

718

Copyright © IJCESEN

International Journal of Computational and Experimental

Science and ENgineering

(IJCESEN)

Vol. 10-No.4 (2024) pp. 718-730
http://www.ijcesen.com

ISSN: 2149-9144

 Research Article

Enhancing Food Image Classification with Particle Swarm Optimization on

NutriFoodNet and Data Augmentation Parameters

Sreetha E. S.1*, G. Naveen Sundar2, D. Narmadha3

1Division of Computer Science and Engineering, Karunya Institute of Technology and Sciences, Tamilnadu, India Christ

Department of Computer Science and Engineering, Christ College of Engineering. Kerala, India
* Corresponding Author Email: sreethasreedharan@gmail.com - ORCID: 0000-0002-7070-2687

2Division of Computer Science and Engineering, Karunya Institute of Technology and Sciences, Tamilnadu,
Email: naveensundar@karunya.edu - ORCID: 0000-0002-4638-7867

3Division of Artificial Intelligence and Machine Learning, Karunya Institute of Technology and Sciences, Tamilnadu,

India
Email: narmadha@karunya.edu - ORCID: 0000-0002-3384-4096

Article Info:

DOI: 10.22399/ijcesen.493

Received: 08 October 2024

Accepted: 14 October 2024

Keywords:

Food recognition

Data augmentation

Convolutional Neural Network

Particle Swarm Optimization

NutriFoodNet

Abstract:

A convolutional neural network (CNN) architecture, NutriFoodNet, enhanced through

Particle Swarm Optimization (PSO) is suggested in this paper to optimize data

augmentation parameters and key hyperparameters, specifically designed for food image

recognition. Accurate food image classification plays a vital function in various

applications, including nutrition management, dietary assessment, and healthcare, as it

aids in the automated recognition and analysis of food items from images. The

implementation aimed to improve classification accuracy on the Food101 dataset.

Initially, the NutriFoodNet model achieved an accuracy of 97.3%. The model's

performance was further refined by applying PSO, resulting in an increased accuracy of

98.5%. This optimized system was benchmarked against state-of-the-art architectures,

including ResNet-18, ResNet-50, and Inception V3, showcasing its exceptional

performance. The proposed system highlights the efficiency of PSO in fine-tuning

augmentation parameters and CNN hyperparameters, leading to significant

improvements in model accuracy for food image classification tasks. This advancement

underscores the potential of enhanced food image classification systems in contributing

to better dietary monitoring and healthcare outcomes.

1. Introduction

The food sector has also undergone a revolution in

research yield, especially in the area of food image

classification. Previously, distinguishing between

different types of food items was relatively

straightforward due to the limited variety. However,

with the abundance of food options available today,

accurately classifying them has become a daunting

task. This challenge is a fundamental problem in

image analysis and necessitates the development of

intelligent food classification systems. Food image

classification holds great importance in applications

ranging from dietary analysis to food

recommendation systems and nutritional

monitoring. A significant obstacle in the

categorization of images of food is the wide variety

of food appearances, encompassing changes in

color, shape, and texture. This diversity makes it

challenging for humans to accurately classify food

items based solely on visual inspection, let alone for

algorithms running on computers. Still, new

developments in deep learning have opened the door

to more potent remedies for this issue. The

NutriFoodNet model, a modification of the Inception

V3 architecture, stands out as a high-accuracy model

specifically designed for food image classification

tasks. By leveraging deep learning techniques,

NutriFoodNet addresses the complexities of food

classification and offers improved accuracy and

efficiency compared to traditional handcrafted

methods. Currently, machine learning (ML)

http://www.ijcesen.com/
mailto:sreethasreedharan@gmail.com
mailto:naveensundar@karunya.edu
mailto:narmadha@karunya.edu
http://dergipark.ulakbim.gov.tr/ijcesen

Sreetha E. S., G. Naveen Sundar, D. Narmadha / IJCESEN 10-4(2024)718-730

719

methods are used for image processing, which

includes support vector machines (SVM), Gaussian

Naïve Bayes, Radial Basis Function Networks and

Deep Neural Networks(DNN). CNN is the most

recent and has demonstrated an impressive [1]. The

architecture of CNN was modelled after the

biological organization of the visual cortexes of

mammals. CNNs are designed with various layers,

including fully connected, pooling, and convolution.

By stacking many layers, CNN automatically

extracts features from input data [2]. Lenet and Alex-

Net are regarded as the foundational CNN

architectures [3]. CNN experienced significant

growth in the field of computer vision as a result of

these architectures' outstanding performance. Strong

regularization techniques, GPU-accelerated

computation, and the use of big datasets are further

factors contributing to its effectiveness [4].

Data augmentation is a crucial step in CNN training

because it increases the variety and volume of

training data, which enhances the model's capacity

for generalization and minimizes overfitting.

However, manually tuning the augmentation

parameters can be time-consuming and may not

always lead to optimal results [5]. When

constructing the CNN, certain structural

considerations have to be made. Some of the factors

include the total count of convolution layers, count

of pooling layers, filter size, count of filters, stride

rate, and location of the pooling layer. Finding the

ideal set of criteria for outstanding performances is

challenging since there are too many of them.

Researchers are using a method of trial-and-error for

designing architecture. To find the ideal set of

parameters, some researchers employ grid search or

random search strategies. While these methods aid

in creating a good mixture, they are laborious and

need a lot of processing power. The proper

hyperparameter combination is now being studied

by researchers as an optimization problem. The

accuracy, precision, and recall of automated

approaches are higher than those of manually

designed structures. These automated designs lower

the misclassification rate by combining

hyperparameters based on past knowledge.

The proposed system for food image classification

has two main objectives:

1. Optimization of parameters such as rotation angle,

shear, flipping, etc., in data augmentation to bolster

the robustness and generalization of CNN models.

2. Application of optimization techniques for

selecting hyperparameters within the CNN

architecture, including learning rate, dropout rate,

and architecture of the network, to improve the

classification model's effectiveness and efficiency.

The remainder of the document is structured in this

manner. A thorough analysis of optimization

techniques for convolutional neural networks is

provided in Section 2. It highlights the principles and

mechanisms of PSO as a powerful metaheuristic

algorithm. Section 3 offers background information

on the system, including details about the dataset and

the application of PSO in data augmentation and

model parameter optimization. The proposed system

architecture and algorithm are detailed in Section 4,

elucidating the integration of PSO into the training

process to optimize data augmentation parameters

and CNN hyperparameters. Section 5 conducts a

comprehensive performance analysis, comparing the

proposed system with existing methods and

benchmarks. The work is finally concluded in

Section 6, which summarizes the main conclusions

and outlines future research directions for improving

food picture categorization technologies.

