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Avrticle Info: Abstract:

In this paper, we focus on one of partial shape analysis tasks, by proposing a solution
for the whole-to-part shape registration problem using a Riemannian Framework
extended from past works. We have a part of a planar curve considered as open one, and
the goal is to extract an open curve segment from another closed curve that gives the
best alignment by minimizing the Riemannian shape distance between the given part
and all parts of the closed curve with the same length. Our contribution here is: (1)
extracting all curves with same length of the target curve from the second by changing
the starting point, (2) for each part extracted, find the best registration using an elastic
Riemannian metric and calculating the shape distance between them (3) the minimum
of these distances define the distance desired and the curve is the part which gives this
distance. Finally, to evaluate the performance of this algorithm, the results are shown in
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1. Introduction
Whole-to-part shape matching is a fundamental task
in partial shape analysis arise in wide range of
application domains, for example, Robotic
manipulation where identifying object to manipulate
especially when part of this object is hidden, in
medical imaging as needed in Surgical planning, this
process involves aligning pre-operative and intra-
operative data which can be partial or deformed, and
when we detect the contours of organs are obscured
by other structures,
in computer graphics, which require aligning
deformable objects with only a portion of their
contours or surfaces matching and in handwriting
text recognition, analyse the characters as partial
planar curves by map, segment and classify them.
The problem addresses the issue of registering or
aligning a particular part of a curve with a part from
another closed or open curve.

Several papers represent many methods to solve
this critical problem with different shape

representations and different algorithms for
matching. "T.B. Sebastian et al. (2003) present an
approach to aligning pairs of curves segments and
pairs of closed curves by a metric defined with
length and curvature of these curves and the results
calculated by dynamic-programming method in
[11], [9] calculate the distance between two
trajectories P and Q by finding a path that minimizes
the average Euclidean distance between all points of
P and Q. In [10], T. Richardson et al. (2006) present
an algorithm where one-to-one correspondence does
not exist across the shapes and this algorithm
initialize to clip some portion of open-curves and
then apply the Landmark-sliding algorithm to find
the correspondence from each starting clip length.
The goal of T. Funkhouser et al. (2006) in [3] was to
retrieve 3D models from a given database most
similar to a 3D model provided as a query by
representing every object by a set of local shape
features and applying the Priority—driven search
algorithm to find the best multi-feature matches
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without computing complete matches for every
object. A new approach proposed in [5] to perform
partial shape matching by transform shapes into
sequences and utilize an algorithm that determines a
subsequence of a target sequence that best match a
query where this algorithm map this issue to the
cheapest path in a directed acyclic graph DAG and
the procedure allows to compute the optimal scale
and translation of sequence values, M. Cui et al.
(2009) in [2], gives a framework for planar open 2D
curves with new signature based on the integral of
unsigned curvature and a parameterization that is
invariant under similarity transform: translation,
rotation and uniform scaling to find what part of the
first matches the best with a part or the whole of the
second curve, while in [1], the first paper which
study the partial similarity in the continuous setting
with all points in the curves considered, K. Buchin
et al. (2009) study the partial similarity between two
polygonal curves of sizes n and m respectively by
maximizing the total length of sub-curves that are
closed to each other, the closeness is measured by
the Fréchet distance where the maximal length is
called the partial Fréchet similarity between the two
input curves and solve this problem in
O(mn(m+n)log(mn)) time. Later, A. Maheshwari et
al. (2011) in [6] improved algorithms for partial
curve matching, closed Fréchet distance, maximum
walk problem and matching a curve in DAG the
results based on new data structure called free-space
map achieving a running time of O(mn) [8] gives a
new technique to the problem of partial shape
matching between an open contour and a part of a
closed contour using a novel shape descriptor based
on measuring the distance of a certain silhouette
point from the closest points of the same silhouette
along properly defined directions. The shape
descriptors are computed along open or closed
contours in a spatially non-uniform manner and the
resulting collections of of shape descriptors
constitute the global shape representation. Whole-to-
part and part-to-part matching are discussed in [15],
proposing a novel shape descriptor, triangular
centroid distances TCDs for shape representation
and is invariant to translation, rotation, scaling and
considerable shape deformations. The main
framework in shape analysis of 2D curves used in
this paper is from [14] and sufficient concepts,
definitions with details and breadth are in [13], the
shapes are continuous boundaries defined by
parameterized curves which are elements of the
shape space and the essential representation of
curves is the Square-Root Velocity Function
(SRVF). In this paper, our goal is to best matching
an open curve to a part of a closed curve so we will
extract the optimal open curve from a larger curve to
register it with the target curve using theses concepts
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in[12]. In [4], the authors represent a good treatment
and results for handwritten word segmentation into
individual characters and partial matching of
individual letters with entire words using elastic
Riemannian shape metric. [7] develop an algorithm
for shape-informed partial matching and completion
with respect to a complete template curve.

