Introduction

As software systems grow in size and complexity,

developers are in need of insights into how their

build tools are making decisions. In some

environments with build pipelines consisting of

many hundreds or thousands of interdependent

compilation units, potentially across multiple build

daemons and build infrastructure, GNU Make (used

in many legacy and new codebases) has a

historically poor story around command invocation,

dependency analysis, and filesystem interaction [1].

Consequently, debugging non-deterministic builds

and making reproducibility feasible between

heterogeneous development and production

environments becomes difficult, and principled

performance optimizations that depend on

quantitative resource consumption information

become impossible. The meta-log addresses these

problems at their root by augmenting the customary

role of GNU Make as a rule executor with the

detailed observability and rich logging format

provided by a modern build engine that can record

traces of its execution. This modernization brings

GNU Make's introspection capabilities in line with

those of mainstream build systems in modern

software engineering, where observability is

increasingly a first-class architectural concern,

while retaining its lightweight design, negligible

runtime cost, and virtually unlimited extensibility.

http://dergipark.org.tr/en/pub/ijcesen
http://www.ijcesen.com

Shameer Erakkath Saidumuhammed / IJCESEN 12-1(2026)705-711

706

This extensibility is a key reason that GNU Make

has survived through four decades of changing

software engineering models [2]. The meta-log

system captures detailed machine-readable records

of command invocations, working-directory

contexts, transitions of dependency states, captured

output streams, and fine-grained file system access

patterns. These detailed logs can enable powerful

debugging, such as not needing to guess the cause

of a failure, accurate tracking of dependencies

including file dependencies not visible to static

Makefile analysis, and the distributed build system

model reliant on accurate tracking of input and

output between nodes executing the build tasks in a

network. These capabilities demand a modular

architecture to separate various components of

command logging, tracking of dependency state

changes, and system call-level file watching.

2. Core Meta Log Components and Data

Structures

2.1 Command Execution and Context Tracking

The meta-log system is a family of interrelated logs

that allow for complete build observability by

capturing structured data at a number of different

granularities. For example, CMD entry logs have

one entry for every command that was executed

and include several structured prefix fields, one for

each command. This structure makes it easy to see

exactly what the build did. In practice, these

commands are invoked hundreds to thousands of

times across the codebase of a large software

project. The commands, including command-line

arguments and flags, are recorded verbatim. This

provides a clear audit trail of build operations and

simplifies debugging when a build fails or produces

the wrong outputs. The CWD section also includes

the working directory for each rule, in addition to

the command logs. It is difficult to make a build

system observable, as the relative path resolution

context can vary [3]. However, this is a valuable

operation for debugging path-related failures that

make up a sizable percentage of build failures and

for debugging commands that were called from

within nested subdirectories of a hierarchical build

[3]. Together they create an unambiguous

description of the program's flow that is suitable for

human inspection during interactive debugging and

for machine analysis by continuous integration

systems that must scale to parsing and categorizing

build failures.

2.2 Dependency State and Output Capture

The OODATE section allows the user to analyze

the incremental builds with a different level of

granularity, as each dependency line is annotated

with a 1 or a 0 depending on whether the files were

modified or not. In this way, it's possible to directly

query whether the decision to rebuild the target is

based on timestamp comparisons or the computed

content hashes of the inputs and output. Having this

information should help avoid the guesswork and

confusion that is a common source of pain for the

users of other build systems with implicit

dependency resolution. Incremental build

correctness errors waste developers' time because

incorrect incremental builds require clean rebuilds,

which slow down build time by a factor of 2× to

10× depending on the size and structure of project

dependencies [4]. The system saves command

stdout in a structured format and provides a unified

search interface for both execution logs and stdout

streams to simplify root-cause analysis. This saves

the user from needing to correlate information

across different log files or terminal sessions, which

has been shown in empirical work to be one of the

biggest friction points during performing build

debugging.

