Copyright © IJCESEN

International Journal of Computational and Experimental

MCESEN

Science and ENgineering B (e
(IJCESEN) -
Vol. 12-No.1 (2026) pp. 884-891 —
http://www.ijcesen.com -

IéSN: 2149-9144
Research Article

Graph-Based Duplicate Trade Detection and Idempotency Framework
Implementation in Distributed Electronic Trading Systems

Iswarya Konasani*

Independent Researcher, USA

* Corresponding Author Email: iswaryakonasani5@gmail.com- ORCID: 0000-0002-0047-5550

Article Info:

DOI: 10.22399/ijcesen.4940
Received : 05 December 2025
Revised : 25 January 2026
Accepted : 30 January 2026

Keywords

Duplicate Trade Detection,
Idempotency Framework,
Blockchain Trade Modeling,
Message Fingerprinting,
Temporal Correlation

Abstract:

To prevent the reprocessing of the same trade message in different distributed financial
infrastructures, electronic trading systems must have powerful duplicate trade detection
protocols. Redundant messages are a result of network timeouts, TCP retransmission
protocols, upstream retry queues, and manual resubmission workflows that are part of
heterogeneous trading structures. Idempotency models define message uniqueness by
using composite business keys, cryptographic fingerprints using the SHA-256 hashing
functions, and deduplication logic on time windows that trades off between accuracy of
detection and scalability of computation. Graphed graph frameworks are enhanced with
blockchain and deliver distributed data models to specify intricate trade relations in the
form of immutable ledger records, smart contract validation logic, and multi-channel
designs, which assure information integrity across trading networks. Multi-channel
correlation algorithms differentiate between actual trade amendments and replay events
based on machine learning classification models and partial fill cases and cross-venue
execution strategies. Strategies of implementation are used to optimize parameters of
tolerance windows with the use of hierarchical composite key matching, progressive
sampled indexing, and container-based pre-fetching strategies. Microsecond-latency
duplicate-detection In-memory caching architectures in conjunction with Bloom filter
probabilistic structures can achieve duplicate detection at millions of trade messages per
day to protect downstream risk management and regulatory reporting systems against
position inflation and compliance violations.

by far, and today, it is estimated that the number of

1. Introduction to Duplicate Trade Detection
in Modern Trading Infrastructure

Millions of trade messages are transmitted by
electronic trading systems in modern financial
markets in a variety of asset classes, across a
variety of execution venues, and communication
protocols every day. Duplicate trade detection is an
essential control process that detects and eliminates
incorrect processing of a trade message by a
downstream risk management system, position-
keeping system, and accounting system several
times. The technical issue of replay is brought
about by the distributed nature of modern trading
structure with messages traversing across various
system boundaries such as order management
systems,  execution  management  systems,
middleware layers, and connectivity gateways to
the venue. The speedy shift to real-time and event-
driven microservices has made transactions grow

transactions will grow even further, reaching more
than 10 trillion by 2025, and that the risk of failing
to process a duplicate message will rise
dramatically [1].

The impact on the detection controls when trade
messages are duplicated, which then pass to the
core processing systems, is not just a mere
inconvenience in operating the systems. Systematic
replays that are undetected overstate trading
positions with the creation of artificial long or short
exposures that do not reflect the actual market risk
of the firm. Repeat executions should not be
recorded in the same book of accounts as the same
economic activity due to the resultant corruption of
the financial profit and loss accounts, resulting in
exaggerated or underrepresented performance
reports. It has been estimated in research that poor-
quality data in financial services leads to a large
systemic risk, with an average failed or duplicate
payment resulting in an average of 12 dollars in
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reprocessing and  customer  support  [1].
Transparency regimes that encompass regulatory
reporting frameworks have the risk of submitting
the same trade records to the supervisory
authorities, which could lead to the impact of
investigations and financial penalties related to the
same.

The complexity of the technical aspects of duplicate
detection increases in conditions with diverse
system integration patterns. Trading companies
usually have hybrid frameworks in which old
mainframes are present alongside contemporary
microservices, FIX connections are present
alongside RESTful APIs, and real-time streaming
data combines with batch file transfer. Baseline
levels of 0.7% duplicates of requests into the
network are introduced by network unreliability,
and systems must respond within 100 milliseconds
or less to satisfy consumer requirements [1]. Both
communication channels have different failure
modes that may cause retransmission of messages,
and in this situation, different detection logics that
have the ability to identify replays irrespective of
their route to the receiver and their timing
distributions with regard to processing windows are
required.

