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Abstract:  
 

To prevent the reprocessing of the same trade message in different distributed financial 

infrastructures, electronic trading systems must have powerful duplicate trade detection 

protocols. Redundant messages are a result of network timeouts, TCP retransmission 

protocols, upstream retry queues, and manual resubmission workflows that are part of 

heterogeneous trading structures. Idempotency models define message uniqueness by 

using composite business keys, cryptographic fingerprints using the SHA-256 hashing 

functions, and deduplication logic on time windows that trades off between accuracy of 

detection and scalability of computation. Graphed graph frameworks are enhanced with 

blockchain and deliver distributed data models to specify intricate trade relations in the 

form of immutable ledger records, smart contract validation logic, and multi-channel 

designs, which assure information integrity across trading networks. Multi-channel 

correlation algorithms differentiate between actual trade amendments and replay events 

based on machine learning classification models and partial fill cases and cross-venue 

execution strategies. Strategies of implementation are used to optimize parameters of 

tolerance windows with the use of hierarchical composite key matching, progressive 

sampled indexing, and container-based pre-fetching strategies. Microsecond-latency 

duplicate-detection In-memory caching architectures in conjunction with Bloom filter 

probabilistic structures can achieve duplicate detection at millions of trade messages per 

day to protect downstream risk management and regulatory reporting systems against 

position inflation and compliance violations. 

 

1. Introduction to Duplicate Trade Detection 

in Modern Trading Infrastructure 
 

Millions of trade messages are transmitted by 

electronic trading systems in modern financial 

markets in a variety of asset classes, across a 

variety of execution venues, and communication 

protocols every day. Duplicate trade detection is an 

essential control process that detects and eliminates 

incorrect processing of a trade message by a 

downstream risk management system, position-

keeping system, and accounting system several 

times. The technical issue of replay is brought 

about by the distributed nature of modern trading 

structure with messages traversing across various 

system boundaries such as order management 

systems, execution management systems, 

middleware layers, and connectivity gateways to 

the venue. The speedy shift to real-time and event-

driven microservices has made transactions grow 

by far, and today, it is estimated that the number of 

transactions will grow even further, reaching more 

than 10 trillion by 2025, and that the risk of failing 

to process a duplicate message will rise 

dramatically [1]. 

The impact on the detection controls when trade 

messages are duplicated, which then pass to the 

core processing systems, is not just a mere 

inconvenience in operating the systems. Systematic 

replays that are undetected overstate trading 

positions with the creation of artificial long or short 

exposures that do not reflect the actual market risk 

of the firm. Repeat executions should not be 

recorded in the same book of accounts as the same 

economic activity due to the resultant corruption of 

the financial profit and loss accounts, resulting in 

exaggerated or underrepresented performance 

reports. It has been estimated in research that poor-

quality data in financial services leads to a large 

systemic risk, with an average failed or duplicate 

payment resulting in an average of 12 dollars in 
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reprocessing and customer support [1]. 

Transparency regimes that encompass regulatory 

reporting frameworks have the risk of submitting 

the same trade records to the supervisory 

authorities, which could lead to the impact of 

investigations and financial penalties related to the 

same. 

The complexity of the technical aspects of duplicate 

detection increases in conditions with diverse 

system integration patterns. Trading companies 

usually have hybrid frameworks in which old 

mainframes are present alongside contemporary 

microservices, FIX connections are present 

alongside RESTful APIs, and real-time streaming 

data combines with batch file transfer. Baseline 

levels of 0.7% duplicates of requests into the 

network are introduced by network unreliability, 

and systems must respond within 100 milliseconds 

or less to satisfy consumer requirements [1]. Both 

communication channels have different failure 

modes that may cause retransmission of messages, 

and in this situation, different detection logics that 

have the ability to identify replays irrespective of 

their route to the receiver and their timing 

distributions with regard to processing windows are 

required. 

