

Copyright © IJCESEN

International Journal of Computational and Experimental

Science and ENgineering

(IJCESEN)

Vol. 12-No.1 (2026) pp. 729-734
http://www.ijcesen.com

ISSN: 2149-9144

 Research Article

Comparing Globally Distributed Databases and Traditional Relational

Databases: An Architectural Analysis

Amit Kumar Garg*

Independent Researcher, USA
* Corresponding Author Email: ami2t@gmail.com - ORCID: 0000-0002-1047-6650

Article Info:

DOI: 10.22399/ijcesen.4900

Received : 29 November 2025

Revised : 25 January 2026

Accepted : 02 February 2026

Keywords

Globally Distributed Databases,

Relational Database Architecture,

Disaster Recovery Mechanisms,

Consensus-Based Consistency,

Operational Complexity Trade-Offs

Abstract:

Globally-distributed database designs differ from customary RDBMS designs. Trade-

offs in multi-region operational capacity, disaster recovery, and long-term operational

viability can lead to both conflicting and complementary planned priorities. Globally-

distributed databases make use of synchronous replication protocols, automated failover

procedures, and consensus-based consistency models to provide strong availability

guarantees across physical and geographic boundaries. However, these designs still

suffer from the intrinsic latency and performance tradeoffs of cross-region coordination,

while relational database architectures like PostgreSQL are able to achieve superior

local performance characteristics and cost efficiency when workloads are localized to

regions. That said, they require explicit operational documentation and orchestration for

cross-region disaster recovery and failover. Beyond technical considerations, the

architectural choices also include differing assumptions of system complexity: is it

centralized within the database platform or distributed among operational processes and

organizational practices? Organizational preference for a high base cost with automated

resilience or for a low base cost with flexibility and explicit DR responsibilities affects

the choice of architecture. An organization's decision depends on the requirement for

geographic distribution, the tolerance for downtime and access latency, the cost of the

infrastructure, and the availability of operational expertise.

1. Introduction

The model of data management systems has

changed, and architects are considering a new

perspective on the architecture of databases as the

transition from silo architectures to multi-region

and multi-failure domain solutions. The choice of

databases in the current cloud-native world is an

architectural choice that has a deep impact on the

resiliency, performance characteristics, and

operation of the domain. The rise of cloud DBMS

has moved the enterprise DBA to manage the cloud

data infrastructure from single-region deployments

to the realization that the customary single-region

deployments are no longer sufficient to meet the

business needs of global access and high

availability [1]. There are two leading methods of

providing such environments. The leading options

are global database distribution built for multi-

region deployment, and customary SQL databases

with replication, backup, and disaster recovery

facilities.

To analyze these architectural choices, the usage of

real-life operation data, disaster recovery systems,

and workloads is assessed to assess the

characteristics of databases. The chosen

representative globally distributed SQL databases

and PostgreSQL-compatible relational database

systems as representatives of the architectural

solutions to explore the differences between them.

Given the importance of total cost of ownership and

operational considerations as organizations build

out their data infrastructure, it is increasingly

relevant to understand the architectural trade-offs of

these options in the context of the overall long-term

viability of the data infrastructure investment [2].

The goal of this paper is not to advocate on behalf

of one or the other approach, but rather to provide

clarity on the contexts in which different data

management models become helpful and the trade-

offs of each.

2. Architectural Foundations and Design

Philosophy

http://dergipark.org.tr/en/pub/ijcesen
http://www.ijcesen.com

Amit Kumar Garg / IJCESEN 12-1(2026)729-734

730

The architectural principles of globally distributed

databases differ from other databases, including

relational databases, in that they assume that

failures are common and that failures are strongly

correlated with geography. In other words, globally

distributed databases often assume failure is

inevitable in at least one part of the network.