2. Literature Review

The work of M.A.K. Raiaan et al. focuses on CNN

optimization for a variety of ML problems utilizing

PSO approaches [6]. It may highlight the importance

of hyperparameter optimization in enhancing CNN

performance, discuss the effectiveness of PSO

algorithms in fine-tuning hyperparameters, and

emphasize the potential impact on model accuracy

and efficiency. The abstract likely serves as a brief

overview of the study's objectives, methodologies,

and key findings related to utilizing PSO techniques

for optimizing CNN architectures. Various

hyperparameter optimization algorithms are Tree-

structured Parzen Estimator(TPE) [7], Gray Wolf

Optimization(GWO) [8], Harmony Search

Algorithm(HSA) [9], Differential Evolution(DE)

[10], Genetic Algorithm Optimization(GAO) [11],

Ant Colony Optimization(ACO) [12], Particle

Swarm Optimization(PSO) [13], Firefly

Algorithm(FA) [14], Nelder–Mead Method(NMM)

[15] and Bayesian Optimization(BO) [16]. The table

1 and graphic show the accuracy of optimization

techniques on the benchmark dataset. The PSO

optimization techniques outperform well among

these. A nature-inspired technique for finding the

best neural network architecture is PSO. PSO can be

made use to evolve neural network designs and

weights similarly to genetic algorithms. Gudise and

Venayagamoorthy developed a work utilizing PSO

to train an Artificial Neural Network(ANN) in 2003

[17-30]. They demonstrated how ANNs PSO

Sreetha E. S., G. Naveen Sundar, D. Narmadha / IJCESEN 10-4(2024)718-730

720

training is faster than regular backpropagation

training. In a similar vein, Carvalho and Ludermir

[31,32] created two distinct PSO algorithms in 2007

in order

Table 1. Accuracy of Optimization algorithms using

reference dataset

Figure 1. Accuracy of Optimization algorithms using

reference dataset

to train ANNs and look for better architectures.

When compared to alternative techniques, they

demonstrated that PSO could be utilized to enhance

ANN structures and produce results that were

competitive. Nevertheless, the PSO method created

there and in subsequent publications [33-36] can

only look for fully connected neural network

optimum topologies, which are unsuitable for image

classification applications. Fernandes Junior et.al.

explores the practical application of PSO in

automating the design of DNN architectures for the

tasks involving classification of images. The

proposed PSO algorithm, named psoCNN, aims to

optimize the architecture of CNNs to improve

classification performance. They introduce the

concept of using meta-heuristic algorithms like PSO

to automatically search for optimal network

configurations, which can lead to improved

performance and efficiency [37]. Aguerchi et.al.

focuses on hyperparameter optimization for breast

cancer classification using CNN in mammography

images. They provide a number of hyperparameters

that are optimised when CNN models are employed

for classification. Specifically, PSO was used to

search for suitable values for the parameters like:

Kernel size, Stride and Filter number [38]. A PSO-

based deep learning model for vehicle categorization

is discussed by A. Alhudhaif et al. The research

utilizes the GoogleNet architecture for feature

extraction and implements PSO for feature selection

to optimize computational burden and improve

accuracy. Various CNNs are tested, with ResNet50

achieving the highest accuracy of 91.28%. With the

used dataset, the accuracy of the model suggested is

96%. The Cubic SVM (CSVM) classifier is chosen

for the model due to its balance of accuracy and time

efficiency. The research contributes to

advancements in image processing, computer vision,

and intelligent transport systems, with potential

applications in traffic analysis, surveillance, and

security management [39]. Muhammad Asif Saleem

et.al., discusses the development of a CNN

architecture optimized for the early detection of

paddy leaf diseases. Researchers have proposed

optimization algorithms, such as firefly algorithms,

Genetic Algorithm, Bayesian Optimization, and

Evolutionary Algorithms, to improve the

performance of architectures. To provide the best

CNN architecture for a given dataset, the system

presents an efficient CNN design based on MUT-

PSO [40].

Liu, X et.al., focuses on enhancing hyperspectral

image classification through a novel approach called

Continuous PSO based Deep Learning Architecture

Search. The paper investigates how applying this

technique can improve deep learning models'

performance and accuracy in picture categorisation

tasks. By utilizing Continuous Particle Swarm

Optimization, the researchers aim to optimize neural

network architectures for hyperspectral image

analysis [41]. Zhou C. et al. offer a unique method

for super-resolution imaging by modifying the PSO

algorithm. The research aims to enhance image

super-resolution performance on lightweight

architectures by introducing a joint training method

that improves efficiency and accuracy. The proposed

mutation strategy prevents premature optimization,

and experiments on chest X-ray image classification

Dataset HSA ACO PSO FA NM

MNIST

99.25%

[17]

99.89%

[18]

99.16%

[19]

Fashion

MNIST

97.96%

[20]

93.40%

[21]

92.67%

[22]

CIFAR 10

74.76%

[17]

84.80%

[22]

89.50%

[23]

96.70%

[24]

83.63%

[25]

CIFAR 100

89.79%

[26]

71.55%

[18]

77.75%[

24]

Caltech

101

92.88%

[27]

79.80%

[28]

55.70%

[29]

Sreetha E. S., G. Naveen Sundar, D. Narmadha / IJCESEN 10-4(2024)718-730

721

demonstrate the model's ability to reconstruct useful

information for pneumonia recognition [42]. Nistor

et.al., proposed in the IntelliSwAS (Intelligent

Swarm Architecture Search) approach involves the

integration of PSO with a machine learning model

called DAGRNN (Directed Acyclic Graph

Recurrent Neural Network) to optimize deep CNN

architectures for image classification tasks [43].

3. Background of the System

3.1. Dataset: FOOD101

To achieve optimal classification accuracy, having a

robust dataset of images is crucial. The dataset is

built by considering the variety of food classes and

types. An overview of the available food-related

datasets, detailing the number of food classes and

images are given in [44]. A large volume of food

images is essential for training a food classification

model, as deep learning techniques require

substantial amounts of data. Food101, UEC-100,

UEC-256, Food 85, and PFID are some of the widely

used datasets for food images. Among these,

Food101 is regarded as a benchmark dataset for food

classification tasks.Th e Food101 dataset is a

pioneering resource in the area of computer vision

for food recognition tasks [45]. Curated from

foodspotting.com, it features 101 distinct food

categories with1000 images per category,

intentionally retaining noise like intense colors

and occasional mislabels to simulate authentic

scenarios. The dataset's diversity encompasses

visually and semantically similar dishes

challenging algorithms to differentiate between

subtle variations. The dataset is publicly

accessible for developing and evaluating robust

food recognition models capable of handling the

complexities and nuances present in real-world

food imagery. Sample images of the Food101

dataset are shown in the figure 2.