Modern strategies to replicate trade detection are 

becoming more and more based on the use of 

unique identifiers of transactions, operationalized 

using idempotency keys, to provide exact-once 

semantics in distributed contexts [1]. It is these 

mechanisms that allow systems to recognize repeat 

requests and provide corresponding original 

responses rather than perform new financial 

operations, which ultimately forms a sort of magic 

shield that shields downstream processing 

(conversely) against the underlying anarchy of 

distributed communication networks. 

 

2. Message Replay Scenarios and Root Cause 

Analysis 

 

Various technical failure conditions arising from 

distributed computing architecture and the network 

communication protocol give rise to message 

replay events in trading systems. Network timeout 

conditions are the most common replay trigger, 

where the upstream systems send trade messages 

but do not obtain acknowledgment messages within 

set time limits. The encrypted deduplication 

systems have shown that the deterministic 

encryption exposes underlying frequency 

distributions with experiments in the real world 

showing that 99.8 percent of chunks are replicated 

less than 100 times, and the experiment shows that 

30 out of 41 million chunks have a frequency 

greater than 10,000 [2]. In normal retry logic, the 

originating system believes it has lost the message 

and sends the same message, while the downstream 

system may have consumed the original message 

without receiving the acknowledgment packet. 

The TCP-level retransmission systems, though 

necessary to guarantee reliable data delivery, add 

more complexity to replay detection. In case 

message streams are interrupted by network 

congestion or routing failures, the lower protocol 

layers will automatically retransmit sequences of 

packets without knowledge to the application layer. 

Connection health applications can even start their 

own recovery retry sequences at the same time, 

leading to multiple copies of a message being 

received via automated protocol recovery and 

explicit application retry logic. State-of-the-art 

detection systems have processing rates of up to 

150,000 transactions per second with less than 3 ms 

latency, indicating the time scales within which 

replay detection must be done [3]. 

Persistent retry queue Persistent retry queues are 

often used in order management and execution 

management systems to make sure messages are 

delivered eventually, even if there is a temporary 

loss of connection. Multi-layer-based detection 

frameworks achieve data ingestion-layer processing 

latency of 0.5-1.2 ms, throughput of 100,000 

events, and model computation-layer processing 

latency of 50,000 events/s [3]. These queuing 

systems can hold the trade messages longer and re-

transmit them when connectivity is restored, even 

after the same trade is transmitted to the 

downstream systems by other communication 

routes. 

Another major cause of duplicates of trade 

messages is through manual resubmission 

workflows, especially when undertaking operations 

exception handling processes. The financial market 

surveillance systems with GAN-based architectures 

achieve a detection accuracy of 94.76 when 

identifying abnormal patterns, which is 15.5 

percent higher than traditional systems, but low 

rates of false positives of 0.3 percent are still hard 

to achieve [3]. The locality-based attack algorithm 

shows that up to 23.2 percent of backup data can be 

inferred through frequency analysis with the 

assistance of recent previous backups, highlighting 

the challenges in recognizing frequency patterns 

that differentiate between legitimate and actual 

retransmissions [2]. 

 

3. Idempotency Framework and Message 

Fingerprinting Techniques 

 

Idempotent message processing is the design 

principle on which the trading systems rely to allow 

duplicate messages to be received without 
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corrupting the downstream state. The point of an 

idempotent operation is that its effect is the same on 

a system when it is performed once or more with 

the same input parameters, and the message replays 

are apparently neutralized. To implement 

idempotency, unique message identifiers that are 

determined to be constant during n retransmissions 

must be defined, database operations must be 

created to identify and avoid duplicate processing, 

and adequate historical metadata is necessary to 

identify replays sent by a reentrant within a long 

time span [1]. 

The key composition of the business is the major 

method of creating uniqueness of the message in 

the trade in the lifecycle events. A coming business 

key is normally a combination of a number of 

attributes, such as the trade identifier, the execution 

venue identifier, the order identifier, the instrument 

identifier, and the execution timestamp at 

microsecond accuracy. The choice of the essential 

elements should strike a balance between the need 

to be unique and the probability of false negativity, 

where the legitimate trade amendments are wrongly 

identified as duplicates. Financial data architecture 

studies have also shown that SQL systems have 

extremely low memory utilization of 0.1406 MB 

and query times of 3.8927 seconds for 1 million 

records and can therefore be highly utilized in the 

quick key search of the business key [4]. 

