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Abstract: 
 In this paper, we focus on one of partial shape analysis tasks, by proposing a solution 

for the whole-to-part shape registration problem using a Riemannian Framework 

extended from past works. We have a part of a planar curve considered as open one, and 

the goal is to extract an open curve segment from another closed curve that gives the 

best alignment by minimizing  the Riemannian shape distance between the given part 

and all parts of the closed curve with the same length. Our contribution here is: (1) 

extracting all curves with same length of the target curve from the second by changing 

the starting point, (2) for each part extracted, find the best registration using an elastic 

Riemannian metric and calculating the shape distance between them (3) the minimum 

of these distances define the distance desired and the curve is the part which gives this 

distance. Finally, to evaluate the performance of this algorithm, the results are shown in 

application to shapes from MPEG-7 dataset.    

 

1. Introduction  
Whole-to-part shape matching is a fundamental task 

in partial shape analysis arise in wide range of 

application domains, for example, Robotic 

manipulation where identifying object to manipulate 

especially when part of this object is hidden, in 

medical imaging as needed in Surgical planning, this 

process involves aligning pre-operative and intra-

operative data which can be partial or deformed, and 

when we detect the contours of organs are obscured 

by other structures,  

in computer graphics, which require aligning 

deformable objects with only a portion of their 

contours or surfaces matching and in handwriting 

text recognition, analyse the characters as partial 

planar curves by map, segment and classify them. 

The problem addresses the issue of registering or 

aligning a particular part of a curve with a part from 

another closed or open curve. 

Several papers represent many methods to solve 

this critical problem with different shape 

representations and different algorithms for 

matching. "T.B. Sebastian et al. (2003)  present an 

approach to aligning pairs of curves segments and 

pairs of closed curves by a metric defined with 

length and curvature of  these curves and the results 

calculated by dynamic-programming method in 

[11], [9] calculate the distance between two 

trajectories P and Q by finding a path that minimizes 

the average Euclidean distance between all points of 

P and Q. In [10], T. Richardson et al. (2006) present 

an algorithm where one-to-one correspondence does 

not exist across the shapes and this algorithm 

initialize to clip some portion of open-curves and  

then apply the Landmark-sliding algorithm to find 

the correspondence from each starting clip length. 

The goal of T. Funkhouser et al. (2006) in [3] was to 

retrieve 3D models from a given database most 

similar to a 3D model provided as a query by 

representing every object by a set of local shape 

features and applying the Priority—driven search 

algorithm to find the best multi-feature matches 
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without computing complete matches for every 

object. A new approach proposed in [5] to perform 

partial shape matching by transform shapes into 

sequences and utilize an algorithm that determines a 

subsequence of a target sequence that best match a 

query where this algorithm map this issue to the 

cheapest path in a directed acyclic graph DAG and 

the procedure allows to compute the optimal scale 

and translation of sequence values, M. Cui et al. 