Figure 2 Sample images from the Food101 dataset

3.2 Data augmentation

One important method in deep learning-based

systems, particularly for computer vision

applications, is described as data augmentation. In

scenarios when training data is scarce, of low

quality, or non-existent, it entails expanding training

data to support machine learning models in

producing satisfactory results. Improving the

amount, quality, and diversity of data to be taught is

the main goal of data augmentation, which aims to

increase the efficacy and reliability of machine

learning (ML) models [46].

3.3 CNN architecture

One particular kind of deep learning model is a

CNN, designed to analyze and interpret visual data.

CNNs employ a series of convolutional layers,

which use filters to scan input images and extract

essential features like edges and textures. Activation

functions, sometimes known as ReLUs (Rectified

Linear Units), come after these layers and add non-

linearity to the model. Next, pooling layers—like

maxpooling—are applied to reduce the spatial

dimensions of the data. This increases computing

efficiency and lowers the likelihood of overfitting in

the model. This hierarchical feature extraction

allows CNNs to recognize increasingly complex

patterns as the data progresses through the layers.

After the convolutional and pooling layers, the data

is flattened into a single vector and passed through

fully connected (dense) layers. These layers combine

the extracted features to make the final prediction,

often using a softmax function for classification

tasks. The structure of CNNs, with shared

parameters and local connectivity, makes them

particularly effective for applications such as image

classification, object detection, and segmentation.

Their ability to maintain translation invariance

ensures robust recognition of objects regardless of

their position within an image. CNNs are widely

used in various applications, from facial recognition

and autonomous driving to medical image analysis

and beyond, demonstrating their versatility and

powerful performance in handling visual data [47-

51]. A typical CNN architecture is shown in the

figure 3.

3.4 Particle Swarm Optimization

In 1995, PSO—a naturalistic optimization

technique—was introduced. Particles in PSO

navigate the search space repeatedly to identify the

optimal solution to a problem. The main components

Sreetha E. S., G. Naveen Sundar, D. Narmadha / IJCESEN 10-4(2024)718-730

722

of a PSO algorithm are a fitness-function to evaluate

the quality of a solution, a population of particles

Figure 3. CNN architecture

with position and velocity in the search space, and

techniques to modify the particle positions based on

their own best-known-position (pbest) and the best-

known-position of the swarm (gbest).

Particle positions and velocities in PSO are

determined by equations that control particle

movement in the search space. The standard

equations in the PSO algorithm include:

Velocity Update Equation:

 𝑣𝑖(t+1)=w.𝑣𝑖.(t)+𝑐1.𝑟1.(𝑝𝑖-𝑥𝑖)+𝑐2.𝑟2.(𝑝𝑔-𝑥𝑖) (1)

where, vi(t+1) means the particle's velocity at the

subsequent iteration, w is the weight of inertia, the

coefficients of acceleration are c1 and c2, r1 and r2 are

the random values ranging from 0 to 1. pi is the best-

known-position of particle, pg is the best-known

swarm position and Particle's current position is

indicated by xi.

Position Update Equation:

 𝑥𝑖(t+1)=𝑥𝑖.(t)+𝑣𝑖(t+1) (2)

where xi(t+1) represents the particle’s position i at

the next iteration. By updating their velocities and

positions according to their individual experience

(pbest) and the collective knowledge of the swarm

(gbest), these equations control the movement of

particles toward optimal solutions in the search

space.

3.5 PSO in data augmentation and

hyperparameters selection in CNN

In the context of CNNs, PSO can be made use of

optimizing data augmentation parameters and

hyperparameters. PSO explores various

transformation parameters such as rotation, shift,

shear, zoom, and flip to increase the training

dataset's diversity for data augmentation artificially.

This process helps improve CNN's robustness and

generalization. By defining a fitness function based

on the performance of the model, PSO iteratively

adjusts the augmentation parameters, guiding the

swarm of potential solutions toward the optimal set

that yields the highest validation accuracy.

In addition to data augmentation, PSO is effective

for hyperparameter optimization in CNNs. Epochs,

learning rate, and the number of dense layers are the

hyperparameters that significantly influence the

training process and final model performance. PSO

is used to initialise a swarm of particles, each of

which indicates a possible solution. This automates

the process of finding the optimal hyperparameter

set. Iteratively convergent to the optimal

hyperparameter configuration, these particles

modify their locations and velocities in accordance

with both their personal and the global best

solutions. This approach ensures an efficient and

comprehensive exploration of the hyperparameter

space, often outperforming traditional methods like

grid search or random search due to its ability to

avoid local optima and efficiently handle the high-

dimensional search space.

4. Proposed System

 The figure 4 represents the overview of the

proposed system.

Figure 4. Block diagram of Proposed System food

recognition

4.1 Load and Pre-process Data

The function load_data is designed to efficiently

load an image dataset Food101 from a specified

directory, pre-process the images, and divide the

data into train and test sets. Initially, it initializes two

empty lists, X and Y, to store image data and

corresponding labels. It reads the names of

subdirectories within the specified dataset, with each

subdirectory representing a different class of food

images. Once the images have loaded, resize them to

Data

Loading

Data

Augmentation

Model

Building

Evaluation

PSO

optimization

Sreetha E. S., G. Naveen Sundar, D. Narmadha / IJCESEN 10-4(2024)718-730

723

150 by 150 pixels and convert them to a numpy

array. List X receives the appended picture array,

while list Y receives the appended class label. After

processing all images, the X and Y lists are

converted to numpy arrays for efficient numerical

computations and model training. Subsequently, the

function divides the data into training and testing

sets, designating 80% of the data for training and

20% for testing. To guarantee reproducibility, a

random state is supplied. Finally, the function

returns the training and testing data arrays. This

procedure sets up the image data for subsequent

steps in the image classification pipeline, such as

data augmentation and model training.