3. File System Monitoring Through Filemon

Integration

3.1 Filemon Architecture and Trace Format

System call interposition provides a complete

picture of the program execution trajectory. File

system accesses between the program and kernel

are instrumented through the Linux ptrace

mechanism, which allows user-space processes to

intercept and analyze system calls without requiring

superuser privileges or kernel modifications [5]. In

total, the system call interposition framework can

observe file path access syscalls (open/openat,

mknod/mknodat, fstatat64, access, faccessat,

readlink/readlinkat, truncate/truncate64, stat/stat64,

creat, lstat/lstat64, stat, lstat, chown/chown32,

lchown/lchown32, fchownat, chmod, fchmodat,

utime, utimes, futimesat), local IPC socket syscalls

(bind, connect), filesystem mutation syscalls

(link/linkat, symlink/symlinkat, rename/renameat,

unlink/unlinkat, mkdir/mkdirat, rmdir), current

directory retrieval (getcwd), directory change

syscalls (chdir, fchdir), process spawning syscalls

(fork, vfork, clone), and program execution

(execve), for a total of 48 system calls. Each

category of system call requires a specialized

processing routine to track dependencies

appropriately [5]. When the kernel returns from the

file access system call, the interposition layer

checks the return value, and if it indicates that the

Shameer Erakkath Saidumuhammed / IJCESEN 12-1(2026)705-711

707

file exists, it records the presence of the file in its

absolute path resolved using the current working

directory state maintained by the interposition layer.

The interposition layer copies the file to the

package and creates the required directory tree

including symbolic links and referenced files [5].

For ELF binaries, string constants corresponding to

filenames are scanned in the executable and all files

visited in this manner are recursively copied to the

package. This captures a subset of dependencies

from dynamic execution traces and static filename

references [5]. On the other hand, with 18 real-

world application packages across 6 Linux

distributions, covering 4 years of Linux kernel

evolution (from version 2.6.18 (September 2006) to

2.6.35 (August 2010)), all 107 out of 108

configurations were successfully executed. This

shows that the architecture can be supported for 4

years of Linux kernel evolution [5].

3.2 File Access Pattern Analysis

System call interposition based file system activity

tracing is able to find runtime dependencies which

static analysis techniques are intrinsically unable to

find, e.g., runtime-resolved dynamically loaded

libraries, configuration files opened based on

program state and transitive dependencies (needed

libraries), which transitively use other needed

libraries through the intermediate libraries. In a

comparative study, the recursive application of ldd

and strings found fewer shared libraries than

dynamic tracing in 14 of 18 benchmarks [5].

Measured overheads for executing five typical

application packages showed that the slowdown

ranged from 2% to 28% of native execution, and

was proportional to the number of system calls.

This is due to the context switches for switching

between the monitored program and the

interposition process during each intercepted

system call. Dynamic dependency discovery was

essential for this portable packaging system

because static dependency discovery is incomplete.

The resulting package would fail at run-time if even

one library was missing. The entire dependency

tree was traced for 18 packages, including research

software distribution tools, legacy software

distributions, reproducible computational

experiments, cluster deployment and executable

bug submission [5]. This avoids dependency hell,

since all the code, data and environment needed to

execute the software is packaged together, and

users do not need to have specific versions of

libraries or install permissions on their machines [5]

[6].

4. Configuration and Control Mechanisms

In particular, with meta-log systems that support

hierarchical configuration directives, different

levels of observability in a build or execution

pipeline can usually be toggled on and off,

exposing a natural trade-off between coverage of

diagnostic data and the associated infrastructure

cost in different CI pipelines for a particular

software product, for development or production.