Nevertheless, distributed processing models such as 

Apache Spark demonstrate better scalability with 

semi-structured data, achieving a query response 

time of 5.5915 seconds for equal quantities of 

records, which implies architectural compromises 

in key composition approaches [4]. 

Another common technique that complements 

business key methods is cryptographic 

fingerprinting, which produces deterministic hash 

values that are calculated over the normalized 

message payload as a whole. SHA-256 and SHA-3 

algorithms create consistent-length fingerprints 

from trade messages that can vary in size, allowing 

for quick comparisons of messages, no matter how 

complex they are. The normalization procedure has 

to deal with the differences in the field ordering, 

inconsistencies in whitespaces, and the presence of 

optional fields to ensure that the same economic 

trade produces the same fingerprints at all times. 

The logic of implementation in fixed-income 

markets indicates that the market participants retain 

embedded relationships with up to 40 favored 

customers, with the salespeople making 35 calls 

every day to a specific customer to provide 

proprietary information [5]. Such an interaction 

pattern at high frequency requires fingerprinting 

systems that can accommodate thousands of 

messages per second whilst being deterministic in 

the generation of hash values in the presence of 

variations in message format. 

By restricting replay detection to time windows that 

can be configured, temporal window-based 

deduplication logic trades off false positive 

reduction with memory usage and lookup speed. 

Fixed-window applications archive the entire 

message history over defined timeframes, and 

Python-based systems have been shown to consume 

488.6354 MB of memory to process one million 

structured records and a total time of 164.5462 

seconds to do the entire task [4]. Sliding window 

methods dynamically drop old entries, which 

ensure more predictable memory utilization 

patterns, which are found in Spark 

implementations, which require 163.0830 seconds 

total time and 488.6288 MB memory consumption 

with the same workloads [4]. The windowing time 

should be able to accommodate the maximum 

delays observed between the processing of original 

messages and possible replay arrival, with safety 

margins being provided to cover operational 

conditions such as longer periods of system 

maintenance. 

Exactly-once delivery semantics Message queue 

architectures with deduplication infrastructure 

Message queue architectures with deduplication 

infrastructure at the infrastructure level offer 

deduplication capabilities that are complementary 

to application-layer deduplication logic. The fixed-

income market structure demonstrates that over 90 

percent of the trading volume is dependent on 

telephone-based embedded relationships between 

institutional investors and market makers, and the 

parties exchange private information via strong ties 

to take advantage of information asymmetry [5]. 

Nevertheless, in smaller transactions and liquid 

instruments, alternative trading systems (ATSs) 

exhibit arm's-length relationship patterns in which 

infrastructure-level guarantees are more relevant. 

Fingerprinting on the application layer is still 

required to provide end-to-end replay protection 

across heterogeneous system boundaries, as there is 

a large difference between the CPU utilization of 

SQL systems, with 3.8872%, and near-zero CPU 

utilization in Python and Spark implementations 

that make use of GPU acceleration, with 2.0 and 

5.0 percent utilization of each type of data, 

respectively [4]. 

 

4. Blockchain-Enhanced Trade Relationship 

Modeling 

 

Trade lifecycle management based on graph 

architecture has also been developed with a strong 

level of integration of blockchain technology, 

offering distributed systems to model complex 
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trading relationships and guarantee the integrity and 

non-repudiation of data. Contemporary applications 

use the multi-channel design of Hyperledger Fabric 

to establish single-channel supervision streams of 

various trading relationships and throughput with a 

rate of about 211-328 transactions per second (tps) 

and a transaction success rate of more than 99% 

[6]. In contrast to the old-fashioned centralized 

databases where there are high risks of information 

manipulation and the absence of clear audit 

systems, the models of trade relations based on 

blockchain provide a clear idea of trading 

organizations and the manner of their interactions 

as an unchangeable record of operations with 

cryptographic verification. 