(2009) in [2], gives a framework for planar open 2D 

curves with new signature based on the integral of 

unsigned curvature and a parameterization that is 

invariant under similarity transform: translation, 

rotation and uniform scaling to find what part of the 

first matches the best with a part or the whole of the 

second curve, while in  [1], the first paper which 

study the partial similarity in the continuous setting 

with all points in the curves considered, K. Buchin 

et al. (2009) study the partial similarity between two 

polygonal curves of sizes n  and m  respectively by 

maximizing the total length of sub-curves that are 

closed to each other, the closeness is measured by 

the Fréchet distance where the maximal length is 

called the partial Fréchet similarity between the two 

input curves and solve this problem in 

O(mn(m+n)log(mn)) time. Later, A. Maheshwari et 

al. (2011) in [6] improved algorithms for partial 

curve matching, closed Fréchet distance, maximum 

walk problem and matching a curve in DAG the 

results based on new data structure called free-space 

map achieving a running time of O(mn) [8]  gives a 

new technique to the problem of partial shape 

matching  between an open contour and a part of a 

closed contour using a novel shape descriptor based 

on measuring the distance of a certain silhouette 

point from the closest points of the same silhouette 

along properly defined directions. The shape 

descriptors are computed along open or closed 

contours in a spatially non-uniform manner and the 

resulting collections of of shape descriptors 

constitute the global shape representation. Whole-to-

part and part-to-part  matching are discussed in [15], 

proposing a novel shape descriptor, triangular 

centroid distances TCDs for shape representation 

and is invariant to translation, rotation, scaling and 

considerable shape deformations. The main 

framework in shape analysis of 2D curves used in 

this paper is from [14] and sufficient concepts, 

definitions with details and breadth are in [13], the 

shapes are continuous boundaries defined by 

parameterized curves which are elements of the 

shape space and the essential representation of 

curves is the Square-Root Velocity Function 

(SRVF). In this paper, our goal is to best matching 

an open curve to a part of a closed curve so we will 

extract the optimal open curve from a larger curve to 

register it with the target curve using theses concepts 

in [12].  In [4], the authors represent a good treatment 

and results for handwritten word segmentation into 

individual characters and partial matching of 

individual letters with entire words using elastic 

Riemannian shape metric. [7] develop an algorithm 

for shape-informed partial matching and completion 

with respect to a complete template curve.  

In this paper, our goal is to find the best 

registration between a given open curve and a part of 

a closed curve. First, measuring the length of the 

target open curve than extracting   the open curves 

with same length from the closed curve by changing 

the starting point along it and after that, find the best 

registration between the target curve and the 

extracted one and measuring the Riemannian 

distance between them where the minimum of these 

distances gives the optimal part which gives the best 

registration. Finally, applying this approach to 2D 

planar curves from the MPEG-7 dataset yo show the 

efficiency of the contribution.  

2. Preliminaries 
Before we construct our procedure, we resume the 

past Riemannian framework of elastic shape analysis 

of planar curves using the Square–Root Velocity 

representation and supposing that the parameter 

interval is 𝐼 = [0; 1] following [13] where there is 

more details. Let C = {β: [0; 1] ⟶ ℝ2/
β absolutely continuous} be the space of planar 

parameterized curves,  we represent the curve 𝛽 by 

its Square-Root Velocity function (SRVF)  q defined 

by  𝑞(𝑡) = 𝛽̇(𝑡)/√‖𝛽̇(𝑡)‖  where 𝑞 ∈

𝐿2([0; 1]; ℝ2) and for a differentiable curve 𝛽
 
its 

length is 𝐿[𝛽] = ∫ √〈𝛽̇(𝑡); 𝛽̇(𝑡)〉𝑑𝑡 =
1

0

∫ |𝛽̇(𝑡)|𝑑𝑡 = 𝑙,
1

0
 we obtain ‖𝑞‖2 = ∫ |𝑞(𝑡)|2𝑑𝑡

1

0
=

∫ |𝛽̇(𝑡)|𝑑𝑡 = 𝑙.  
1

0
Since t  varies from 0 to 1, the point 

𝛽(𝑡) traces a path 𝛽(0) to 𝛽(1). ΓI = {γ ∈
Diff([0; 1])/γ(0) = 0; γ(1) = 1; γ̇(t) > 0} note 

the group of orientation-preserving diffeomorphisms 

of [0; 1] called the group of re- parameterization 

functions. The right action of ΓI on 𝐶 defined by 
(𝛽, 𝛾) ↦ 𝛽 ∘ 𝛾, here the composition 𝛽 ∘ 𝛾 is the re-

parameterization of the curve 𝛽 which do not change 

its shape. 