Modern strategies to replicate trade detection are
becoming more and more based on the use of
unique identifiers of transactions, operationalized
using idempotency keys, to provide exact-once
semantics in distributed contexts [1]. It is these
mechanisms that allow systems to recognize repeat
requests and provide corresponding original
responses rather than perform new financial
operations, which ultimately forms a sort of magic
shield that shields downstream processing
(conversely) against the underlying anarchy of
distributed communication networks.

2. Message Replay Scenarios and Root Cause
Analysis

Various technical failure conditions arising from
distributed computing architecture and the network
communication protocol give rise to message
replay events in trading systems. Network timeout
conditions are the most common replay trigger,
where the upstream systems send trade messages
but do not obtain acknowledgment messages within

set time limits. The encrypted deduplication
systems have shown that the deterministic
encryption  exposes  underlying  frequency

distributions with experiments in the real world
showing that 99.8 percent of chunks are replicated
less than 100 times, and the experiment shows that
30 out of 41 million chunks have a frequency
greater than 10,000 [2]. In normal retry logic, the
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originating system believes it has lost the message
and sends the same message, while the downstream
system may have consumed the original message
without receiving the acknowledgment packet.

The TCP-level retransmission systems, though
necessary to guarantee reliable data delivery, add
more complexity to replay detection. In case
message streams are interrupted by network
congestion or routing failures, the lower protocol
layers will automatically retransmit sequences of
packets without knowledge to the application layer.
Connection health applications can even start their
own recovery retry sequences at the same time,
leading to multiple copies of a message being
received via automated protocol recovery and
explicit application retry logic. State-of-the-art
detection systems have processing rates of up to
150,000 transactions per second with less than 3 ms
latency, indicating the time scales within which
replay detection must be done [3].

Persistent retry queue Persistent retry queues are
often used in order management and execution
management systems to make sure messages are
delivered eventually, even if there is a temporary
loss of connection. Multi-layer-based detection
frameworks achieve data ingestion-layer processing
latency of 0.5-1.2 ms, throughput of 100,000
events, and model computation-layer processing
latency of 50,000 events/s [3]. These queuing
systems can hold the trade messages longer and re-
transmit them when connectivity is restored, even
after the same trade is transmitted to the
downstream systems by other communication
routes.

Another major cause of duplicates of trade
messages is through manual resubmission
workflows, especially when undertaking operations
exception handling processes. The financial market
surveillance systems with GAN-based architectures
achieve a detection accuracy of 94.76 when
identifying abnormal patterns, which is 155
percent higher than traditional systems, but low
rates of false positives of 0.3 percent are still hard
to achieve [3]. The locality-based attack algorithm
shows that up to 23.2 percent of backup data can be
inferred through frequency analysis with the
assistance of recent previous backups, highlighting
the challenges in recognizing frequency patterns
that differentiate between legitimate and actual
retransmissions [2].

3. ldempotency Framework and Message
Fingerprinting Techniques

Idempotent message processing is the design
principle on which the trading systems rely to allow
duplicate messages to be received without
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corrupting the downstream state. The point of an
idempotent operation is that its effect is the same on
a system when it is performed once or more with
the same input parameters, and the message replays
are apparently neutralized. To implement
idempotency, unique message identifiers that are
determined to be constant during n retransmissions
must be defined, database operations must be
created to identify and avoid duplicate processing,
and adequate historical metadata is necessary to
identify replays sent by a reentrant within a long
time span [1].

The key composition of the business is the major
method of creating uniqueness of the message in
the trade in the lifecycle events. A coming business
key is normally a combination of a number of
attributes, such as the trade identifier, the execution
venue identifier, the order identifier, the instrument
identifier, and the execution timestamp at
microsecond accuracy. The choice of the essential
elements should strike a balance between the need
to be unique and the probability of false negativity,
where the legitimate trade amendments are wrongly
identified as duplicates. Financial data architecture
studies have also shown that SQL systems have
extremely low memory utilization of 0.1406 MB
and query times of 3.8927 seconds for 1 million
records and can therefore be highly utilized in the
quick key search of the business key [4].
Nevertheless, distributed processing models such as
Apache Spark demonstrate better scalability with
semi-structured data, achieving a query response
time of 5.5915 seconds for equal quantities of
records, which implies architectural compromises
in key composition approaches [4].