At the coarsest level, a few of the global

configuration facilities such as environment

variables allow toggling of logging, without much

cost, for the entire duration of a build or execution

session, a requirement especially for production CI

pipelines, where time and cost minimization is

paramount. At an intermediate granularity,

component- or subsystem-level configuration

allows trace-level logging to be enabled only for

specific modules. This allows well understood or

performance-sensitive subsystems to be less

instrumented, as well as the tracing of less-

understood code, or of code that has been recently

modified in an effort to isolate or further analyze a

bug [7]. Per-target or per-build-rule overrides for

logging behavior provide the finest granularity and

flexibility, as the desired level of diagnostic or

performance logging can differ for each individual

build artifact [7]. This can be critical when

diagnosing nondeterministic or difficult-to-

reproduce bugs. Third, it has been observed in real-

world production systems that instrumentation

overhead grows superlinearly with the amount of

logging, making indiscriminate trace-level logging

infeasible. This further motivates the need for

hierarchical instrumentation models [7]. This

selective instrumentation model is further justified

by the observation that most components in a

system are stable and deterministic, and only a few

components require detailed instrumentation at any

time if an issue arises [7][8]. Quantitative studies

evaluating the efficacy of hierarchical logging and

log clustering over Hadoop applications

(WordCount and PageRank) and enterprise online

service systems (Service X and Service Y) show

that they can considerably reduce the effort to

diagnose issues compared to using log keyword

searches [7][8]. This reduces the effort by 86% to

97% if the efforts for manual diagnosis are based

on a keyword search for the keywords "kill", "fail",

"error" and "exception" [7][8]. For Service X,

278,430 raw log messages were clustered into 7

clusters. For Service Y, 40 clusters were generated

from the same log volume and the search for

keywords in Hadoop applications yielded between

467 and 1739 log lines for human review.

Clustering reduced the number of execution

patterns to between 19 and 55, and the number of

execution events to between 64 and 83.

Shameer Erakkath Saidumuhammed / IJCESEN 12-1(2026)705-711

708

Furthermore, it improved precision for machine

failures, network disconnections, and disk-full

failures. The precision of clustering current-cluster

candidates was between 42.86% and 100%, as

opposed to the baseline keyword search, which had

a precision of between 0.01% and 16.7% and

provided orders-of-magnitude improvement in

signal-to-noise ratio [8]. The clustered results used

in the solution had an NMI between 81.99% and

90.42% and were derived from heterogeneous

architecture including Hadoop clusters and large

enterprise services. This is meaningful in terms of

the strength and generality of the sequence

grouping algorithms described [8], and the fact that

between 98.4% and 99.8% of all the execution

paths are repeated in a fixed workload opens the

possibility of reusing fault knowledge resulting in

cumulative reductions in diagnostic burden

(dropping the analysis of 29 paths to discover a

fault to 5 paths for the second occurrence of the

same fault, and to 3 paths for further occurrences)

and reduced mean time to recovery [7][8].

5. Practical Benefits and Use Case Applications

5.1 Build Reliability and Performance

The meta-log mechanism improves the reliability

by allowing meta-logs to provide structured

observability, similar to distributed data processing

systems, which analyze logs to identify bottlenecks

in execution and monitor resource consumption on

parallel computing nodes. Prior research on

distributed data processing architectures has shown

that their reliability can be improved through the

use of built-in data replication when partitioning the

data and using data parallel processing systems like

MapReduce. The default replication factor is three

copies per dataset. This means that if one of the

nodes fails, the job can continue, as the data will

still be available via one of the other replicas [9].

Smart incremental build optimizations become

possible when an accurate record is kept of what

has changed and what needs to be rebuilt; likewise,

in a distributed computational system, it matters

which mapper and reducer inputs/outputs need to

be considered together to produce correct output.

Build performance profiling can be done using

execution traces, which record timing information

for operations that are distributed across the system.

Parallel processing can lead to considerably faster

computations by distributing the workload over

multiple processing nodes, but this very much

depends on data transfer latencies, propagation

delays, and inter-node synchronization overhead

[9]. Determining the time taken for the execution of

the job, including the transmission time, the waiting

time for the data to arrive, and the time taken by the

processor to execute the job, can help identify the

bottleneck in performance.