In this paper, our goal is to find the best
registration between a given open curve and a part of
a closed curve. First, measuring the length of the
target open curve than extracting the open curves
with same length from the closed curve by changing
the starting point along it and after that, find the best
registration between the target curve and the
extracted one and measuring the Riemannian
distance between them where the minimum of these
distances gives the optimal part which gives the best
registration. Finally, applying this approach to 2D
planar curves from the MPEG-7 dataset yo show the
efficiency of the contribution.

2. Preliminaries

Before we construct our procedure, we resume the
past Riemannian framework of elastic shape analysis
of planar curves using the Square—Root Velocity
representation and supposing that the parameter
interval is I = [0; 1] following [13] where there is
more  details. Let C={B:[0;1] — R?/
B absolutely continuous} be the space of planar
parameterized curves, we represent the curve 8 by
its Square-Root Velocity function (SRVF) q defined

by q®) =B/ (B q€
L?([0; 1]; R?) and for a differentiable curve f its

LIB = [, /<B<t>;/%<t)>dt =

f01|[?(t)|dt =1, we obtain ||q||? = follq(t)|2dt =
f01|B(t)|dt = 1. Since t varies from 0 to 1, the point
B(t)traces a path B(0)to B(1). L1 ={ye€
Diff([0; 11)/v(0) = 0;y(1) = 1; y(t) > 0}  note
the group of orientation-preserving diffeomorphisms
of [0;1] called the group of re- parameterization
functions. The right action of I} on C defined by
(B,y) = B oy, here the composition g o y is the re-
parameterization of the curve 8 which do not change
its shape.

where

length is

To analyze shapes of curves, its representation must
be invariant to scaling, translation, rotation and re-
parameterization so we need to study the affectation
of these transformations on the curves, this means the
action of each group transformation on C. First, we
will scale all curves to be of a fixed length supposed

1we get ||q]|> = f01|[?(t)|dt= 1, then and by
using B(t) in the SRV representation, the translation
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is removed , for removing rotation and re-
parameterization we will use the notion of pre-shape
space.

The pre-shape space of fixed-length absolutely
continuous curves under arbitrary parameterizations
using the SRV representation defined on [0; 1] is S =
{0 € 201 RY/ [Jla@Pde =1}, it is a
sphere in L2([0; 1]; R?) and constitute an orthogonal
section of scaling group R* on L?([0; 1]; R?). Under
the scaled — L? metric the action of R* establish an
isometric map between S and L?([0;1]; R?)/R*
thus we will use S for analyzing the elements of
L?([0;1; R?)/R*. Now we construct the
Riemannian structure on S establishing the tangent
space and define the inner product on it.