Another common technique that complements
business key  methods is  cryptographic
fingerprinting, which produces deterministic hash
values that are calculated over the normalized
message payload as a whole. SHA-256 and SHA-3
algorithms create consistent-length fingerprints
from trade messages that can vary in size, allowing
for quick comparisons of messages, no matter how
complex they are. The normalization procedure has
to deal with the differences in the field ordering,
inconsistencies in whitespaces, and the presence of
optional fields to ensure that the same economic
trade produces the same fingerprints at all times.
The logic of implementation in fixed-income
markets indicates that the market participants retain
embedded relationships with up to 40 favored
customers, with the salespeople making 35 calls
every day to a specific customer to provide
proprietary information [5]. Such an interaction
pattern at high frequency requires fingerprinting
systems that can accommodate thousands of
messages per second whilst being deterministic in
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the generation of hash values in the presence of
variations in message format.

By restricting replay detection to time windows that
can be configured, temporal window-based
deduplication logic trades off false positive
reduction with memory usage and lookup speed.
Fixed-window applications archive the entire
message history over defined timeframes, and
Python-based systems have been shown to consume
488.6354 MB of memory to process one million
structured records and a total time of 164.5462
seconds to do the entire task [4]. Sliding window
methods dynamically drop old entries, which
ensure more predictable memory utilization
patterns,  which are  found in  Spark
implementations, which require 163.0830 seconds
total time and 488.6288 MB memory consumption
with the same workloads [4]. The windowing time
should be able to accommodate the maximum
delays observed between the processing of original
messages and possible replay arrival, with safety
margins being provided to cover operational
conditions such as longer periods of system
maintenance.

Exactly-once delivery semantics Message queue
architectures with deduplication infrastructure
Message queue architectures with deduplication
infrastructure at the infrastructure level offer
deduplication capabilities that are complementary
to application-layer deduplication logic. The fixed-
income market structure demonstrates that over 90
percent of the trading volume is dependent on
telephone-based embedded relationships between
institutional investors and market makers, and the
parties exchange private information via strong ties
to take advantage of information asymmetry [5].
Nevertheless, in smaller transactions and liquid
instruments, alternative trading systems (ATSs)
exhibit arm's-length relationship patterns in which
infrastructure-level guarantees are more relevant.
Fingerprinting on the application layer is still
required to provide end-to-end replay protection
across heterogeneous system boundaries, as there is
a large difference between the CPU utilization of
SQL systems, with 3.8872%, and near-zero CPU
utilization in Python and Spark implementations
that make use of GPU acceleration, with 2.0 and
5.0 percent utilization of each type of data,
respectively [4].

4. Blockchain-Enhanced Trade Relationship
Modeling

Trade lifecycle management based on graph
architecture has also been developed with a strong
level of integration of blockchain technology,
offering distributed systems to model complex
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trading relationships and guarantee the integrity and
non-repudiation of data. Contemporary applications
use the multi-channel design of Hyperledger Fabric
to establish single-channel supervision streams of
various trading relationships and throughput with a
rate of about 211-328 transactions per second (tps)
and a transaction success rate of more than 99%
[6]. In contrast to the old-fashioned centralized
databases where there are high risks of information
manipulation and the absence of clear audit
systems, the models of trade relations based on
blockchain provide a clear idea of trading
organizations and the manner of their interactions
as an unchangeable record of operations with
cryptographic verification.

The network graph of the blockchain trading
systems consists of various levels of hierarchy and
participants of the trading system. Enterprise nodes
carry trader identification credentials,
organizational affiliations, and digital signatures
approved by Certificate Authority (CA) systems.
Trading channel nodes are independent
communication  channels  between particular
country commodities or bilateral trade agreements;
each channel has its own ledgers that execute
between 150-212 tps based on configuration
parameters like block size (optimal 128 KB) and
logging levels [6]. Transaction nodes hold
information about the trades, including how much
was exchanged, exact timestamps down to the
millisecond, codes for tracking the data, and
addresses that can be verified to make sure the
information in the distributed ledger is clear and
trustworthy.