5.2 Advanced Debugging and Reproducibility

A core advantage of such structured logging

frameworks in any build system or distributed data

processing system is that the diagnostic context of

the entire run is available (all the sequences of

commands, environment variables, and results).

That makes it easy to diagnose failures in multi-

node systems. In the distributed processing model

of the cloud, logs of successful and failed

operations at various stages of processing help

developers to see complex interactions that would

otherwise be hidden from them. In addition, mapper

or reducer operations that have failed must be

traced through the various nodes to find the cause

of failure [9]. Cross-machine build reproducibility

becomes possible by capturing the entirety of the

execution context, similar to the situation in

distributed systems. Distributed systems must run

the same program across a wide variety of different

hardware platforms and environments. The problem

of ensuring that the same program runs the same

way in different environments is similar to cloud

computing. Software tested and run in small

pseudo-cloud environments (limited sample sizes)

must run reliably in production systems with larger

data sets and degrees of parallelism. Automated

testing has exposed problems that only occur when

such systems scale, such as propagation delays,

race conditions, and contention for resources that

do not occur in smaller systems [9]. Logging the

availability and various timings of resources, as

well as the patterns in which nodes share them with

one another, can allow for the early detection of

subtle environmental problems, such as network

latency, disk space exhaustion, and memory

pressure.

5.3 Distributed Builds and Tooling Integration

Container-based and cluster-distributed compilation

are similar to distributed data processing systems in

that they involve remote execution synchronization.

In fact, all distributed systems require some form of

data transfer, scheduling, and result merging

between multiple nodes. The scalability of

distributed data processing frameworks in cloud

computing environments has been attributed to

dynamic resource provisioning, which allows the

system to scale to any data size by adding and

removing processing nodes as needed. Distributed

file system architectures in particular are organized

as master-slave systems, with a single master node

Shameer Erakkath Saidumuhammed / IJCESEN 12-1(2026)705-711

709

storing the file metadata and worker nodes

managing the files [9]. The structured execution

logs in machine-readable format can be used by

analytics and automation systems. The other main

economic advantage is that the system can run on

commodity hardware, rather than the specialist-

built servers with expensive storage, memory, and

CPU used in customary monolithic build systems,

and it can make large-scale parallelization of the

build possible, even in use cases where this would

otherwise be impossible. The observability

architecture can also enable clever automation

capabilities, such as dynamically provisioning

resources and planning workloads. Research in

distributed computing has found that, when logs are

clustered, anomaly detection systems that only need

1% of the available training data can achieve F1

scores above 0.90, showing that well-designed

observability systems can be used for monitoring

even without historical data. The architecture

allows collecting behavioral data at different levels

of granularity, allowing not only to tune the

individual operations for performance but also to

analyze the throughput of the overall system in

order to continuously optimize the distributed build

pipeline over time as the project gets larger and the

development team grows.

Table 1: Core Meta Log Components and Their Functions [3, 4]

Component
Data Captured Primary Function Key Benefit

CMD Section
Executed commands with

full arguments

Logs every command on

separate lines with

structured prefix format

Eliminates ambiguity about

actions performed during build

process

CWD Section Working directory context
Captures directory for

each rule execution

Resolves relative paths and

diagnoses path-related failures

OODATE Section

Dependency change

indicators (1=modified,

0=unchanged)

Annotates each

dependency with binary

change state

Exposes rebuild decision logic

and eliminates guesswork from

incremental build analysis

Command Output

Capture
Standard output streams

Captures stdout in

structured format

Creates unified, searchable

view combining execution logs

with actual output

Figure 1: System Call Categories Monitored by Filemon [5, 6]

Table 2: Practical Benefits and Use Case Applications Summary [9, 10]