4.2 Define Data Augmentation Function

The function `augment_data` is designed to apply

data augmentation to an image dataset based on

specified parameters. An `ImageDataGenerator` is

initialized with augmentation settings including

width, zoom range, shear range, height shift range,

horizontal flip, rotation range and probability. The

`horizontal_flip` parameter is converted from a

continuous [0, 1] value to a boolean, determining

whether horizontal flips should be applied. The

generator is then fitted to the input images, `X`, and

an augmented data generator is returned. This

generator produces augmented image batches, `X`,

and their corresponding labels, `Y`, in batches of 32.

This augmented data generator can be used to train

ML models with on-the-fly augmented data. These

transformations can be represented by the following

mathematical equations:

Width and Height Shift:

𝑠ℎ𝑖𝑓𝑡𝑒𝑑_𝑤𝑖𝑑𝑡ℎ(𝑥, 𝑠ℎ𝑖𝑓𝑡_𝑟𝑎𝑛𝑔𝑒) = 𝑥 + ∆𝑥 (3)

𝑠ℎ𝑖𝑓𝑡𝑒𝑑_ℎ𝑒𝑖𝑔ℎ𝑡(𝑦, 𝑠ℎ𝑖𝑓𝑡_𝑟𝑎𝑛𝑔𝑒) = 𝑦 + ∆𝑦 (4)

 ∆𝑥 = 𝑠ℎ𝑖𝑓𝑡_𝑟𝑎𝑛𝑔𝑒. 𝑊 (5)

 ∆𝑦 = 𝑠ℎ𝑖𝑓𝑡_𝑟𝑎𝑛𝑔𝑒. 𝐻 (6)

Where W represents the Width and H represents the

Height of the image.

Rotation:

 𝑟𝑜𝑡𝑎𝑡𝑒𝑑𝑖𝑚𝑎𝑔𝑒(𝑥|,𝑦|,𝜃) = [
cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

] [
𝑥
𝑦] (7)

where(𝑥|, 𝑦|) are the coordinates of the rotated

image and 𝜃 is the angle of rotation.

Zoom:

𝑧𝑜𝑜𝑚𝑒𝑑_𝑖𝑚𝑎𝑔𝑒(𝑥|, 𝑦|, 𝑧𝑜𝑜𝑚_𝑓𝑎𝑐𝑡𝑜𝑟) =

[
𝑧𝑜𝑜𝑚_𝑓𝑎𝑐𝑡𝑜𝑟 0

0 𝑧𝑜𝑜𝑚_𝑓𝑎𝑐𝑡𝑜𝑟
] [

𝑥
𝑦] (8)

where 𝑧𝑜𝑜𝑚_𝑓𝑎𝑐𝑡𝑜𝑟 is the scaling factor for the

zoom.

Shear:

𝑠ℎ𝑒𝑎𝑟𝑒𝑑_𝑖𝑚𝑎𝑔𝑒(𝑥|, 𝑦|, 𝜆) = [
1 𝜆
0 1

] [
𝑥
𝑦] (9)

where λ is the shear factor.

Horizontal Flip:

The ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙_𝑓𝑙𝑖𝑝 parameter is converted from

a continuous [0,1] value to a boolean.

ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙_𝑓𝑙𝑖𝑝 =

{
𝑇𝑟𝑢𝑒 𝑖𝑓 𝑓𝑙𝑖𝑝_𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 > 0.5
𝐹𝑎𝑙𝑠𝑒 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (10)

where 𝑓𝑙𝑖𝑝_𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 is the value generated

randomly within the range [0,1]

4.3 Build and Compile the Model

A function is designed to construct a fine-tuned

image classification model using the pre-trained

NutriFoodNet architecture [52]. Necessary modules

are imported, and the NutriFoodNet model is loaded

excluding its top layers. The input shape is set

according to the provided dataset. NutriFoodNet is a

CNN model for the categorization of images with

101 output classes; several hyperparameters have

been optimized to enhance performance. 30% of the

neurones are randomly deactivated during training at

a dropout rate of 0.3 to avoid overfitting. Because of

the ReLU' effectiveness in creating non-linearity and

minimizing the vanishing gradient problem, it is

utilized. By normalizing layer inputs, batch

normalization is used for regularisation, which

stabilizes and speeds up the training process. Using

0.001 as the learning rate, the Adam optimizer is

selected due to its ability to learn adaptively and its

effectiveness in managing sparse gradients.

4.4 Define Objective Function

An objective function is designed for PSO, aiming

to optimize both data augmentation parameters and

model hyperparameters for enhanced performance in

an image classification task. A list of parameters is

received, which is then split into augmentation

parameters and model hyperparameters. The training

dataset is subjected to data augmentation using the

Sreetha E. S., G. Naveen Sundar, D. Narmadha / IJCESEN 10-4(2024)718-730

724

specified augmentation parameters, and a model is

built with the provided hyperparameters. After the

model is compiled, it is trained on the augmented

data, its accuracy is calculated on a separate test set,

and the negative accuracy is returned. By returning

the negative accuracy, alignment with PSO's goal of

minimizing the objective function is ensured,

effectively maximizing the model's accuracy

through the optimization process.

4.5 PSO to find the optimal parameters:

Finally, PSO is utilized to find the best data

augmentation parameters for enhancing image

classification performance. The

`objective_function', parameter bounds, a swarm

size of 20, and a maximum of 20 iterations are used

when using the PSO function. Through this process,

the best combination of augmentation settings is

iteratively searched for. The `objective_function`

evaluates the model accuracy for each set of

parameters, and PSO aims to maximize this accuracy

by minimizing the negative accuracy returned by the

function. After the optimization process, the best

parameters and the corresponding highest accuracy

achieved are obtained. The best parameters indicate

the optimal augmentation settings, while the best

accuracy reflects the improved model performance

due to these settings.

4.6 PSO algorithm

 # Initialization

1. Initialize particles randomly within

lower_bounds and upper bounds

2. Randomly initialize velocities

3. Initialize personal_best_positions to

particles

4. Evaluate the objective_function for each

particle and store in personal_best_scores

5. Determine global_best_position and

global_best_score from

personal_best_scores

 # PSO Main Loop

6. for i ←1 to maxiteration

7. for j ← 1 to swarmsize

8. Generate random vectors r1 and r2

9. Update velocities[j] using PSO velocity

update formula

10. Update particles[j] using updated

velocities[j]

11. Clip particles[j] to be within lower_bounds

and upper bounds

12. Evaluate objective_function at particles[j]

and store in score

13. if score < personal_best_scores[j]:

14. personal_best_scores[j] = score

15. personal_best_positions[j] = particles[j]

16. if score < global_best_score:

17. global_best_score = score

18. global_best_position = particles[j]

19. Record accuracy and loss for

global_best_position

20. return the values of global_best_score and

global_best_position

4.7 Components of a Particle in PSO

The bounds represent the range of values that the

data augmentation and model hyperparameter can

take during the optimization process and are given

for the proposed system in the following way:

Data augmentation parameters

1. rotation_range: Specifies the range for random

rotations applied to images during data

augmentation. It is bounded between 0 and 40

degrees, allowing for a maximum rotation of 40

degrees.