Smart contract relations encode business logic to
validate trade and regulatory compliance checks.
Combining machine learning into these frameworks
has shown accuracy of prediction of agricultural
commodities of 69-88%, far outpacing traditional
USDA forecast accuracy of less than 35% [7]. The
hybrid storage architecture is an implementation
that integrates on-chain cryptographic hashes (only
a small block header block of about 80 bytes is
needed) with off-chain rich transaction records to
minimize blockchain storage requirements while
preserving verification capabilities. This
implementation has a traceability query response
time (average 2.58 seconds) at 500 requests and an
average transaction latency of 4.03 seconds at 500
requests/s [6].

High-confidence relationship (>90) association
rules in blockchain trade networks have determined
that when predictor-consequence relationships are
considered in 96 commodity classifications, 67% of
trade transactions are predictable when an
antecedent-consequence relationship exists between
the flow of commodities [7]. The validation of the
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distributed consensus mechanism is performed by
several peer nodes before block commitment, and
the system can handle network loads of up to 600
requests per second, after which performance
degrades. The analysis of feature importance in
these models shows that distance, GDP indicators,
and population statistics are the major predictors of
trade, accounting for 6.38, 6.22, and 3.83 percent of
the variance in predicting black swan disruption
phenomena, respectively. These factors can be used
to formulate evidence-based policy in both routine
business operations and during black swan
disruption incidents.

5. Multi-Channel Trade Correlation and
Lifecycle Event Disambiguation

A heterogeneous channel of trade correlation is a
critical technical problem in the systems of
duplicate detection that support contemporary
fragmented trading activities. Trade confirmations
are sent to financial institutions using many
concurring methods, such as real-time connections
using the FIX protocol, batch file transmission,
RESTful APl polling, and messaging queue
subscriptions. The complexity of the European
equity markets are reflected in the number of stocks
that trade in primary markets as well as three
alternative systems (BATS, Chi-X, and Turquoise)
that execute around 10.5 million trades and 456
million messages each month [9]. Temporal
correlation makes the tolerance windows have
values of 50 to 500 milliseconds based on observed
clock correlation accuracy [8].

Correlation algorithms have to derive correlation
relationships even when there are variations in
identity and formatting between channels. Ghost
liquidity indicators show that after trading 100
shares in one venue, traders cancel about 19 shares
in rival venues in 10-millisecond periods, and
cancellation rates go up to 42 percent of the trade
size in stocks of the UK when scaled by trade size
[9]. The European venues market members (388)
implement coordinated order management policies,
conditionally cancelling duplicated orders across
other executions, with ghost liquidity averaging
4.04% of the consolidated depth of alternative and
primary venues [9].

Advanced temporal sequencing examination is
required to distinguish between legitimate trade
amendments and replay events. Production
applications of machine learning classification
models that are trained on historic patterns attain a
disambiguation accuracy of more than 99.7% [8],
using feature sets such as counts of attribute
differences and timestamp delta distributions.
Persistent-set selective search algorithms reduce the
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validation state search by 27%, nearly an order of
magnitude, across various application cases [8].
There are also partial fill situations that are further
complicated in that several valid executions are
required to differentiate between two reports. The
graph traversal queries permit cumulative quantity
analysis, which identifies inconsistency. Cross-
venue correlation considers those situations when
aggressive order routing policies implement parts
of single logical orders in multiple venues at the
same time. The proportion of global members
trading in more than one venue is 72.81 percent of
total traded volumes and accounts for 96.02 percent
of volumes in alternative venues [9]. This indicates
complex multi-venue execution policies that require
highly developed correlation frameworks for
accurate duplicate detection and lifecycle events.

6. Detection Logic Implementation and
Tolerance Window Optimization

To actually implement duplicate detection logic,
one should consider tolerance windows that are
necessary to reduce the number of false positives
and to minimize the likelihood of undetected
replay. Timestamp tolerance windows establish
time proximity within which arriving trades are
detailed and compared to be possibly labeled as
duplicates. Narrow windows are very specific and
minimize false positive rates in situations where
venues trade different trades in quick sequence but
can miss delayed replays due to lengthy network
failures or system recovery actions. The fault-
tolerant container replication of HyCoR has a sub-
millisecond added delay and less than one-second
recovery latency, which proves that the tight
tolerance windows may be compatible with high-
speed recovery functionality [10].