To analyze shapes of curves, its representation must 

be  invariant to scaling, translation, rotation and re-

parameterization so we need to study the affectation 

of these transformations on the curves, this means the 

action of each   group transformation on 𝐶. First, we 

will scale all curves to be of a fixed length supposed 

1 we get ‖𝑞‖2 = ∫ |𝛽̇(𝑡)|𝑑𝑡 = 1,   
1

0
then and by 

using 𝛽̇(𝑡) in the SRV representation, the translation 
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is removed ,  for  removing rotation and re-

parameterization  we will use the notion of pre-shape 

space.  

The pre-shape space of fixed-length absolutely 

continuous curves under arbitrary parameterizations 

using the SRV representation defined on [0; 1] is 𝑆 =

{𝑞 ∈ 𝐿2([0; 1]; ℝ2)/ ∫ |𝑞(𝑡)|2𝑑𝑡
1

0
= 1}, it is a 

sphere in 𝐿2([0; 1]; ℝ2) and constitute an orthogonal 

section of  scaling group ℝ× on 𝐿2([0; 1]; ℝ2). Under 

the 𝑠𝑐𝑎𝑙𝑒𝑑 − 𝐿2 metric the action of ℝ× establish an 

isometric map between 𝑆 and 𝐿2([0; 1]; ℝ2)/ℝ×  

thus we will use 𝑆 for analyzing the elements of 

𝐿2([0; 1]; ℝ2)/ℝ×. Now we construct the 

Riemannian structure on 𝑆 establishing the tangent 

space and define the inner product on it.  

Define the mapping Φ: 𝐿2([0; 1]; ℝ2) ⟶ ℝ 

by Φ(𝑞) = then 𝑆 = Φ−1(1) using the linear   

transformation 𝑑(Φ)2: 𝐿2([0; 1]; ℝ2) ⟶ ℝ defined 

by:𝑑(Φ)𝑞 =
𝑑

𝑑𝜀
|

𝜀=0
Φ(𝑞 + 𝜀𝑤) =

2 ∫ 〈𝑤(𝑡), 𝑞(𝑡)〉𝑑𝑡
1

0
= 2〈𝑞, 𝑤〉 to prove that 𝑆 is a 

submanifold  of 𝐿2([0; 1]; ℝ2), the tangent space 

𝑇𝑞(𝑆) is given by: 

𝑇𝑞(𝑆) = ker(𝑑(Φ)𝑞) = {𝑤 ∈ 𝐿2([0; 1]; ℝ2)/

 〈𝑞, 𝑤〉 = 0}, the standard 𝐿2 inner product between 

𝑢, 𝑣 ∈ 𝑇𝑞(𝐿2([0; 1]; ℝ2)), is defined by 〈𝑢, 𝑣〉 =

∫ 〈𝑢(𝑡), 𝑣(𝑡)〉𝑑𝑡
1

0
  the normal space of 𝑆 at 𝑞 is 

𝑁𝑞(𝑆) = 𝑠𝑝𝑎𝑛(𝑞). Let 𝛼: [0; 1] ⟶ ℝ be a 

parameterized path on 𝑆 that is differentiable 

everywhere on [0; 1] its length is 𝐿[𝛼] =

∫ √〈
𝑑𝛼

𝑑𝜏
,

𝑑𝛼

𝑑𝜏
〉 𝑑𝜏, 𝑆

1

0
 is a Riemannian manifold with 

the Riemannian metric inherited from the larger 

Hilbert space 𝐿2([0; 1]; ℝ2), the minimal geodesics 

are given by the shorter arcs on great circles, for two 

parameterized curves 𝛽1 and 𝛽2, the geodesic path 

between their representations 𝑞1 and 𝑞2 is: 

𝛼(𝜏) =
1

sin(𝜗)
[sin(𝜗(1 − 𝜏))𝑞1 + sin(𝜏𝜗)𝑞2] 

where 𝜗 = cos−1(〈𝑞1, 𝑞2〉) starts at 𝑞1 at 𝜏 = 0 and 

achieve 𝑞2 at 𝜏 = 1 and  the geodesic distance is : 