System Characteristic Value/Configuration Application Context

Data Replication Factor 3 copies (default)
Fault tolerance ensuring operation

continues despite node failures

Architecture Pattern Master-slave with central coordinator
Metadata management and

distributed worker coordination

Shameer Erakkath Saidumuhammed / IJCESEN 12-1(2026)705-711

710

Scalability Model Dynamic node addition/removal
Elastic resource allocation based on

workload requirements

Hardware Requirements Commodity hardware clusters
Low upfront capital investment for

distributed systems

Processing Phases Mapper and Reducer stages
Parallel execution with aggregation

of distributed results

Timing Components
Transmission + Waiting + Processing

time

Total job execution time in

distributed environment

Anomaly Detection

Efficiency
F1 > 0.90 with 1% training data

Effective monitoring with minimal

historical data

Figure 2: Reduction in Diagnostic Effort Across Repeated Fault Occurrences [7, 8]

6. Conclusions

The improved meta-log system represents the

single largest improvement to GNU Make's

observability capabilities, addressing many long-

standing issues with build transparency and

debuggability. The meta-log provides a single,

structured, and machine-readable log of the entire

build execution, including command invocations,

state transitions of dependencies, and interactions

with the host file system for improved build

reliability, debuggability, and performance

optimization. Flexible whole-system observability

is implemented using a hierarchical organization of

configuration controls and selective instrumentation

based on the identified need to diagnose a certain

aspect of system performance. Experimental results

exemplify the benefits. The results include up to a

ninety-seven percent reduction in verification

overhead compared to keyword-based techniques,

over ninety-five percent increased stability in

execution ordering compared to multiple runs, rare

defect detection using very few training instances,

and better integration of GNU Make into modern

build environments, such as automatic

identification of hidden build dependencies,

accurate tracking of file access, and support for

advanced distributed build architectures. Based on

architectural properties of distributed data

processing systems (replication for fault tolerance,

dynamic resource allocation, and master-slave

coordination patterns), the build infrastructure is

extendable to different use cases and can adjust its

scale with project complexity, from legacy

codebases with existing Makefiles are essential to

modern software development with large

distributed build environments. Combining these

extensions to the meta-log enables deterministic,

efficient, and interpretable builds for a wide range

of use cases. Future developments may include

artificial intelligence-based build optimization,

automated fixing of broken dependencies, and

caching systems based on information from earlier

runs, ensuring that GNU Make remains a

Shameer Erakkath Saidumuhammed / IJCESEN 12-1(2026)705-711

711

competitive and extensible build automation tool.

The design philosophy of GNU Make is to remain

lightweight, run with minimal overhead, and be

infinitely extensible.

Author Statements:

 Ethical approval: The conducted research is

not related to either human or animal use.

 Conflict of interest: The authors declare that

they have no known competing financial

interests or personal relationships that could

have appeared to influence the work reported in

this paper

 Acknowledgement: The authors declare that

they have nobody or no-company to

acknowledge.

 Author contributions: The authors declare that

they have equal right on this paper.

 Funding information: The authors declare that

there is no funding to be acknowledged.

 Data availability statement: The data that

support the findings of this study are available

on request from the corresponding author. The

data are not publicly available due to privacy or

ethical restrictions.

 Use of AI Tools: The author(s) declare that no

generative AI or AI-assisted technologies were

used in the writing process of this manuscript.

References

[1] Dongjie He et al., "Understanding and Detecting

Evolution-Induced Compatibility Issues in Android

Apps," ACM Digital Library, 2018. Available:

https://dl.acm.org/doi/10.1145/3238147.3238185

[2] Shane McIntosh et al., "An Empirical Study of Build

Maintenance Effort," IEEE Xplore, 2011.

Available:

https://ieeexplore.ieee.org/document/6032453

[3] Cor-Paul Bezemer et al., "An Empirical Study of

Unspecified Dependencies in Make-Based Build

Systems," Springer Nature Link, 2017. Available:

https://link.springer.com/article/10.1007/s10664-

017-9510-8

[4] Bogdan Vasilescu et al., "Quality and Productivity

Outcomes Relating to Continuous Integration in

GitHub," ACM Digital Library, 2015. Available:

https://dl.acm.org/doi/10.1145/2786805.2786850

[5] Philip J. Guo and Dawson Engler, "CDE: Using

System Call Interposition to Automatically Create

Portable Software Packages," USENIX, 2011.