The network graph of the blockchain trading 

systems consists of various levels of hierarchy and 

participants of the trading system. Enterprise nodes 

carry trader identification credentials, 

organizational affiliations, and digital signatures 

approved by Certificate Authority (CA) systems. 

Trading channel nodes are independent 

communication channels between particular 

country commodities or bilateral trade agreements; 

each channel has its own ledgers that execute 

between 150-212 tps based on configuration 

parameters like block size (optimal 128 KB) and 

logging levels [6]. Transaction nodes hold 

information about the trades, including how much 

was exchanged, exact timestamps down to the 

millisecond, codes for tracking the data, and 

addresses that can be verified to make sure the 

information in the distributed ledger is clear and 

trustworthy. 

Smart contract relations encode business logic to 

validate trade and regulatory compliance checks. 

Combining machine learning into these frameworks 

has shown accuracy of prediction of agricultural 

commodities of 69-88%, far outpacing traditional 

USDA forecast accuracy of less than 35% [7]. The 

hybrid storage architecture is an implementation 

that integrates on-chain cryptographic hashes (only 

a small block header block of about 80 bytes is 

needed) with off-chain rich transaction records to 

minimize blockchain storage requirements while 

preserving verification capabilities. This 

implementation has a traceability query response 

time (average 2.58 seconds) at 500 requests and an 

average transaction latency of 4.03 seconds at 500 

requests/s [6]. 

High-confidence relationship (>90) association 

rules in blockchain trade networks have determined 

that when predictor-consequence relationships are 

considered in 96 commodity classifications, 67% of 

trade transactions are predictable when an 

antecedent-consequence relationship exists between 

the flow of commodities [7]. The validation of the 

distributed consensus mechanism is performed by 

several peer nodes before block commitment, and 

the system can handle network loads of up to 600 

requests per second, after which performance 

degrades. The analysis of feature importance in 

these models shows that distance, GDP indicators, 

and population statistics are the major predictors of 

trade, accounting for 6.38, 6.22, and 3.83 percent of 

the variance in predicting black swan disruption 

phenomena, respectively. These factors can be used 

to formulate evidence-based policy in both routine 

business operations and during black swan 

disruption incidents. 

 

5. Multi-Channel Trade Correlation and 

Lifecycle Event Disambiguation 

 

A heterogeneous channel of trade correlation is a 

critical technical problem in the systems of 

duplicate detection that support contemporary 

fragmented trading activities. Trade confirmations 

are sent to financial institutions using many 

concurring methods, such as real-time connections 

using the FIX protocol, batch file transmission, 

RESTful API polling, and messaging queue 

subscriptions. The complexity of the European 

equity markets are reflected in the number of stocks 

that trade in primary markets as well as three 

alternative systems (BATS, Chi-X, and Turquoise) 

that execute around 10.5 million trades and 456 

million messages each month [9]. Temporal 

correlation makes the tolerance windows have 

values of 50 to 500 milliseconds based on observed 

clock correlation accuracy [8]. 

Correlation algorithms have to derive correlation 

relationships even when there are variations in 

identity and formatting between channels. Ghost 

liquidity indicators show that after trading 100 

shares in one venue, traders cancel about 19 shares 

in rival venues in 10-millisecond periods, and 

cancellation rates go up to 42 percent of the trade 

size in stocks of the UK when scaled by trade size 

[9]. The European venues market members (388) 

implement coordinated order management policies, 

conditionally cancelling duplicated orders across 

other executions, with ghost liquidity averaging 

4.04% of the consolidated depth of alternative and 

primary venues [9]. 

Advanced temporal sequencing examination is 

required to distinguish between legitimate trade 

amendments and replay events. Production 

applications of machine learning classification 

models that are trained on historic patterns attain a 

disambiguation accuracy of more than 99.7% [8], 

using feature sets such as counts of attribute 

differences and timestamp delta distributions. 

