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Abstract:  
 

Globally-distributed database designs differ from customary RDBMS designs. Trade-

offs in multi-region operational capacity, disaster recovery, and long-term operational 

viability can lead to both conflicting and complementary planned priorities. Globally-

distributed databases make use of synchronous replication protocols, automated failover 

procedures, and consensus-based consistency models to provide strong availability 

guarantees across physical and geographic boundaries. However, these designs still 

suffer from the intrinsic latency and performance tradeoffs of cross-region coordination, 

while relational database architectures like PostgreSQL are able to achieve superior 

local performance characteristics and cost efficiency when workloads are localized to 

regions. That said, they require explicit operational documentation and orchestration for 

cross-region disaster recovery and failover. Beyond technical considerations, the 

architectural choices also include differing assumptions of system complexity: is it 

centralized within the database platform or distributed among operational processes and 

organizational practices? Organizational preference for a high base cost with automated 

resilience or for a low base cost with flexibility and explicit DR responsibilities affects 

the choice of architecture. An organization's decision depends on the requirement for 

geographic distribution, the tolerance for downtime and access latency, the cost of the 

infrastructure, and the availability of operational expertise. 

 

1. Introduction 
 

The model of data management systems has 

changed, and architects are considering a new 

perspective on the architecture of databases as the 

transition from silo architectures to multi-region 

and multi-failure domain solutions. The choice of 

databases in the current cloud-native world is an 

architectural choice that has a deep impact on the 

resiliency, performance characteristics, and 

operation of the domain. The rise of cloud DBMS 

has moved the enterprise DBA to manage the cloud 

data infrastructure from single-region deployments 

to the realization that the customary single-region 

deployments are no longer sufficient to meet the 

business needs of global access and high 

availability [1]. There are two leading methods of 

providing such environments. The leading options 

are global database distribution built for multi-

region deployment, and customary SQL databases 

with replication, backup, and disaster recovery 

facilities. 

To analyze these architectural choices, the usage of 

real-life operation data, disaster recovery systems, 

and workloads is assessed to assess the 

characteristics of databases. The chosen 

representative globally distributed SQL databases 

and PostgreSQL-compatible relational database 

systems as representatives of the architectural 

solutions to explore the differences between them. 

Given the importance of total cost of ownership and 

operational considerations as organizations build 

out their data infrastructure, it is increasingly 

relevant to understand the architectural trade-offs of 

these options in the context of the overall long-term 

viability of the data infrastructure investment [2]. 

The goal of this paper is not to advocate on behalf 

of one or the other approach, but rather to provide 

clarity on the contexts in which different data 

management models become helpful and the trade-

offs of each. 

2. Architectural Foundations and Design 

Philosophy 
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The architectural principles of globally distributed 

databases differ from other databases, including 

relational databases, in that they assume that 

failures are common and that failures are strongly 

correlated with geography. In other words, globally 

distributed databases often assume failure is 

inevitable in at least one part of the network. 

Shared properties of all these systems are the ability 

to replicate synchronously over site boundaries, 

automatic leader election and promotion of replicas, 

strong consistency guarantees across all replicas, 

and transparent partitioning and rebalancing of data 

and transactions. Their consistency models tend to 

differ from customary consistency models. In 

particular, there is a trade-off between the 

consistency of geographically dispersed nodes and 

the latency caused by distributed consensus 

algorithms [3]. This architectural pattern is intended 

to make handling application-level failures easier, 

at the cost of more coordination overhead in normal 

conditions.A characteristic of global databases is 

external consistency, which requires that replicas of 

the database make atomic progress in all 

transactions. In this sense, all transactions are 

simultaneous at a point in time, regardless of the 

geographical location of the replicas. In practice, 

this requires high-precision clock synchronization 

and multi-version concurrency control. These 

properties manifest in the design of the systems. 

For example, they realize automatic replica 

placement in a database and maintain sufficient 

replicas at all times to reach quorum in case of any 

regional network partition or a regional outage. 

These are made possible by a design strategy that 

focuses on correctness and availability over raw 

performance, and that treats cross-region latencies 

as a first-class design consideration.In contrast, 

legacy relational databases such as PostgreSQL 

were originally designed around a single primary 

architecture, and the history of extending these 

original, single primary databases to meet 

availability goals can be seen in read replicas (same 

region or cross region), automated or semi-

automated failovers (also same region or cross 

region), periodic backups, point in time recovery, 

and cross region disaster recovery. PostgreSQL 

provides logical replication capabilities, which are a 

work in progress to support more complex 

replication topologies. These include selective table 

replication, bidirectional replication, and more 

advanced conflict resolution operations, which 

allow for less overhead in distributed PostgreSQL 

deployments [4]. While their key advantages are 

local performance and cost reduction, their major 

disadvantage is the more involved planning needed 

when operationally recovering from failures. 