Shared properties of all these systems are the ability

to replicate synchronously over site boundaries,

automatic leader election and promotion of replicas,

strong consistency guarantees across all replicas,

and transparent partitioning and rebalancing of data

and transactions. Their consistency models tend to

differ from customary consistency models. In

particular, there is a trade-off between the

consistency of geographically dispersed nodes and

the latency caused by distributed consensus

algorithms [3]. This architectural pattern is intended

to make handling application-level failures easier,

at the cost of more coordination overhead in normal

conditions.A characteristic of global databases is

external consistency, which requires that replicas of

the database make atomic progress in all

transactions. In this sense, all transactions are

simultaneous at a point in time, regardless of the

geographical location of the replicas. In practice,

this requires high-precision clock synchronization

and multi-version concurrency control. These

properties manifest in the design of the systems.

For example, they realize automatic replica

placement in a database and maintain sufficient

replicas at all times to reach quorum in case of any

regional network partition or a regional outage.

These are made possible by a design strategy that

focuses on correctness and availability over raw

performance, and that treats cross-region latencies

as a first-class design consideration.In contrast,

legacy relational databases such as PostgreSQL

were originally designed around a single primary

architecture, and the history of extending these

original, single primary databases to meet

availability goals can be seen in read replicas (same

region or cross region), automated or semi-

automated failovers (also same region or cross

region), periodic backups, point in time recovery,

and cross region disaster recovery. PostgreSQL

provides logical replication capabilities, which are a

work in progress to support more complex

replication topologies. These include selective table

replication, bidirectional replication, and more

advanced conflict resolution operations, which

allow for less overhead in distributed PostgreSQL

deployments [4]. While their key advantages are

local performance and cost reduction, their major

disadvantage is the more involved planning needed

when operationally recovering from failures.

Architectural principles of PostgreSQL-based

systems focus on predictable performance

and efficiency for a defined operating range.

Instead of hiding the complexity of distributed

systems, PostgreSQL deployments expose this

complexity, giving operators fine-tuned control

over replication topology, failover behavior, and

consistency trade-offs. This transparency allows

organizations to optimize their deployments for

their specific workload characteristics

and availability requirements and places greater

responsibility on operational staff to design, deploy,

and implement the appropriate disaster recovery

strategies. There is a philosophical dimension to

this; globally distributed systems internalize the

complexity of coordinating data in the database

platform, while customary relational systems

externalize this complexity to operational processes

and procedures, allowing organizations to be

explicit about their engineering cost and

architectural trade-offs.