𝑑𝑆(𝑞1, 𝑞2) = 𝜗 = cos−1(〈𝑞1, 𝑞2〉) the exponential 

map, 𝑒𝑥𝑝: 𝑇𝑞(𝑆) → 𝑆
 

is given by 𝑒𝑥𝑝𝑞(𝑤) =

cos(‖𝑤‖)𝑞 + sin(‖𝑤‖)
𝑤

‖𝑤‖
, 𝑤 ∈ 𝑇𝑞(𝑆) is a tangent 

direction, and the for any 𝑞2 ∈ 𝑆 the inverse of the 

exponential map at 𝑞1 ∈ 𝑆 is exp𝑞1
−1: 𝑆 ⟶ 𝑇𝑞1

(𝑆) 

defined by: 𝑣 =
𝜗

sin(𝜗)
(𝑞2 − cos(ϑ)𝑞1),      𝜗 =

cos−1(〈𝑞1, 𝑞2〉). 

The right group action of Γ𝐼 on 𝑆 defined by (𝑞, 𝛾) ⟼

(𝑞 ∘ 𝛾) ⟼ (𝑞 ∘ 𝛾)√𝛾̇ and (𝑞 ∘ 𝛾)√𝛾̇ is the 

representation of the re-parameterized curve 𝛽 ∘ 𝛾. 

The action of the rotation group 𝑆𝑂(2) on 𝐶 is 
(𝑂, 𝛽) = 𝑂𝛽   and represented by the action of 𝑆𝑂(2) 

on 𝑆 is (𝑂, 𝑞) ⟼ {𝑡 ⟼ 𝑂𝑞(𝑡)}. Since the actions of 

𝑆𝑂(2) and Γ𝐼  commute we have: 

we have for every 𝑞 ∈ 𝑆: [𝑞] = {𝑂𝑞(𝛾(𝑡))√𝛾̇(𝑡)/

(𝛾, 𝑂) ∈ Γ𝐼  × SO(2)}. The main importance of  the 

SRVF is that Γ𝐼  × SO(2) acts by isometries on 𝑆, that 

is mean:‖𝑞1 − 𝑞2‖ = ‖√𝛾̇(𝑡)𝑂(𝑞1 ∘ 𝛾) −

√𝛾̇(𝑡)𝑂(𝑞2 ∘ 𝛾)‖ with respect to the chosen metric, 

and because of this property, the 𝐿2 norm between the 

SRVFs is called elastic  Riemannian metric. The 

shape space using the SRVF representation is defined 

by: 𝜒 = 𝑆/(Γ𝐼  × SO(2)) and it is a metric space with 

the distance inherited from 𝑆 which defined by: 

𝑑𝜒([𝑞1], [𝑞2]) =

 infq̃1∈[𝑞1],q̃2∈[𝑞2] 𝑑𝑆(q̃1, q̃2) =

 inf(𝛾,𝑂)∈Γ𝐼 ×SO(2) 𝑑𝑆(𝑞1, 𝑂(𝑞2 ∘ 𝛾)√𝛾̇(𝑡))  

To calculate  the shape distance, we solve, over the 

space Γ𝐼  × SO(2), the optimization problem  

(𝛾∗, 𝑂∗) = 

𝑎𝑟𝑔𝑚𝑖𝑛(𝛾,𝑂)∈Γ𝐼 ×SO(2)  cos−1 〈𝑞1, 𝑂(𝑞2 ∘ 𝛾)√𝛾̇(𝑡)〉 

= 𝑎𝑟𝑔𝑚𝑖𝑛(𝛾,𝑂)∈Γ𝐼 ×SO(2) ‖𝑞1 − 𝑂(𝑞2 ∘

𝛾)√𝛾̇(𝑡)‖
2

            (1)  

3. Partial Shape Analysis of 2D Planar Curve 

Let 𝛽1,  𝛽2 be two unit-length parameterized planar 

closed curves defined on [0; 1],  𝛽𝑂 is a part of   𝛽2 

defined on [0; 𝑐] where 0 < 𝑐 < 1. We have 

𝐿[ 𝛽𝑂] = ∫ | 𝛽̇𝑂(𝑡)|
𝑐

0
𝑑𝑡 = | 𝛽𝑂(𝑐)|   

and 0 < | 𝛽𝑂(𝑐)| < 1. 