Available:

https://www.usenix.org/legacy/events/atc11/tech/fi

nal_files/GuoEngler.pdf

[6] Kaustubh Jain et al., "User-Level Infrastructure for

System Call Interposition: A Platform for Intrusion

Detection and Confinement", Network and

Distributed Systems Security Symposium (NDSS),

2000. Available: User-Level Infrastructure for

System Call Interposition: A Platform for Intrusion

Detection and Confinement

[7] Weiyi Shang et al., "Assisting Developers of Big

Data Analytics Applications When Deploying on

Hadoop Clouds," Research Gate, 2013. Available:

https://www.researchgate.net/publication/26112043

1

[8] Qingwei Lin et al., "Log Clustering Based Problem

Identification for Online Service Systems," ACM

Digital Library, 2016. Available:

https://dl.acm.org/doi/epdf/10.1145/2889160.28892

32

[9] Mansaf Alam et al., "Big Data Analytics in Cloud

Environment Using Hadoop," arXiv, 2015.

Available: https://arxiv.org/pdf/1610.04572

[10] Chris Egersdoerfer et al., "ClusterLog: Clustering

Logs for Effective Log-based Anomaly Detection,"

Proceedings of IEEE International Conference on

Big Data (Big Data), 2022. Available:

https://daidong.github.io/files/clusterlog-ftxs22.pdf

https://dl.acm.org/doi/10.1145/3238147.3238185
https://ieeexplore.ieee.org/document/5970164
https://ieeexplore.ieee.org/document/5970164
https://ieeexplore.ieee.org/document/6032453
https://link.springer.com/article/10.1007/s10664-017-9510-8
https://link.springer.com/article/10.1007/s10664-017-9510-8
https://link.springer.com/article/10.1007/s10664-017-9510-8
https://dl.acm.org/doi/10.1145/2786805.2786850
https://dl.acm.org/doi/10.1145/2786805.2786850
https://www.usenix.org/legacy/events/atc11/tech/final_files/GuoEngler.pdf
https://www.usenix.org/legacy/events/atc11/tech/final_files/GuoEngler.pdf
https://www.ndss-symposium.org/wp-content/uploads/2017/09/User-Level-Infrastructure-for-System-Call-Interposition-A-Platform-for-Intrusion-Detection-and-Confinement-K.-Jain.pdf
https://www.ndss-symposium.org/wp-content/uploads/2017/09/User-Level-Infrastructure-for-System-Call-Interposition-A-Platform-for-Intrusion-Detection-and-Confinement-K.-Jain.pdf
https://www.ndss-symposium.org/wp-content/uploads/2017/09/User-Level-Infrastructure-for-System-Call-Interposition-A-Platform-for-Intrusion-Detection-and-Confinement-K.-Jain.pdf
https://dl.acm.org/doi/10.1109/ICSE.2013.6606576
https://dl.acm.org/doi/10.1109/ICSE.2013.6606576
https://www.researchgate.net/publication/261120431_Assisting_developers_of_Big_Data_Analytics_Applications_when_deploying_on_Hadoop_clouds
https://www.researchgate.net/publication/261120431_Assisting_developers_of_Big_Data_Analytics_Applications_when_deploying_on_Hadoop_clouds
https://dl.acm.org/doi/10.1145/2889160.2889232
https://dl.acm.org/doi/10.1145/2889160.2889232
https://dl.acm.org/doi/epdf/10.1145/2889160.2889232
https://dl.acm.org/doi/epdf/10.1145/2889160.2889232
https://arxiv.org/pdf/1610.04572
https://daidong.github.io/files/clusterlog-ftxs22.pdf