Architectural principles of PostgreSQL-based 

systems focus on predictable performance 

and efficiency for a defined operating range. 

Instead of hiding the complexity of distributed 

systems, PostgreSQL deployments expose this 

complexity, giving operators fine-tuned control 

over replication topology, failover behavior, and 

consistency trade-offs. This transparency allows 

organizations to optimize their deployments for 

their specific workload characteristics 

and availability requirements and places greater 

responsibility on operational staff to design, deploy, 

and implement the appropriate disaster recovery 

strategies. There is a philosophical dimension to 

this; globally distributed systems internalize the 

complexity of coordinating data in the database 

platform, while customary relational systems 

externalize this complexity to operational processes 

and procedures, allowing organizations to be 

explicit about their engineering cost and 

architectural trade-offs. 

 

3. Availability Architecture and Disaster 

Recovery Mechanisms 

 

However, it is arguably the handling of failure 

detection and recovery that is the most important 

distinguishing feature. Infrastructure-level failures 

in globally distributed networks are handled in a 

largely autonomous fashion. Loss of replicas, 

availability zones, and even regions can be 

tolerated via quorum-based replication protocols 

and automatic leadership election. In many cases, 

recovery is automatic, taking seconds or less, and 

requiring no operator action. These systems reset 

globally distributed databases to an internally 

consistent state. The architecture of such a system 

is concerned with automatic consistency 

mechanisms for geographically distributed replicas, 

often using consensus-based, agreement protocols 

for synchronous data replication [5]. The 

automation in these systems is derived from the 

architectural choices made in the system, since 

failures are handled in the database platform itself 

(using heartbeat protocols to get failure 

information, leader election using distributed 

consensus protocols, and traffic adjustments to 

working replicas without external 

orchestration).These availability models rely on 

consensus algorithms that balance the conflict 

between strong consistency and network latency 

and partition tolerance. In the case of globally 

distributed databases, the data is replicated across 

multiple nodes at geographically disparate 

locations, and a write is not considered committed 

until it is acknowledged by a majority quorum of 

the replica nodes. This pattern is intended for when 
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data needs to be available and consistent in an 

entire region (or one or more replicas) is 

unavailable. The remaining replicas in other regions 

can continue responding, so the system remains 

available. This great benefit is also complemented 

by the reduced operational costs, since operational 

teams do not have to rush to promote a replica in 

case of a common disaster or reconcile state 

differences.While PostgreSQL systems can be 

made highly available within the same region, their 

properties differ fundamentally when it comes to 

cross-region disaster recovery. Replicas usually 

require pre-provisioned infrastructure and explicit 

promotion/switchover events, and while modern 

managed services have stepped up their automation 

game, PostgreSQL systems still rely on human 

operators to make decisions when recovering from 

a disruption. Organizations that use PostgreSQL 

and desire high availability and disaster recovery 

must attempt to reconcile the trade-off between the 

consistency and durability guarantees of 

PostgreSQL synchronous replication with the write 

latency of PostgreSQL asynchronous replication, or 

vice versa, in terms of data loss, which is observed 

in operational documentation. This trade-off 

difference manifests as lower operational overhead 

during unplanned regional failure for globally 

distributed databases, and greater clarity during 

controlled PostgreSQL database recovery 

events.Disaster recovery for PostgreSQL 

deployments usually consists of standby replicas in 

regional failover locations used for streaming 

replication, backups that are configured and 

automated for point-in-time recovery (PITR), and a 

documented procedure to promote standby replicas 

to primary. Disaster recovery for PostgreSQL adds 

management overhead of ensuring replication is 

functioning, backups are retained for business 

needs, and failover processes are practiced and 

work correctly. Such explicitness provides a finer-

grained control over RPO and RTO as they relate to 

business needs, at the price of added operational 

effort. Comparison examines the relative nature of 

RPO and RTO by contrasting distributed databases, 

which tend to converge on near-zero RPOs with 

extremely low RTOs, with PostgreSQL 

deployments, which tend to tolerate measurable 

replication lag across regions, resulting in non-zero 

RPO on failover. 

 

4. Performance Characteristics and Scalability 

Dynamics 

 

In practice, the network and the database have 

measurable differences. A PostgreSQL-based 

architecture provides lower latencies for read and 

write operations within the same region or nearby 

replicas. Global databases are slower than regional 

databases that do not use cross-region consensus 

and commit protocols, due to the added latency 

incurred by breaking the physical boundaries of 

regions. The performance of distributed databases 

is a trade-off of consistency, availability, and 

partition tolerance, and all distributed systems with 

strict consistency guarantees have a latency penalty 

for writes, as they must coordinate writes to 

geographically distributed replicas of the database 

to keep all nodes consistent with the committed 

data [7]. This is more pronounced at high 

percentiles, in that the effect of coordination 

dominates the performance characteristics of the 

system, and tail latencies are dominated by the 

slowest replica participating in the consensus 

protocol than the median performance of the 

system. 