2. width_shift_range: Controls the range of

horizontal translation of images during

augmentation. It is bounded between 0 and 0.2,

indicating a maximum shift of 20% of the image

width.

3. height_shift_range: Similar to

width_shift_range, but controls vertical

translation. It also has a range of 0 to 0.2,

allowing for a maximum shift of 20% of the

image height.

4. shear_range: Determines the shear intensity,

which distorts the shape of the image along the

horizontal or vertical axis. It ranges from 0 to 0.2,

representing a maximum shear intensity of 20%.

5. zoom_range: Specifies the range for random

zooming applied to images. It ranges from 0 to

0.2, allowing for a maximum zoom of 20%.

6. horizontal_flip: Controls whether random

horizontal flips are applied to images. It is a

binary parameter, with a range of 0 to 1, where 0

represents no flip and 1 represents flipping.

Model hyperparameters

1. epochs: Denotes the quantity of CNN model

training epochs. It ranges from 1 to 10, indicating

a minimum of 1 epoch and a maximum of 10

epochs.

Sreetha E. S., G. Naveen Sundar, D. Narmadha / IJCESEN 10-4(2024)718-730

725

2. learning_rate: Sets the learning rate for training

the model. It ranges from 10e-5 to 10e-2,

representing values between 0.00001 and 0.01.

3. dense_units: Indicates how many units there are

in the CNN model's dense (completely linked)

layer. It allows for a variable number of units in

the dense layer and runs from 32 to 256.

Initially, particles representing different

combinations of these parameters were randomly

initialized within their specified bounds. Velocities

for these particles were also randomly assigned,

enabling dynamic exploration of the parameter

space. Once initialization was complete, the personal

best positions and scores for each particle were

recorded by evaluating the objective function. This

included the CNN's performance on the training

dataset following the use of the appropriate data

augmentation techniques. The best-performing

particle’s position was set as the global best position.

To track the progression of the optimization process,

two lists—the accuracy list and the loss list—were

initialized to record the model’s performance

metrics at each iteration. In each iteration of the PSO

loop, particles were updated by adjusting their

velocities and positions. Three factors affected the

velocity updates: the particle's inertia, the cognitive

factor (represents the particle's propensity to return

to its optimal location), and the social component

(represents the particle's propensity to advance

toward the optimal position for everyone). Random

factors were introduced in these updates to ensure

diverse exploration of the parameter space. After

updating velocities, particle positions were adjusted

and clipped within the specified bounds to ensure

they remained valid. The updated positions of the

particles were then used to re-evaluate the objective

function. This evaluation involved applying the

updated data augmentation parameters to the

training dataset, building and compiling a CNN

model with the specified hyperparameters, and

training the proposed model for specified number of

epochs. After training, the model was assessed using

a different test dataset to obtain the accuracy and

loss, which were appended to the respective lists for

tracking purposes. If a particle’s new position

yielded a better performance score (i.e., higher

accuracy and lower loss), its personal best position

and score were updated. Likewise, the score of the

global best were adjusted in the event that any

particle outperformed the global best. Finding the

ideal combination of augmentation and model

parameters was the final objective of this iterative

process, which was done for a predetermined

number of times. The best parameters found through

this optimization process were then returned,

representing the combination that maximized the

CNN’s performance on the image classification task.

4.8 Experimental setup

The system is powered by an NVIDIA GPU,

specifically a Tesla T4, running driver version

525.85.12 and CUDA version 12.0. CUDA, a

parallel computing platform and programming

model, enables NVIDIA GPUs to be utilized for

general-purpose computing. At the time of

observation, the GPU temperature was 42°C, with a

performance level of P0. The GPU's power

consumption was 25W, with a power limit set at

70W, and its PCI bus ID was 00000000:00:04.0.

5. Results and Discussion

The NutriFoodNet CNN architecture, a model

created for nutritional food categorization tasks, was

optimized in this study using PSO. In order to

maximize accuracy and minimize loss metrics, the

CNN's hyperparameters were adjusted throughout

the course of 20 iterations of optimization.

Throughout the 20 iterations, both accuracy and loss

were measured and recorded. The accuracy is an

important metric for assessing the effectiveness of

the model since it shows the percentage of correctly

identified samples among all samples. Conversely,

loss measures the discrepancy between the targets

and the expected outputs, indicating how well the

model is assimilating the data. Figure 5, which plots

the results on a graph, shows the accuracy and loss

values on the y-axis and the iteration number on the

x-axis. The graph illustrates the progression of the

optimization process, highlighting improvements in

accuracy and reductions in loss as the PSO algorithm

fine-tuned the CNN's parameters. This graphic aids

in comprehending how well PSO works to improve

NutriFoodNet's performance, demonstrating the

convergence behaviour of the optimization process

and the overall improvement achieved through the

iterations.

Sreetha E. S., G. Naveen Sundar, D. Narmadha / IJCESEN 10-4(2024)718-730

726

(a) Epochs vs Accuracy

(b) Epochs vs Loss

(c) Epochs vs Accuracy and Loss

 Figure 5. Accuracy and Loss over 20 iterations

The results graph in figure 6 demonstrates a notable

enhancement in the performance of the

NutriFoodNet architecture when optimized with

PSO. The graph shows that while the original

NutriFoodNet achieved an accuracy of 97.3%, the

PSO-optimized version achieved a higher accuracy

of 98.5%. This improvement is also reflected in the

loss metrics, where the PSO-optimized

NutriFoodNet exhibits a lower loss, indicating better

learning and generalization capabilities. The

iterative optimization process facilitated by PSO

effectively fine-tuned the hyperparameters, leading

to enhanced model performance as evidenced by the

upward trend in accuracy and the downward trend in

loss over the 20 iterations. We evaluated the

effectiveness of various cutting-edge CNN models

for identifying foods, including ResNet-18, ResNet-

50, and Inception v3. The following performance

criteria were used to assess

(a) Epochs vs Accuracy

(b) Epochs vs Loss

Figure 6. Analysis of performance using NutriFoodNet

with and without PSO

these models: F1-score, recall, accuracy, and

precision. While precision indicates the percentage

of accurate positive forecasts among all positive

forecasts, recall displays the percentage of real

positives among all actual positives. The model's

overall soundness is reflected in accuracy, while the

F1-score offers a trade-off between recall and

precision.