Define  the mapping ®: L2([0; 1]; R?) — R
by ®(q) = then S = d 1(1)using the linear
transformation d(®),: L?([0; 1]; R?) — R defined
by:d(®)g ==|  ®(q+ew) =

=0

2 [ (w(t),q(t))dt = 2(q,w) to prove that S is a
submanifold of L?([0;1]; R?), the tangent space
T, (S) is given by:

T,(S) = ker(d(®),) = {w € L?([0;1]; R?)/
(q,w) = 0}, the standard L? inner product between
u,v € T,(L?([0; 1]; R?)), is defined by (u,v) =
fol(u(t),v(t))dt the normal space of S at q is
Ng(S) = span(q). Let a:[0;1] >R be a
parameterized path on S that is differentiable

everywhere on [0;1]its length is Ll[a] =
1 da da . . . . .
fo (E’E> dz, S is a Riemannian manifold with

the Riemannian metric inherited from the larger
Hilbert space L?([0; 1]; R?), the minimal geodesics
are given by the shorter arcs on great circles, for two
parameterized curves f, and S,, the geodesic path
between their representations g, and g, is:

Sinlw) [sin(ﬂ(l — T))q1 + sin(rﬁ)qz]
where 9 = cos™1({q,, q,)) starts at g; at T = 0 and
achieve g, at T = 1 and the geodesic distance is :
ds(q1,9;) =9 = cos™*({q4,9,)) the exponential
map, exp:T,(S) > S is given by exps(w) =
cos([lwl)gq + sin(flw|)) —,w € T, (S) is a tangent

lwll”
direction, and the for any g, € S the inverse of the
exponential map at g, €S is expgllzs — Tq,(S)

(g2 — cos(¥)qy), Y=

a(t) =

defined by: v =
cos ' ({q1, 42)).
The right group action of I; on S defined by (q,y) +—

(@ov)—(goy)/y and (qey)y is the
representation of the re-parameterized curve S oy.

_9
sin(9)
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The action of the rotation group SO(2) on C is
(0,B) = 0B and represented by the action of SO(2)
on Sis (0,q) — {t — 0q(t)}. Since the actions of
S0(2) and I; commute we have:

we have for every q € S: [q] = {Oq(y(t))‘/)'/(t)/
y,0) eI} x SO(Z)}. The main importance of the
SRVFisthatT; x SO(2) acts by isometrieson S, that
s mean:llq; — 21l = ||V7(®)0(q; °¥) -
Jy(@®)0(gq, °y) ” with respect to the chosen metric,
and because of this property, the L2 norm between the
SRVFs is called elastic Riemannian metric. The
shape space using the SRVF representation is defined
by: x = S/(I; x SO(2)) and it is a metric space with
the distance inherited from S which defined by:
dx([ch], [q2]) =

infg, elq,)8,€l0,) 45 (01, G2) =

inf(y,0)er; xso(2) ds (ql, 0(gz° Y)\/V(t))

To calculate the shape distance, we solve, over the
space I; x SO(2), the optimization problem

(r-,0") =
argming, o)er, xso(2) cos™1(q1,0(q; ° NV ()

= argmingy,o)er; xso(2) ”611 —0(qz°
2
INIG]| €

3. Partial Shape Analysis of 2D Planar Curve

Let B4, 2 be two unit-length parameterized planar
closed curves defined on [0; 1], B, is a part of f,
defined on [0;c] where 0<c<1. We have

L[ Bol = [} | Bo@®| dt = | Bo ()]
and 0 < | Bo(c)] < 1.

To obtain the best alignment of g, from S, we
propose the following algorithm:

1. Normalize [0; c] to [0; 1], and rescale B, to
be with unit-length.

Construct a sequence of N + 1 parameters
from [0;1]such that: ¢,=0, t; =

l, ..,ty = 1 and sub-domains with length

N

equal to ¢ defined by [t;t;+c]c
[0;1],0<t;+c<1 fori=0,N.

For each i = 0, N, extracting an open curve
Bi from B, suchthat B; = Bolje;it;4c) -
For each i = 0,N normalize each sub-
domain to [0; 1] and rescale each curve to
be with unit length.

2.
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5. The SRVF of B, and B; for each i = 0,N
noted gpand g; respectively are elements in
S since By and p; are absolutely continuous
planar parameterized open curve.