To obtain the best alignment of  𝛽𝑂  from  𝛽2 we 

propose the following algorithm: 

1. Normalize [0; 𝑐]  to [0; 1], and rescale  𝛽𝑂 to 

be with unit-length. 

2. Construct a sequence of  𝑁 + 1 parameters 

from [0; 1] such that: 𝑡0 = 0, 𝑡1 =
1

𝑁
, … , 𝑡𝑁 = 1  and sub-domains with length 

equal to 𝑐 defined by [𝑡𝑖; 𝑡𝑖 + 𝑐] ⊂
[0; 1], 0 < 𝑡𝑖 + 𝑐 ≤ 1  for 𝑖 = 0, 𝑁̅̅ ̅̅ ̅. 

3. For each 𝑖 = 0, 𝑁̅̅ ̅̅ ̅, extracting an open curve 

 𝛽𝑖 from  𝛽2 such that  𝛽𝑖 =  𝛽2|[𝑡𝑖;𝑡𝑖+𝑐] . 

4.  For each 𝑖 = 0, 𝑁̅̅ ̅̅ ̅ normalize each sub-

domain to [0; 1]   and rescale each curve to 

be with unit length. 
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5. The SRVF of  𝛽𝑂  and  𝛽𝑖 for each 𝑖 = 0, 𝑁̅̅ ̅̅ ̅ 

noted 𝑞𝑂and 𝑞𝑖 respectively are elements in 

𝑆 since  𝛽𝑂 and  𝛽𝑖  are absolutely continuous 

planar parameterized open curve.  

6. Applying the Riemannian Framework 

proposed in [14] for each 𝑖 = 0, 𝑁̅̅ ̅̅ ̅, to find 

optimal rotation 𝑂𝑖
∗ and optimal  re-

parameterization 𝛾𝑖
∗  by solving  (1) for 𝑞𝑂 

and 𝑞𝑖 so we find         𝑞𝑖
∗ =

√𝛾̇𝑖
∗𝑂𝑖

∗(𝑞𝑖 ∘ 𝛾𝑖
∗), and the shape distance is 

𝑑𝜒(𝑞𝑂, 𝑞𝑖 ) = 𝑑𝑆(𝑞𝑂 , 𝑞i
∗). 

7. For our purpose, the optimal shape distance 

is  

𝑖𝑛𝑓𝑖=0,𝑁̅̅ ̅̅ ̅𝑑𝜒(𝑞𝑂, 𝑞𝑖 ) = 

𝑖𝑛𝑓𝑖=0,𝑁̅̅ ̅̅ ̅𝑑𝑆(𝑞𝑂, 𝑞i
∗) =  𝑑𝑆(𝑞𝑂 , 𝑞j

∗) 

such that 0 ≤ 𝑗 ≤ 𝑁 to find the part of  𝛽2 

that gives the best alignment to  𝛽𝑂, which is 

𝛽𝑗
∗  such that 𝛽𝑗

∗(𝑡) = ∫ 𝑞j
∗(s)|𝑞j

∗(s)|
𝑡

0
𝑑𝑠. 

8. Since 𝑗 is the solution, the starting parameter 

is 𝑡𝑗, and the sub-domain is [𝑡𝑗; 𝑡𝑗 + 𝑐]. 

Table.1 shows the results of our algorithm applied to 

two shapes from MPEG-7 , (a) represent  𝛽𝑂 in red, 

the target part, within  𝛽1,  𝛽2 the closed curve in (b), 

(c) show the part 𝛽𝑗
∗ in red, from  𝛽2, that gives the 

best elastic registration to  𝛽𝑂, (d) is the best 

matching between points on parts, (e) gives the 

geodesic path between them and (f) is the best re-

parameterization on [0; 𝑐] (here we translate [𝑡𝑗; 𝑡𝑗 +

𝑐] to [0; 𝑐]). 