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑝+𝑇𝑛)

(𝑇𝑝+𝑇𝑛+𝐹𝑝+𝐹𝑛)
 (11)

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑝

(𝑇𝑝+𝐹𝑝)
 (12)

Sreetha E. S., G. Naveen Sundar, D. Narmadha / IJCESEN 10-4(2024)718-730

727

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑝

(𝑇𝑝+𝐹𝑛)
 (13)

 𝐹1 𝑆𝑐𝑜𝑟𝑒 =
2∗(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙)

 (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙)
 (14)

where, Fp denotes false positive, Fn stands for false

negative, Tp represents true positive, and Tn for true

negative. The results were plotted on a graph in

figure 7 to visually compare the models'

performance across these metrics.

Figure 7. Comparison of performance with different

CNNs

T-tests were conducted to compare the performance

of different CNN models using accuracy as the

evaluation metric. A p-value below 0.05 indicates a

statistically significant difference in performance.

As shown in Table 2, the p-value for the

comparisons is less than 0.05, allowing the rejection

of the null hypothesis

Table 2. Comparison using T-Test

Compa

rison

NutriFood

NetPSO vs.

ResNet18:

NutriFood

NetPSO vs.

ResNet50

NutriFood

NetPSO vs.

InceptV3

NutriFood

NetPSO vs.

NutriF_Nt

T-

statistic 30.9466355 11.2934315 3.95889877 10.2111891

P-

value: 3.43E-78 3.38E-23 1.05E-04 5.71E-20

6. Conclusion and Future Work

To sum up, our research presents a new approach to

food image classification using the NutriFoodNet

CNN architecture. Through the integration of PSO

techniques, our model achieves significant

advancements in accuracy and efficiency. By

optimizing both data augmentation parameters and

model hyperparameters, we ensure robust

performance across various food categories. The

NutriFoodNet CNN effectively learns and extracts

features from food images, while PSO fine-tunes

these features for enhanced classification accuracy.

Our experiments demonstrate the superiority of the

PSO-optimized NutriFoodNet model over

traditional methods, positioning it as a promising

solution for real-world food recognition

applications. Future work will focus on several

directions to further improve and expand the

capabilities of our food image classification system.

First, we plan to explore the integration of additional

optimization algorithms, such as Genetic Algorithms

and Bayesian Optimization, to potentially achieve

even higher accuracy and efficiency. Second, adding

real-world photos and broadening the dataset to

encompass a wider variety of food items from

various sources could improve the model's

robustness and generalizability. Additionally,

implementing transfer learning from larger pre-

trained models and fine-tuning them on the Food101

dataset may further enhance performance. Finally,

deploying the system in real-time applications, such

as mobile apps for dietary tracking and integrating it

with health monitoring systems, will be explored to

assess its practical utility and impact on user health

and nutrition management.

Author Statements:

 Ethical approval: The conducted research is not

related to either human or animal use.

 Conflict of interest: The authors declare that

they have no known competing financial interests

or personal relationships that could have

appeared to influence the work reported in this

paper

 Acknowledgement: The authors declare that

they have nobody or no-company to

acknowledge.

 Author contributions: The authors declare that

they have equal right on this paper.

 Funding information: The authors declare that

there is no funding to be acknowledged.

 Data availability statement: The data that

support the findings of this study are available on

request from the corresponding author. The data

are not publicly available due to privacy or

ethical restrictions.

References

 [1] He, K., Zhang, X., Ren, S., & Sun, J. (2016, June).

Deep residual learning for image recognition. IEEE

conference on computer vision and pattern

recognition (CVPR)* (pp. 770–778). IEEE.

https://doi.org/10.1109/CVPR.2016.90

Sreetha E. S., G. Naveen Sundar, D. Narmadha / IJCESEN 10-4(2024)718-730

728

 [2] Huang, G., Liu, Z., Van Der Maaten, L., &

Weinberger, K. Q. (2017). Densely connected

convolutional networks. IEEE Conference on

Computer Vision and Pattern Recognition (CVPR)

(pp. 2261–2269). IEEE.

https://doi.org/10.1109/CVPR.2017.243.

[3]Alzubaidi, L., Zhang, J., Humaidi, A. J., Al-Dujaili, A.,

Duan, Y., Al-Shamma, O., … Farhan, L. (2021).

Review of deep learning: concepts, CNN

architectures, challenges, applications, future

directions. Journal of Big Data, 8(1).

doi:10.1186/s40537-021-00444-8

[4] Schoenauer, M., & Ronald, E. (1994). Neuro-genetic

truck backer-upper controller. In Proceedings of the

First IEEE Conference on Evolutionary Computation,

IEEE World Congress on Computational Intelligence

(pp. 720–723).

IEEE.https://doi.org/10.1109/ICEC.1994.349969

[5]Shorten, C., & Khoshgoftaar, T. M. (2019). A survey

on Image Data Augmentation for Deep Learning.

Journal of Big Data, 6(1). doi:10.1186/s40537-019-

0197-0

[6] Raiaan, M. A. K., Sakib, S., Fahad, N. M., Mamun, A.

A., Rahman, M. A., Shatabda, S., & Mukta, M. S. H.

(2024). A systematic review of hyperparameter

optimization techniques in convolutional neural

networks. Decision Analytics Journal, 11, 100470.

https://doi.org/10.1016/j.dajour.2024.100470

[7]Nguyen, H.-P., Liu, J., & Zio, E. (2020). A long-term

prediction approach based on long short-term memory

neural networks with automatic parameter

optimization by Tree-structured Parzen Estimator and

applied to time-series data of NPP steam generators.

Applied Soft Computing, 89, 106116.

doi:10.1016/j.asoc.2020.106116

[8] Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey

wolf optimizer. Advances in Engineering Software,

69, 46–61.

https://doi.org/10.1016/j.advengsoft.2013.12.007

[9] Yoon, J. H., & Geem, Z. W. (2021). Empirical

convergence theory of harmony search algorithm for

box-constrained discrete optimization of convex

function. Mathematics, 9(545).

https://doi.org/10.3390/math9050545

[10] Storn, R., & Price, K. (1997). Differential evolution–

a simple and efficient heuristic for global optimization

over continuous spaces. Journal of Global

Optimization, 11, 341–359.