3. Availability Architecture and Disaster

Recovery Mechanisms

However, it is arguably the handling of failure

detection and recovery that is the most important

distinguishing feature. Infrastructure-level failures

in globally distributed networks are handled in a

largely autonomous fashion. Loss of replicas,

availability zones, and even regions can be

tolerated via quorum-based replication protocols

and automatic leadership election. In many cases,

recovery is automatic, taking seconds or less, and

requiring no operator action. These systems reset

globally distributed databases to an internally

consistent state. The architecture of such a system

is concerned with automatic consistency

mechanisms for geographically distributed replicas,

often using consensus-based, agreement protocols

for synchronous data replication [5]. The

automation in these systems is derived from the

architectural choices made in the system, since

failures are handled in the database platform itself

(using heartbeat protocols to get failure

information, leader election using distributed

consensus protocols, and traffic adjustments to

working replicas without external

orchestration).These availability models rely on

consensus algorithms that balance the conflict

between strong consistency and network latency

and partition tolerance. In the case of globally

distributed databases, the data is replicated across

multiple nodes at geographically disparate

locations, and a write is not considered committed

until it is acknowledged by a majority quorum of

the replica nodes. This pattern is intended for when

Amit Kumar Garg / IJCESEN 12-1(2026)729-734

731

data needs to be available and consistent in an

entire region (or one or more replicas) is

unavailable. The remaining replicas in other regions

can continue responding, so the system remains

available. This great benefit is also complemented

by the reduced operational costs, since operational

teams do not have to rush to promote a replica in

case of a common disaster or reconcile state

differences.While PostgreSQL systems can be

made highly available within the same region, their

properties differ fundamentally when it comes to

cross-region disaster recovery. Replicas usually

require pre-provisioned infrastructure and explicit

promotion/switchover events, and while modern

managed services have stepped up their automation

game, PostgreSQL systems still rely on human

operators to make decisions when recovering from

a disruption. Organizations that use PostgreSQL

and desire high availability and disaster recovery

must attempt to reconcile the trade-off between the

consistency and durability guarantees of

PostgreSQL synchronous replication with the write

latency of PostgreSQL asynchronous replication, or

vice versa, in terms of data loss, which is observed

in operational documentation. This trade-off

difference manifests as lower operational overhead

during unplanned regional failure for globally

distributed databases, and greater clarity during

controlled PostgreSQL database recovery

events.Disaster recovery for PostgreSQL

deployments usually consists of standby replicas in

regional failover locations used for streaming

replication, backups that are configured and

automated for point-in-time recovery (PITR), and a

documented procedure to promote standby replicas

to primary. Disaster recovery for PostgreSQL adds

management overhead of ensuring replication is

functioning, backups are retained for business

needs, and failover processes are practiced and

work correctly. Such explicitness provides a finer-

grained control over RPO and RTO as they relate to

business needs, at the price of added operational

effort. Comparison examines the relative nature of

RPO and RTO by contrasting distributed databases,

which tend to converge on near-zero RPOs with

extremely low RTOs, with PostgreSQL

deployments, which tend to tolerate measurable

replication lag across regions, resulting in non-zero

RPO on failover.

4. Performance Characteristics and Scalability

Dynamics

In practice, the network and the database have

measurable differences. A PostgreSQL-based

architecture provides lower latencies for read and

write operations within the same region or nearby

replicas. Global databases are slower than regional

databases that do not use cross-region consensus

and commit protocols, due to the added latency

incurred by breaking the physical boundaries of

regions. The performance of distributed databases

is a trade-off of consistency, availability, and

partition tolerance, and all distributed systems with

strict consistency guarantees have a latency penalty

for writes, as they must coordinate writes to

geographically distributed replicas of the database

to keep all nodes consistent with the committed

data [7]. This is more pronounced at high

percentiles, in that the effect of coordination

dominates the performance characteristics of the

system, and tail latencies are dominated by the

slowest replica participating in the consensus

protocol than the median performance of the

system.

The write amplification of distributed consensus

protocols determines the performance of globally

distributed databases. Every write must be

replicated to multiple nodes and then acknowledged

from a quorum of replicas before it can be

committed. The round-trip time for this operation is

proportional to the number of replicas and the

distance between them. Coordination cost is of

particular concern in workloads with numerous

smaller transactions, where coordination cost

dominates transaction processing cost. In exchange

for the overhead of coordination, strong consistency

guarantees that the application's developers no

longer have to manage the problems of eventual

consistency and reconciling concurrent transactions

across different replicas.

A comparison of peak and non-peak operation

shows the elasticity characteristics of database

architectures. For most database systems, peak

operation is better enabled by automatic scaling and

dynamic rebalancing of partitions across the

available nodes. This smooths contention and

distributes the load across the available nodes

without the intervention of a database

administrator. PostgreSQL-based systems require

more important capacity planning to avoid resource

saturation under load variability, but they achieve

excellent baseline performance. The analysis of

compression schemes and memory management

strategies shows how modern DBMS can benefit

from architectural optimizations in the system, with

different advantages deriving from whether the

database is distributed or centralized [8]. This

suggests a philosophical difference between the

targets of automatic elasticity and predictable data

locality.In terms of scalability, globally distributed

databases are expected to directly support

horizontal scaling across partitions with minimal

application intervention. Their partitioning schemes

Amit Kumar Garg / IJCESEN 12-1(2026)729-734

732

achieve near-linear scalability for many workloads

more or less directly, enabling both storage

capacity and computation throughput to

incrementally increase with the addition of each

new node to the system. The horizontal scale model

is well-suited to workloads where there is uniform

access to all rows within a table (for example, a

large table). In this case, vertical scaling of nodes

will not result in a meaningful performance

improvement. PostgreSQL systems can scale with

read workloads across replicas, but not with write

workloads without vertical scaling, application-

layer sharding, or major architectural change. As

such, globally distributed systems are often

introduced, with write scalability and scalability

along geographical dimensions being the primary

objectives, while PostgreSQL is still the preferred

option when the workload tends to be more locally

bound, and it is generally worth the effort of

manually distributing the data.