The write amplification of distributed consensus 

protocols determines the performance of globally 

distributed databases. Every write must be 

replicated to multiple nodes and then acknowledged 

from a quorum of replicas before it can be 

committed. The round-trip time for this operation is 

proportional to the number of replicas and the 

distance between them. Coordination cost is of 

particular concern in workloads with numerous 

smaller transactions, where coordination cost 

dominates transaction processing cost. In exchange 

for the overhead of coordination, strong consistency 

guarantees that the application's developers no 

longer have to manage the problems of eventual 

consistency and reconciling concurrent transactions 

across different replicas. 

A comparison of peak and non-peak operation 

shows the elasticity characteristics of database 

architectures. For most database systems, peak 

operation is better enabled by automatic scaling and 

dynamic rebalancing of partitions across the 

available nodes. This smooths contention and 

distributes the load across the available nodes 

without the intervention of a database 

administrator. PostgreSQL-based systems require 

more important capacity planning to avoid resource 

saturation under load variability, but they achieve 

excellent baseline performance. The analysis of 

compression schemes and memory management 

strategies shows how modern DBMS can benefit 

from architectural optimizations in the system, with 

different advantages deriving from whether the 

database is distributed or centralized [8]. This 

suggests a philosophical difference between the 

targets of automatic elasticity and predictable data 

locality.In terms of scalability, globally distributed 

databases are expected to directly support 

horizontal scaling across partitions with minimal 

application intervention. Their partitioning schemes 
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achieve near-linear scalability for many workloads 

more or less directly, enabling both storage 

capacity and computation throughput to 

incrementally increase with the addition of each 

new node to the system. The horizontal scale model 

is well-suited to workloads where there is uniform 

access to all rows within a table (for example, a 

large table). In this case, vertical scaling of nodes 

will not result in a meaningful performance 

improvement. PostgreSQL systems can scale with 

read workloads across replicas, but not with write 

workloads without vertical scaling, application-

layer sharding, or major architectural change. As 

such, globally distributed systems are often 

introduced, with write scalability and scalability 

along geographical dimensions being the primary 

objectives, while PostgreSQL is still the preferred 

option when the workload tends to be more locally 

bound, and it is generally worth the effort of 

manually distributing the data. 

 

5. Operational Complexity and Cost 

Considerations 

 

At a high level, the operational dimension shows 

how complexity manifests itself in the two types of 

architectures. Globally distributed databases move 

much of the complexity to the system architecture. 

This increases the importance of schema design and 

data access pattern optimization. It also requires a 

careful definition of transaction scope. Routine 

maintenance tends to be limited, and many 

organizations running globally-distributed 

databases find that operation is less about 

responding to incidents and more about the 

architecture of the system. Design-time decisions 

about data locality, transaction granularity, and 

query patterns have far-reaching implications for 

the long-term performance and economics of the 

system. PostgreSQL systems push operations 

complexity into the database: backup management, 

replica health checking and failover testing, disaster 

recovery rehearsals, and other such activities 

remain a regular part of database operations. 

Application semantics between models are similar, 

but neither model is conceptually simpler: each 

manages complexity differently in the stack. 

Globally distributed systems require more 

knowledge of distributed systems in application 

design and, for PostgreSQL, complex operational 

procedures to achieve high availability and 

expertise in the database domain.Much of the daily 

effort involved in the operation of a PostgreSQL 

deployment involves operating the database 

lifecycle. Database administrators may configure 

and manage regular backups and recovery point 

objectives, monitor replication lag to prevent 

replicas from falling too far behind the primary for 

failover, conduct disaster recovery drills, and 

manage schema migrations across both primary and 

replica servers to avoid breaking the logical 

replication. These activities are engineering-

intensive both in terms of their domain knowledge 

and special operations, but allow for a fine-grained 

understanding of the system and workload tuning. 

The operational model pays dividends as 

automation tooling and operational processes 

mature, allowing highly mature operational teams 

to operate large-scale PostgreSQL workloads via 

advanced monitoring, alerting, and automated 

repair tooling. 

Although no specific figures are provided regarding 

cost and performance, there are general trends: 

highly distributed systems sacrifice the relatively 

high costs of their base infrastructure for simpler 

operation and higher availability. The total cost of 

ownership of a distributed database system includes 

infrastructure, human resources cost for 

management and operation of a distributed system, 

potential slowdown of application development, 

and opportunity cost of engineering time spent on 

learning patterns for optimizing distributed 

transactions [9]. Compared to other distributed 

databases, PostgreSQL has a lower cost per unit of 

performance. This is because it can be run at low 

cost and fairly well on distributed workloads on a 

local scale. Cost increases with redundancy and 

availability requirements. This means ingraining 

cost estimation not just in relation to the cost of the 

infrastructure but also the attitude towards risk and 

the division of costs among team members: the 

total cost of ownership includes staffing, downtime, 

and opportunity cost of delaying feature 

development. 