[11] Katoch, S., Chauhan, S. S., & Kumar, V. (2021). A

review on genetic algorithm: Past, present, and future.

Multimedia Tools and Applications, 80, 8091–8126.

https://doi.org/10.1007/s11042-020-10139-6

[12] Dorigo, M., Birattari, M., & Stutzle, T. (2006). Ant

colony optimization. IEEE Computational

Intelligence Magazine, 1(4), 28–39.

https://doi.org/10.1109/MCI.2006.190679

[13] Kennedy, J., & Eberhart, R. (1995). Particle swarm

optimization. In Proceedings of ICNN'95 -

International Conference on Neural Networks (Vol. 4,

pp. 1942–1948). IEEE.

https://doi.org/10.1109/ICNN.1995.488968

[14] Yang, X.-S. (2010). Nature-inspired metaheuristic

algorithms. Luniver Press.

[15] Ozaki, Y., Yano, M., & Onishi, M. (2017). Effective

hyperparameter optimization using Nelder-Mead

method in deep learning. IPSJ Transactions on

Computer Vision and Applications, 9, 1–12.

https://doi.org/10.118

6/s41045-017-0042-1

[16] Frazier, P. I. (2018). A tutorial on Bayesian

optimization. arXiv preprint arXiv:1807.02811.

Retrieved from https://arxiv.org/abs/1807.02811

[17] Lee, W.-Y., Park, S.-M., & Sim, K.-B. (2018).

Optimal hyperparameter tuning of convolutional

neural networks based on the parameter-setting-free

harmony search algorithm. Optik, 172, 359–367.

https://doi.org/10.1016/j.ijleo.2018.07.044

[18] Singh, P., Chaudhury, S., & Panigrahi, B. K. (2021).

Hybrid MPSO-CNN: Multi-level particle swarm

optimized hyperparameters of convolutional neural

network. Swarm and Evolutionary Computation, 63,

100863. https://doi.org/10.1016/j.swevo.2021.100863

[19] Bacanin, N., Bezdan, T., Tuba, E., Strumberger, I., &

Tuba, M. (2020). Optimizing convolutional neural

network hyperparameters by enhanced swarm

intelligence metaheuristics. Algorithms, 13(3), 67.

https://doi.org/10.3390/a13030067

[20] Liu, D., Ouyang, H., Li, S., Zhang, C., & Zhan, Z.-

H. (2023). Hyperparameters optimization of

convolutional neural network based on local

autonomous competition harmony search algorithm.

Journal of Computational Design and Engineering.

https://doi.org/10.1093/jcde/qwad050

[21] Lankford, S., & Grimes, D. (2020). Neural

architecture search using particle swarm and ant

colony optimization. In Proceedings of the AICS 2020

(pp. 229–240).

[22] Yeh, W.-C., Lin, Y.-P., Liang, Y.-C., Lai, C.-M., &

Huang, C.-L. (2023). Simplified swarm optimization

for hyperparameters of convolutional neural networks.

Computers and Industrial Engineering, 177, 109076.

https://doi.org/10.1016/j.cie.2023.109076

[23] Serizawa, T., & Fujita, H. (2020). Optimization of

convolutional neural network using the linearly

decreasing weight particle swarm optimization. arXiv

preprint arXiv:2001.05670. Retrieved from

https://arxiv.org/abs/2001.05670

[24] Sharaf, A. I., & Radwan, E. F. (2019). An automated

approach for developing a convolutional neural

network using a modified firefly algorithm for image

classification. In Applications of Firefly Algorithm

and Its Variants: Case Studies and New Developments

(pp. 99–118). Springer.

[25] Albelwi, S., & Mahmood, A. (2016). Automated

optimal architecture of deep convolutional neural

networks for image recognition. In 2016 15th IEEE

International Conference on Machine Learning and

Applications (ICMLA) (pp. 53–60). IEEE.

[26] Rosa, G., Papa, J., Marana, A., Scheirer, W., & Cox,

D. (2015). Finetuning convolutional neural networks

using harmony search. In Progress in Pattern

Recognition, Image Analysis, Computer Vision, and

https://doi.org/10.1016/j.dajour.2024.100470
https://doi.org/10.118
https://arxiv.org/abs/1807.02811
https://doi.org/10.1016/j.ijleo.2018.07.044
https://doi.org/10.1016/j.swevo.2021.100863
https://arxiv.org/abs/2001.05670

Sreetha E. S., G. Naveen Sundar, D. Narmadha / IJCESEN 10-4(2024)718-730

729

Applications: 20th Iberoamerican Congress, CIARP

2015 (pp. 683–690). Springer.

[27] Huang, Y.-F., & Liu, J.-S. (2019). Optimizing

convolutional neural network architecture using a self-

adaptive harmony search algorithm. In International

Conference on Natural Computation, Fuzzy Systems

and Knowledge Discovery (pp. 3–12). Springer.

[28] Sun, Y., Xue, B., Zhang, M., & Yen, G. G. (2018). A

particle swarm optimization-based flexible

convolutional autoencoder for image classification.

IEEE Transactions on Neural Networks and Learning

Systems, 30(8), 2295–2309.

https://doi.org/10.1109/TNNLS.2018.2803384

[29] Albelwi, S., & Mahmood, A. (2016). Automated

optimal architecture of deep convolutional neural

networks for image recognition. In 2016 15th IEEE

International Conference on Machine Learning and

Applications (ICMLA) (pp. 53–60). IEEE.

[30] Gudise, V., & Venayagamoorthy, G. (2003).

Comparison of particle swarm optimization and

backpropagation as training algorithms for neural

networks. In Proceedings of the 2003 IEEE Swarm

Intelligence Symposium (SIS’03) (Vol. 2, pp. 110–

117). IEEE.

https://doi.org/10.1109/SIS.2003.1202255

 [31] Carvalho, M., & Ludermir, T. (2006). Particle

swarm optimization of feed-forward neural networks

with weight decay. In 2006 Sixth International

Conference on Hybrid Intelligent Systems (HIS’06)

(pp. 5–5). IEEE.

https://doi.org/10.1109/HIS.2006.264888

[32] Carvalho, M., & Ludermir, T. B. (2007). Particle

swarm optimization of neural network architectures

and weights. In 7th International Conference on

Hybrid Intelligent Systems (HIS 2007) (pp. 336–339).

IEEE. https://doi.org/10.1109/HIS.2007.45

[33] Kiranyaz, S., Ince, T., Yildirim, A., & Gabbouj, M.

(2009). Evolutionary artificial neural networks by

multi-dimensional particle swarm optimization.