5. Operational Complexity and Cost

Considerations

At a high level, the operational dimension shows

how complexity manifests itself in the two types of

architectures. Globally distributed databases move

much of the complexity to the system architecture.

This increases the importance of schema design and

data access pattern optimization. It also requires a

careful definition of transaction scope. Routine

maintenance tends to be limited, and many

organizations running globally-distributed

databases find that operation is less about

responding to incidents and more about the

architecture of the system. Design-time decisions

about data locality, transaction granularity, and

query patterns have far-reaching implications for

the long-term performance and economics of the

system. PostgreSQL systems push operations

complexity into the database: backup management,

replica health checking and failover testing, disaster

recovery rehearsals, and other such activities

remain a regular part of database operations.

Application semantics between models are similar,

but neither model is conceptually simpler: each

manages complexity differently in the stack.

Globally distributed systems require more

knowledge of distributed systems in application

design and, for PostgreSQL, complex operational

procedures to achieve high availability and

expertise in the database domain.Much of the daily

effort involved in the operation of a PostgreSQL

deployment involves operating the database

lifecycle. Database administrators may configure

and manage regular backups and recovery point

objectives, monitor replication lag to prevent

replicas from falling too far behind the primary for

failover, conduct disaster recovery drills, and

manage schema migrations across both primary and

replica servers to avoid breaking the logical

replication. These activities are engineering-

intensive both in terms of their domain knowledge

and special operations, but allow for a fine-grained

understanding of the system and workload tuning.

The operational model pays dividends as

automation tooling and operational processes

mature, allowing highly mature operational teams

to operate large-scale PostgreSQL workloads via

advanced monitoring, alerting, and automated

repair tooling.

Although no specific figures are provided regarding

cost and performance, there are general trends:

highly distributed systems sacrifice the relatively

high costs of their base infrastructure for simpler

operation and higher availability. The total cost of

ownership of a distributed database system includes

infrastructure, human resources cost for

management and operation of a distributed system,

potential slowdown of application development,

and opportunity cost of engineering time spent on

learning patterns for optimizing distributed

transactions [9]. Compared to other distributed

databases, PostgreSQL has a lower cost per unit of

performance. This is because it can be run at low

cost and fairly well on distributed workloads on a

local scale. Cost increases with redundancy and

availability requirements. This means ingraining

cost estimation not just in relation to the cost of the

infrastructure but also the attitude towards risk and

the division of costs among team members: the

total cost of ownership includes staffing, downtime,

and opportunity cost of delaying feature

development.

In addition to the costs of the infrastructure and

staff, there are the business costs of the availability

and performance of the system. For the

organization, this may be in the loss of revenue

during an outage, the business benefit of the low

latency of worldwide data access, or the operational

simplicity that allows rapid repeat iterations. The

architectural decisions associated with distributed

databases versus customary databases reflect some

of the differences in trade-offs regarding where

operational complexity is handled within the stack.

Distributed databases have generally chosen to

handle operational complexity through the database

implementations themselves. Customary databases

have generally chosen to expose the operational

complexity so that it may be customized and

optimized [10]. Trade-offs such as these may

help inform choices that align a database's

operational design and trade-offs with an

organization's business and strategy. Neither model

Amit Kumar Garg / IJCESEN 12-1(2026)729-734

733

is intrinsically better; it depends on workload

characteristics, the availability of resources,

geographic distribution, and organizational

capabilities.