Persistent-set selective search algorithms reduce the 
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validation state search by 27%, nearly an order of 

magnitude, across various application cases [8]. 

There are also partial fill situations that are further 

complicated in that several valid executions are 

required to differentiate between two reports. The 

graph traversal queries permit cumulative quantity 

analysis, which identifies inconsistency. Cross-

venue correlation considers those situations when 

aggressive order routing policies implement parts 

of single logical orders in multiple venues at the 

same time. The proportion of global members 

trading in more than one venue is 72.81 percent of 

total traded volumes and accounts for 96.02 percent 

of volumes in alternative venues [9]. This indicates 

complex multi-venue execution policies that require 

highly developed correlation frameworks for 

accurate duplicate detection and lifecycle events. 

 

6. Detection Logic Implementation and 

Tolerance Window Optimization 

 

To actually implement duplicate detection logic, 

one should consider tolerance windows that are 

necessary to reduce the number of false positives 

and to minimize the likelihood of undetected 

replay. Timestamp tolerance windows establish 

time proximity within which arriving trades are 

detailed and compared to be possibly labeled as 

duplicates. Narrow windows are very specific and 

minimize false positive rates in situations where 

venues trade different trades in quick sequence but 

can miss delayed replays due to lengthy network 

failures or system recovery actions. The fault-

tolerant container replication of HyCoR has a sub-

millisecond added delay and less than one-second 

recovery latency, which proves that the tight 

tolerance windows may be compatible with high-

speed recovery functionality [10]. 

Optimization techniques for tolerance windows use 

statistical results of the distribution of replay 

latency in production systems. Empirical research 

has shown that the replay latencies of network-

induced duplicates are normally between 

milliseconds and seconds, whereas system recovery 

situations create delays of up to several hours. The 

performance overhead of the epoch-processing 

performance of HyCoR is within acceptable 

thresholds of real-world benchmarking [10]. Multi-

tier window implementations use aggressive short 

windows to do first real-time detection, with 

periodic batch processes that run long historical 

windows to detect delayed replays that are past 

real-time limits. 

Composite key matching strategies apply 

hierarchical comparison logic through successively-

discriminative-characteristic identifier components 

of a most-discriminative attribute-to-least-

discriminative-attribute hierarchy. One way to do 

this is to use deduplication systems with 

progressive sampled indexing: with a memory 

capacity of 64 GB and 11.6 TB at a 100 percent 

sampling rate, systems would deduplicate 97.9 

percent at 1/86 sampling rates when scaled to 1,000 

TB [11]. Container-based pre-fetching in 16 MB 

containers achieves a mark operation rate of 26 

GB/sec and a backup throughput of 950 MB/sec of 

unique and 6 GB/sec of duplicate data, respectively 

[11]. 

Performance optimization methods would become 

important when trading volumes rise to millions of 

messages a day. Memory caching allows direct 

lookups in milliseconds at high throughput times, 

and deduplication systems have been demonstrated 

to support 123 billion objects with 500 TB of 

system memory out of only 25 GB [11]. Bloom 

filter probabilistic data structures offer space-

efficient first-stage filtering, rapidly identifying 

messages that are unquestionably not duplicates 

prior to the application of costly exact matching 

logic to remaining candidates. 

 
Figure 1: Performance Metrics and Analysis Framework for Trade Deduplication and Financial Market Surveillance 

Systems [1] 
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Figure 2: Multi-Venue Execution Dominance: Trading Volume Distribution Across Market Participant Types [8, 9] 

 

Table 1: Idempotency Framework and Message Fingerprinting Techniques [2, 3] 