6. Applying the Riemannian Framework
proposed in [14] for each i = 0, N, to find
optimal rotation O; and optimal  re-
parameterization y; by solving (1) for q,
and gq; so we find q; =
\/y—;og‘(qi oy;),and the shape distance is
d)((QO'CIi) = ds(qo, q;)-

7. For our purpose, the optimal shape distance
is

infi—ondy(q0,qi ) =
infiz(),_NdS(QO'CIi*) = ds(Qo'q]'*)
such that 0 < j < N to find the part of 5,
that gives the best alignmentto S, which is

* * t * *
B; suchthat B; (t) = [ q; (s)|q; (s)|ds.
8. Since j is the solution, the starting parameter
is t;, and the sub-domain is [t;; t; + c].

Table.1 shows the results of our algorithm applied to
two shapes from MPEG-7 , (a) represent f3, in red,
the target part, within 8;, B, the closed curve in (b),
(c) show the part g; in red, from S, that gives the

best elastic registration to By, (d) is the best
matching between points on parts, (e) gives the
geodesic path between them and (f) is the best re-
parameterization on [0; c] (here we translate [tj L+

c] to [0; c]).

4. Experimental Results

In order to estimate the efficiency of the proposed
algorithm concluded for partial shape analysis, we
apply it using Windows 32 bit PC powered by an
Intel 2.6GHz in MATLAB R2020, on shapes from
MPEG-7 dataset, and our MATLAB code is based
the one in the linked file proposed by A. Srivastava
(2020) in [12] We proceed the following steps :

1. Two closed curves are represented by
(2 x100) matrices.

2. Extract from one of these matrices, a (2 X ¢)
matrix that represent an open curve, which
starting from the first column.

3. On the other matrix, by changing the starting
column, in each iteration, we construct a
(2 X ¢) matrix.

4. By Appling the MATLAB Code from [12],
we obtain the shape distance, optimal

Table. 1 lllustration of the results of our algorithm applied on two different shapes from MPEG-7 Dataset.

.—.—1v
T
",I|'||Ol"

I'||I'|'|'|
||.|‘nll|.”|

(@) B, inredwithin g (b) B>

(d) Best matching between points of parts

i

(f) Geodesic path between the two parts

(e) Optimal re-parameterization

rotation, and optimal re-presentation in
each iteration.

5. The results of these shape distances form a
(1 x 100 — ¢) matrix, then we indicate
the minimum of these values and its rank,
which are our goal, to determine Oj‘ and

yj, where y; is plotted on [0; c].
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If the closed curves are the same, we will obtain
identical parts and y; represent the identity
function.

5. Results and Discussions

Table. 2 represents more examples from MPEG-7
dataset, where for each example, S, is the target
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Table. 2 Examples of part-to-part partial shape matching in the MPEG7 dataset with the proposed method.

1 Boin red
© within

B2

B in red
within S,

Best

matching

between

points in
‘ parts

s

e

Optimal

re-
parametrizati
on

d, =0092 | d, d, d, d, d
=00711 | =1.0329 | =09548 | =1.4694

X
= 1.1338

dX
= 1.4764

Shape
distance

Table. 3 Examples of geodesic paths between the target parts of shapes and the best parts obtained

o e =<

AAATAAVANAVAVAVAYAY

LLLLLLLLLLT

L L L L L L L L

part, within the first curve (;, and the best part
obtained is §; from B, by applying our proposed
method of elastic partial matching. Then we show
the best matching between points of these parts ,
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and the optimal re-parameterization is plotted on
[0;c] , if the curves B; and B, are the same, we
obtain identical parts B, and p;, and the re-
parameterization function is the identity. Geodesic
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paths between the parts S, and p; in these

examples are represented in Table. 3.

6. Conclusions

We propose a novel algorithm for elastic partial
matching, designed for whole-to-part task. The
method finds the best registration for a part of a
closed curve (the target) within another closed
curve by identifying the segment of equal length
that minimizes the Riemannian shape distance
across all possible parts with different starting
points. The result gives a geodesic deformation
path and the optimal re-parameterization function.
This framework can be extended to 3D shape
analysis in multi-field applications.
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