Table 1: Cloud Database Management Systems and Cost Implications [1][2]

Aspect Cloud Database Systems Traditional Deployments

Infrastructure Model Multi-region native support Single-region with extensions

Availability Approach Built-in global distribution Requires configuration

Cost Structure Higher baseline, lower operations Lower baseline, higher operations

Scalability Pattern Automated horizontal scaling Manual capacity planning

Operational Burden Minimal routine maintenance Significant ongoing attention

Table 2: Consistency Models and Replication Architectures [3][4]

Database Characteristic Distributed Systems PostgreSQL Systems

Consistency Guarantee External consistency across replicas Configurable consistency levels

Replication Mode Synchronous multi-region Streaming with lag tolerance

Conflict Resolution Automated consensus protocols Manual or semi-automated

Transaction Coordination Cross-region atomic commits Regional transaction boundaries

Architectural Complexity Internalized platform complexity Externalized operational complexity

Table 3: Disaster Recovery and Availability Mechanisms [5][6]

Recovery Aspect Globally Distributed PostgreSQL-Based

Failure Detection Automated heartbeat mechanisms Monitoring-dependent detection

Replica Promotion Consensus-based leader election Explicit promotion procedures

Geographic Resilience Multi-region quorum maintenance Pre-provisioned replica requirements

Recovery Automation Minimal operator intervention Deliberate operational actions

Data Loss Tolerance Near-zero RPO scenarios Measurable replication lag

Table 4: Performance and Scalability Characteristics [7][8]

Performance Dimension Distributed Databases Traditional Relational

Write Latency Profile Higher due to coordination Lower for local operations

Read Performance Geographic distribution dependent Optimized for locality

Scalability Direction Horizontal by design Vertical with sharding extensions

Load Elasticity Automated partition rebalancing Manual capacity adjustments

Optimization Focus Consistency over latency Performance over automation

6. Conclusions

Both globally-distributed database systems and

PostgreSQL-based relational database architectures

are mature, production-proven implementations of

the same data storage at scale model. The difference

between the two approaches is not in their features

or technical implementations but in their

assumptions and expectations about failure modes,

distribution, and ownership of the operations.

Globally distributed databases are generally

appropriate when: high availability in multiple

regions is a requirement, the tolerance for

downtime is near zero, maintenance over latency is

prioritized, and multi-region workloads are

expected. PostgreSQL-based systems should be

used when: the workload is mainly regional, low

latencies are desired, cost is a major consideration,

and the organization has the capacity and

willingness to operate its own disaster recovery

capabilities. When it comes to selection, it is often

the case that an important mental model is that the

key decision is where to place the complexity, in

the database platform itself, or in the operational

processes and procedures that must deal with the

platform. It is far more important to understand the

fundamental assumptions in making these choices,

and satisfying business needs and engineering

priorities, than to obsess over individual benchmark

results and technical specifications. In globalized

operational environments, as organizations develop

data architectures, this framework for analyzing

database systems remains one avenue for making

context-specific architecture decisions concerning

technical and organizational issues. The future of

database architecture lies not in one form of

architecture being more helpful than other

architectures, but rather in the matching of database

capabilities to a particular operational environment,

Amit Kumar Garg / IJCESEN 12-1(2026)729-734

734

where an architecture decision represents a cluster

of trade-offs that takes into account organizational

objectives, risk appetite, and the enterprise strategy.

Author Statements:

 Ethical approval: The conducted research is

not related to either human or animal use.

 Conflict of interest: The authors declare that

they have no known competing financial

interests or personal relationships that could

have appeared to influence the work reported in

this paper

 Acknowledgement: The authors declare that

they have nobody or no-company to

acknowledge.

 Author contributions: The authors declare that

they have equal right on this paper.

 Funding information: The authors declare that

there is no funding to be acknowledged.

 Data availability statement: The data that

support the findings of this study are available

on request from the corresponding author. The

data are not publicly available due to privacy or

ethical restrictions.

 Use of AI Tools: The author(s) declare that no

generative AI or AI-assisted technologies were

used in the writing process of this manuscript.

References

[1] Cecilia Lin, "Cloud Database Management Systems:

A Comprehensive Guide," Larksuite, 2025.

[Online]. Available:

https://www.larksuite.com/en_us/blog/cloud-

database-management-systems

[2] Siemens, "The True Cost of Downtime 2024," 2024.