Component Description Key Characteristics 

Idempotent Message 

Processing 

Duplicate message handling 

principle 

Prevents state corruption; neutralizes replays; 

consistent system effects 

Business Key 

Composition 
Primary uniqueness identifier 

Combines trade ID, venue, order, instrument, and 

microsecond timestamp; balances uniqueness 

with false negative prevention 

Cryptographic 

Fingerprinting 
Hash-based message identification 

SHA-256/SHA-3 algorithms; deterministic 

output; handles message variations through 

normalization 

Temporal Window 

Deduplication 
Time-bounded replay detection 

Fixed-window (complete history) vs. sliding-

window (dynamic pruning); balances memory 

usage and lookup speed 

SQL vs. Distributed 

Processing 
Data architecture comparison 

SQL: low memory, fast queries; Spark: better 

scalability with semi-structured data 

Message Queue 

Architecture 
Infrastructure-level deduplication 

Exactly-once delivery semantics; complements 

application-layer fingerprinting 

Market Structure 

Patterns 
Trading relationship models 

Fixed-income: embedded relationships with high-

frequency calls; ATS: arm's-length transactions 

for liquid instruments 

Processing Resource 

Utilization 
System performance metrics 

Variable CPU consumption across SQL, Python, 

and Spark; GPU acceleration impact 

 

Table 2: Blockchain-Enhanced Trade Relationship Modeling Framework [6, 7] 

Component Description Key Characteristics 

Blockchain Platform 

Architecture 

Distributed ledger system for 

trade lifecycle management 

Multi-channel design; immutable transaction 

records; cryptographic verification, and high 

transaction success rate 

Enterprise Nodes 
Organizational participant 

identifiers 

Trader credentials; organizational affiliations, 

and CA-approved digital signatures 

Trading Channel 

Nodes 

Dedicated communication 

pathways 

Country-specific or bilateral agreement 

channels; independent ledgers; configurable 

block parameters; variable logging levels 

Transaction Nodes Individual trade record elements 

Exchange quantities; millisecond-precision 

timestamps; tracking codes, and verifiable 

addresses for distributed ledger transparency 

Smart Contract 

Relations 

Automated business logic 

enforcement 

Trade validation; regulatory compliance 

verification; machine learning integration for 

commodity prediction 

Hybrid Storage Dual-layer data management On-chain cryptographic hashes (compact header 
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Architecture system blocks); off-chain detailed transaction records; 

optimized storage with verification preservation 

Performance Metrics System efficiency indicators 

Traceability query response times; transaction 

latency measurements; request handling 

capacity, and network load thresholds 

Association Rule 

Mining 
Predictive relationship analysis 

High-confidence commodity flow patterns; 

antecedent-consequence trade relationships, and 

commodity classification systems 

Distributed Consensus 

Validation 

Multi-peer verification 

mechanism 

Pre-commitment peer node validation; scalable 

request processing, and defined performance 

degradation thresholds 

Feature Importance 

Analysis 
Predictive variable ranking 

Distance factors; economic indicators; 

demographic statistics, and black swan event 

disruption modeling 

 

7. Conclusions 

 
Duplicate trade detection is a basic control system 

that defends current electronic trading infrastructure 

against systematic risks linked to events of message 

replay. This mix of idempotency solutions, 

cryptographic fingerprinting, and relationship 

modeling using blockchain creates strong defenses 

that can identify duplicate messages across 

different types of communication channels. The 

temporal window optimization approaches create a 

trade-off between detection precision and 

computational efficiency by using multi-tier 

methods that combine real-time narrow-window 

filtering with long-run batch scanning. The 

classification models in machine learning are very 

good at telling the difference between real trade 

changes and repeated actions, doing so accurately 

while keeping false alarms to a minimum. 

Distributed ledger architecture and graph-based 

architecture offer scalability in terms of 

representation of complex trade lifecycle 

relationships and the ability to generate highly 

complex correlation algorithms to support multi-

venue execution strategy and partially filled 

scenarios. In-memory caching, probabilistic filter 

order structures, and progressive indexing methods 

are used to optimize performance and achieve 

microsecond latency when trading large volumes of 

data in high-frequency trading environments. These 

combined technology structures provide financial 

institutions with resilience against position 

inflation, corruption of profits, and loss reporting 

transgressions and offer solid bases on which they 

can effectively transact business in more and more 

intricate and interlinked international businesses. 
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