Neural Networks, 22(10), 1448–1462.

https://doi.org/10.1016/j.neunet.2009.05.013

[34]Zhang, J.-R., Zhang, J., Lok, T.-M., & Lyu, M. R.

(2007). A hybrid particle swarm optimization–back-

propagation algorithm for feedforward neural network

training. Applied Mathematics and Computation,

185(2), 1026–1037.

https://doi.org/10.1016/j.amc.2006.07.025

[35] Qolomany, B., Maabreh, M., Al-Fuqaha, A., Gupta,

A., & Benhaddou, D. (2017). Parameters optimization

of deep learning models using particle swarm

optimization. In 2017 13th International Wireless

Communications and Mobile Computing Conference

(IWCMC) (pp. 1285–1290). IEEE.

https://doi.org/10.1109/IWCMC.2017.7986470

[36] Kenny, A., & Li, X. (2017). A study on pre-training

deep neural networks using particle swarm

optimization. In Simulated Evolution and Learning:

11th International Conference, SEAL 2017 (pp. 361–

372). https://doi.org/10.1007/978-3-319-68759-9_30

[37] Fernandes Junior, F. E., & Yen, G. (2019). Particle

swarm optimization of deep neural networks

architectures for image classification. Swarm and

Evolutionary Computation, 49, 62–74.

https://doi.org/10.1016/j.swevo.2019.05.010

[38] Aguerchi, K., Jabrane, Y., Habba, M., & El Hassani,

A. H. (2024). A CNN hyperparameters optimization

based on particle swarm optimization for

mammography breast cancer classification. Journal of

Imaging, 10(2), 30.

https://doi.org/10.3390/jimaging10020030

[39] Alhudhaif, A., Saeed, A., Imran, T., Kamran, M., &

Alghamdi, A. S. (2022). A particle swarm

optimization based deep learning model for vehicle

classification. Computer Systems Science and

Engineering, 40(1), 223–235.

[40]Saleem, M. A., Aamir, M., Ibrahim, R., Senan, N., &

Alyas, T. (2022). An optimized convolutional neural

network architecture for paddy disease classification.

Computers, Materials & Continua, 71(3), 6053–6067.

https://doi.org/10.32604/cmc.2022.022215

[41] Liu, X., Zhang, C., Cai, Z., Yang, J., Zhou, Z., &

Gong, X. (2021). Continuous particle swarm

optimization-based deep learning architecture search

for hyperspectral image classification. Remote

Sensing, 13(6), 1082.

https://doi.org/10.3390/rs13061082

[42] Zhou, C., & Xiong, A. (2023). Fast image super-

resolution using particle swarm optimization-based

convolutional neural networks. Sensors, 23(4), 1923.

https://doi.org/10.3390/s23041923

[43]Nistor, Sergiu & Czibula, Gabriela. (2021).

IntelliSwAS: Optimizing deep neural network

architectures using a particle swarm-based approach.

Expert Systems with Applications. 187. 115945.

10.1016/j.eswa.2021.115945.

[44]Sreetha, E. S., Sundar, G. N., Narmadha, D.,

Sagayam, K. M., & Elngar, A. A. (2023).

Technologies for Healthcare 4.0: From AI and IoT to

blockchain.

[45] Bossard, L., Guillaumin, M., Van Gool, L. (2014).

Food-101 – Mining Discriminative Components with

Random Forests. In: Fleet, D., Pajdla, T., Schiele, B.,

Tuytelaars, T. (eds) Computer Vision – ECCV 2014.

ECCV 2014. Lecture Notes in Computer Science, vol

8694. Springer, Cham. https://doi.org/10.1007/978-3-

319-10599-4_29

[46] Mumuni, A., & Mumuni, F. (2022). Data

augmentation: A comprehensive survey of modern

approaches. Array, 16, 100258.

https://doi.org/10.1016/j.array.2022.100258

[47] BACAK, A., ŞENEL, M., & GÜNAY, O. (2023).

Convolutional Neural Network (CNN) Prediction on

Meningioma, Glioma with Tensorflow. International

Journal of Computational and Experimental Science

and Engineering, 9(2), 197–204. Retrieved from

https://ijcesen.com/index.php/ijcesen/article/view/21

0

[48] Priti Parag Gaikwad, & Mithra Venkatesan. (2024).

KWHO-CNN: A Hybrid Metaheuristic Algorithm

Based Optimzed Attention-Driven CNN for

Automatic Clinical Depression Recognition .

International Journal of Computational and

Experimental Science and Engineering, 10(3).491-

506 https://doi.org/10.22399/ijcesen.359

https://doi.org/10.1109/TNNLS.2018.2803384
https://doi.org/10.1109/SIS.2003.1202255
https://doi.org/10.1007/978-3-319-68759-9_30
https://doi.org/10.3390/jimaging10020030
https://doi.org/10.32604/cmc.2022.022215
https://doi.org/10.3390/rs13061082
https://doi.org/10.1016/j.array.2022.100258
https://ijcesen.com/index.php/ijcesen/article/view/210
https://ijcesen.com/index.php/ijcesen/article/view/210
https://doi.org/10.22399/ijcesen.359

Sreetha E. S., G. Naveen Sundar, D. Narmadha / IJCESEN 10-4(2024)718-730

730

[49] Agnihotri, A., & Kohli, N. (2024). A novel

lightweight deep learning model based on SqueezeNet

architecture for viral lung disease classification in X-

ray and CT images. International Journal of

Computational and Experimental Science and

Engineering, 10(4).592-613

https://doi.org/10.22399/ijcesen.425

[50] Jha, K., Sumit Srivastava, & Aruna Jain. (2024). A

Novel Texture based Approach for Facial Liveness

Detection and Authentication using Deep Learning

Classifier. International Journal of Computational

and Experimental Science and Engineering, 10(3).

323-331 https://doi.org/10.22399/ijcesen.369

[51] Radhi, M., & Tahseen, I. (2024). An Enhancement

for Wireless Body Area Network Using Adaptive

Algorithms. International Journal of Computational

and Experimental Science and Engineering,

10(3).388-396 https://doi.org/10.22399/ijcesen.409

[52] Sreedharan, S.E., Sundar, G.N., Narmadha, D.

(2024). NutriFoodNet: A high-accuracy convolutional

neural network for automated food image recognition

and nutrient estimation. Traitement du Signal,

41(4);1953-1965. https://doi.org/10.18280/ts.410425

https://doi.org/10.22399/ijcesen.425
https://doi.org/10.22399/ijcesen.369