[Online]. Available:

https://assets.new.siemens.com/siemens/assets/api/

uuid:1b43afb5-2d07-47f7-9eb7-

893fe7d0bc59/TCOD-2024_original.pdf

[3] Daniel Abadi, "Consistency Tradeoffs in Modern

Distributed Database System Design: CAP is Only

Part of the Story," ACM Digital Library, 2012.

[Online]. Available:

https://dl.acm.org/doi/10.1109/MC.2012.33

[4] Ahsan Hadi, "PostgreSQL 16 Logical Replication

Improvements in Action," pgEdge Blog, 2023.

[Online]. Available:

https://www.pgedge.com/blog/postgresql-16-

logical-replication-improvements-in-action

[5] James C. Corbett, et al., "Spanner: Google's Globally

Distributed Database," ACM Digital Library, 2013.

[Online]. Available:

https://dl.acm.org/doi/10.1145/2491245

[6] Arun Seetharaman, "High Availability and Disaster

Recovery: PostgreSQL on AWS — Part 5,"

Medium, 2024. [Online]. Available:

https://medium.com/@arunseetharaman/high-

availability-and-disaster-recovery-postgresql-on-

aws-part-5-d0521f5af470

[7] Michael Stonebraker, Ariel Weisberg, "The VoltDB

Main Memory DBMS," IEEE Data Engineering

Bulletin, 2013. [Online]. Available:

http://sites.computer.org/debull/a13june/voltdb1.pd

f

[8] Carsten Binnig, et al., "Dictionary-based order-

preserving string compression for main memory

column stores," ACM Digital Library, 2009

[Online]. Available:

https://dl.acm.org/doi/10.1145/1559845.1559877

[9] Feifei Li et al., "Modernization of Databases in the

Cloud Era: Building Databases that Run like

Legos," VLDB, 2023. [Online]. Available:

https://www.vldb.org/pvldb/vol16/p4140-li.pdf

[10] Milvus, "What is the Difference Between a

Distributed Database and a Traditional Relational

Database?" [Online]. Available:

https://milvus.io/ai-quick-reference/what-is-the-

difference-between-a-distributed-database-and-a-

traditional-relational-database

https://www.larksuite.com/en_us/blog/cloud-database-management-systems
https://www.larksuite.com/en_us/blog/cloud-database-management-systems
https://assets.new.siemens.com/siemens/assets/api/uuid:1b43afb5-2d07-47f7-9eb7-893fe7d0bc59/TCOD-2024_original.pdf
https://assets.new.siemens.com/siemens/assets/api/uuid:1b43afb5-2d07-47f7-9eb7-893fe7d0bc59/TCOD-2024_original.pdf
https://assets.new.siemens.com/siemens/assets/api/uuid:1b43afb5-2d07-47f7-9eb7-893fe7d0bc59/TCOD-2024_original.pdf
https://dl.acm.org/doi/10.1109/MC.2012.33
https://www.pgedge.com/blog/postgresql-16-logical-replication-improvements-in-action
https://www.pgedge.com/blog/postgresql-16-logical-replication-improvements-in-action
https://dl.acm.org/doi/10.1145/2491245
https://medium.com/@arunseetharaman/high-availability-and-disaster-recovery-postgresql-on-aws-part-5-d0521f5af470
https://medium.com/@arunseetharaman/high-availability-and-disaster-recovery-postgresql-on-aws-part-5-d0521f5af470
https://medium.com/@arunseetharaman/high-availability-and-disaster-recovery-postgresql-on-aws-part-5-d0521f5af470
http://sites.computer.org/debull/a13june/voltdb1.pdf
http://sites.computer.org/debull/a13june/voltdb1.pdf
https://dl.acm.org/doi/10.1145/1559845.1559877
https://www.vldb.org/pvldb/vol16/p4140-li.pdf
https://milvus.io/ai-quick-reference/what-is-the-difference-between-a-distributed-database-and-a-traditional-relational-database
https://milvus.io/ai-quick-reference/what-is-the-difference-between-a-distributed-database-and-a-traditional-relational-database
https://milvus.io/ai-quick-reference/what-is-the-difference-between-a-distributed-database-and-a-traditional-relational-database