4. Experimental Results  

In order to estimate the efficiency of the proposed 

algorithm concluded for partial shape analysis, we 

apply it using Windows 32 bit PC powered by an 

Intel 2.6GHz in MATLAB R2020, on shapes from 

MPEG-7 dataset, and our MATLAB code is based 

the one in the linked file proposed by A. Srivastava 

(2020) in [12] We proceed the following steps : 

1. Two closed curves are represented by 
(2 × 100)  matrices. 

2. Extract from one of these matrices, a (2 × 𝑐)  

matrix that represent an open curve, which 

starting from the first column. 

3. On the other matrix, by changing the starting 

column, in each iteration, we construct a 

(2 × 𝑐)   matrix.   

4. By Appling the MATLAB Code from [12], 

we obtain the shape distance, optimal 

Table. 1 Illustration of the results of our algorithm applied on two different shapes from MPEG-7 Dataset. 

 

 

  

(a) o  in red within 1  (b) 2  (c) *
j  in red within 2  (d) Best matching between points of parts 

  

(f) Geodesic path between the two parts (e) Optimal re-parameterization 
 

 rotation, and optimal re-presentation  in            

each iteration. 

5. The results of these shape distances form a 

(1 × 100 − 𝑐) matrix,  then we indicate 

the minimum of these values and its rank, 

which are our goal, to determine 𝑂𝑗
∗ and 

𝛾𝑗
∗,  where 𝛾𝑗

∗ is plotted on [0; 𝑐].  

If the closed curves are the same, we will obtain 

identical parts and 𝛾𝑗
∗ represent the identity 

function. 

5. Results and Discussions 

Table. 2 represents more examples from MPEG-7 

dataset, where for each example,   𝛽𝑂 is the target 
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 .
Table. 2 Examples of part-to-part partial shape matching in the MPEG7 dataset with the proposed method. 

       

 

𝛽𝑂 in red 

within  𝛽1 

       

 

𝛽2  

  
 

     

 
𝛽𝑗

∗ in red 

within  𝛽2 

 

       

Best 

matching 

between 

points in 

parts  

       

Optimal    

re-

parametrizati

on 

𝑑𝜒 = 0.092 𝑑𝜒

= 0.0711 
𝑑𝜒

= 1.0329 
𝑑𝜒

= 0.9548 
𝑑𝜒

= 1.4694 
𝑑𝜒

= 1.1338 
𝑑𝜒

= 1.4764 

Shape 

distance 

 
Table. 3 Examples of geodesic paths between the target parts of shapes and the best parts obtained 

 

part, within the first curve  𝛽1,  and the best part 

obtained is 𝛽𝑗
∗  from  𝛽2, by applying our proposed 

method of elastic partial matching. Then we show 

the best matching  between points of these parts , 

and the optimal re-parameterization is plotted on 
[0; 𝑐] , if the curves  𝛽1 and  𝛽2 are the same, we 

obtain identical parts  𝛽𝑂 and  𝛽𝑗
∗, and the re-

parameterization function is the identity.  Geodesic 
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paths between the parts  𝛽𝑂 and  𝛽𝑗
∗  in these 

examples are represented in Table. 3. 

6. Conclusions 

 
We propose a novel algorithm for elastic partial 

matching, designed for whole-to-part task. The 

method finds the best registration for a part of a 

closed curve (the target) within another closed 

curve by identifying the segment of equal length 

that minimizes the Riemannian shape distance 

across all possible parts with different starting 

points. The result gives a geodesic deformation 

path and the optimal re-parameterization function. 

This framework can be extended to 3D shape 

analysis in multi-field applications. 
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