In addition to the costs of the infrastructure and 

staff, there are the business costs of the availability 

and performance of the system. For the 

organization, this may be in the loss of revenue 

during an outage, the business benefit of the low 

latency of worldwide data access, or the operational 

simplicity that allows rapid repeat iterations. The 

architectural decisions associated with distributed 

databases versus customary databases reflect some 

of the differences in trade-offs regarding where 

operational complexity is handled within the stack. 

Distributed databases have generally chosen to 

handle operational complexity through the database 

implementations themselves. Customary databases 

have generally chosen to expose the operational 

complexity so that it may be customized and 

optimized [10]. Trade-offs such as these may 

help inform choices that align a database's 

operational design and trade-offs with an 

organization's business and strategy. Neither model 
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is intrinsically better; it depends on workload 

characteristics, the availability of resources, 

geographic distribution, and organizational 

capabilities. 
 

Table 1: Cloud Database Management Systems and Cost Implications [1][2] 

Aspect Cloud Database Systems Traditional Deployments 

Infrastructure Model Multi-region native support Single-region with extensions 

Availability Approach Built-in global distribution Requires configuration 

Cost Structure Higher baseline, lower operations Lower baseline, higher operations 

Scalability Pattern Automated horizontal scaling Manual capacity planning 

Operational Burden Minimal routine maintenance Significant ongoing attention 

 

Table 2: Consistency Models and Replication Architectures [3][4] 

Database Characteristic Distributed Systems PostgreSQL Systems 

Consistency Guarantee External consistency across replicas Configurable consistency levels 

Replication Mode Synchronous multi-region Streaming with lag tolerance 

Conflict Resolution Automated consensus protocols Manual or semi-automated 

Transaction Coordination Cross-region atomic commits Regional transaction boundaries 

Architectural Complexity Internalized platform complexity Externalized operational complexity 

 

Table 3: Disaster Recovery and Availability Mechanisms [5][6] 

Recovery Aspect Globally Distributed PostgreSQL-Based 

Failure Detection Automated heartbeat mechanisms Monitoring-dependent detection 

Replica Promotion Consensus-based leader election Explicit promotion procedures 

Geographic Resilience Multi-region quorum maintenance Pre-provisioned replica requirements 

Recovery Automation Minimal operator intervention Deliberate operational actions 

Data Loss Tolerance Near-zero RPO scenarios Measurable replication lag 

 

Table 4: Performance and Scalability Characteristics [7][8] 

Performance Dimension Distributed Databases Traditional Relational 

Write Latency Profile Higher due to coordination Lower for local operations 

Read Performance Geographic distribution dependent Optimized for locality 

Scalability Direction Horizontal by design Vertical with sharding extensions 

Load Elasticity Automated partition rebalancing Manual capacity adjustments 

Optimization Focus Consistency over latency Performance over automation 

 

6. Conclusions 

 
Both globally-distributed database systems and 

PostgreSQL-based relational database architectures 

are mature, production-proven implementations of 

the same data storage at scale model. The difference 

between the two approaches is not in their features 

or technical implementations but in their 

assumptions and expectations about failure modes, 

distribution, and ownership of the operations. 

Globally distributed databases are generally 

appropriate when: high availability in multiple 

regions is a requirement, the tolerance for 

downtime is near zero, maintenance over latency is 

prioritized, and multi-region workloads are 

expected. PostgreSQL-based systems should be 

used when: the workload is mainly regional, low 

latencies are desired, cost is a major consideration, 

and the organization has the capacity and 

willingness to operate its own disaster recovery 

capabilities. When it comes to selection, it is often 

the case that an important mental model is that the 

key decision is where to place the complexity, in 

the database platform itself, or in the operational 

processes and procedures that must deal with the 

platform. It is far more important to understand the 

fundamental assumptions in making these choices, 

and satisfying business needs and engineering 

priorities, than to obsess over individual benchmark 

results and technical specifications. In globalized 

operational environments, as organizations develop 

data architectures, this framework for analyzing 

database systems remains one avenue for making 

context-specific architecture decisions concerning 

technical and organizational issues. The future of 

database architecture lies not in one form of 

architecture being more helpful than other 

architectures, but rather in the matching of database 

capabilities to a particular operational environment, 
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where an architecture decision represents a cluster 

of trade-offs that takes into account organizational 

objectives, risk appetite, and the enterprise strategy. 
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