Optimization techniques for tolerance windows use
statistical results of the distribution of replay

Encryptod Deduplication: Chunk Replication Frequency

99.8% of chunks 99.8%

- Replicated < 100 times
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« Total Dataset: 41,000,000 chunks

® Source: Encrypted Deduplication Systems (2]
) —

latency in production systems. Empirical research
has shown that the replay latencies of network-
induced duplicates are normally  between
milliseconds and seconds, whereas system recovery
situations create delays of up to several hours. The
performance overhead of the epoch-processing
performance of HyCoR is within acceptable
thresholds of real-world benchmarking [10]. Multi-
tier window implementations use aggressive short
windows to do first real-time detection, with
periodic batch processes that run long historical
windows to detect delayed replays that are past
real-time limits.

Composite  key matching strategies apply
hierarchical comparison logic through successively-
discriminative-characteristic identifier components
of a most-discriminative  attribute-to-least-
discriminative-attribute hierarchy. One way to do
this is to use deduplication systems with
progressive sampled indexing: with a memory
capacity of 64 GB and 11.6 TB at a 100 percent
sampling rate, systems would deduplicate 97.9
percent at 1/86 sampling rates when scaled to 1,000
TB [11]. Container-based pre-fetching in 16 MB
containers achieves a mark operation rate of 26
GB/sec and a backup throughput of 950 MB/sec of
unique and 6 GB/sec of duplicate data, respectively
[11].

Performance optimization methods would become
important when trading volumes rise to millions of
messages a day. Memory caching allows direct
lookups in milliseconds at high throughput times,
and deduplication systems have been demonstrated
to support 123 billion objects with 500 TB of
system memory out of only 25 GB [11]. Bloom
filter probabilistic data structures offer space-
efficient first-stage filtering, rapidly identifying
messages that are unquestionably not duplicates
prior to the application of costly exact matching
logic to remaining candidates.
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Figure 1: Performance Metrics and Analysis Framework for Trade Deduplication and Financial Market Surveillance
Systems [1]
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Figure 2: Multi-Venue Execution Dominance: Trading Volume Distribution Across Market Participant Types [8, 9]

Table 1: Idempotency Framework and Message Fingerprinting Techniques [2, 3]

Component Description Key Characteristics
Idempotent Message Duplicate message handling Prevents state corruption; neutralizes replays;
Processing principle consistent system effects
Combines trade 1D, venue, order, instrument, and

Business Key

- Primary uniqueness identifier microsecond timestamp; balances uniqueness
Composition

with false negative prevention
SHA-256/SHA-3 algorithms; deterministic
Hash-based message identification output; handles message variations through
normalization
Fixed-window (complete history) vs. sliding-
Time-bounded replay detection window (dynamic pruning); balances memory
usage and lookup speed
SQL: low memory, fast queries; Spark: better
scalability with semi-structured data
Exactly-once delivery semantics; complements
application-layer fingerprinting
Fixed-income: embedded relationships with high-
Trading relationship models frequency calls; ATS: arm's-length transactions
for liquid instruments
Variable CPU consumption across SQL, Python,
and Spark; GPU acceleration impact

Cryptographic
Fingerprinting

Temporal Window
Deduplication

SQL vs. Distributed
Processing
Message Queue
Architecture

Data architecture comparison

Infrastructure-level deduplication

Market Structure
Patterns

Processing Resource

Utilization System performance metrics

Table 2: Blockchain-Enhanced Trade Relationship Modeling Framework [6, 7]
Component Description Key Characteristics
Multi-channel design; immutable transaction

Blockchain Platform Distributed ledger system for . . e .
- X records; cryptographic verification, and high
Architecture trade lifecycle management )
transaction success rate
Organizational participant Trader credentials; organizational affiliations,

Enterprise Nodes

identifiers and CA-approved digital signatures
Trading Channel Dedicated communication Countr.y_-speuflc or bllatera! agreement
channels; independent ledgers; configurable
Nodes pathways

block parameters; variable logging levels
Exchange quantities; millisecond-precision
Transaction Nodes Individual trade record elements timestamps; tracking codes, and verifiable
addresses for distributed ledger transparency
Trade validation; regulatory compliance
verification; machine learning integration for
commodity prediction
Hybrid Storage Dual-layer data management On-chain cryptographic hashes (compact header
889

Smart Contract Automated business logic
Relations enforcement
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Architecture system

blocks); off-chain detailed transaction records;
optimized storage with verification preservation

Performance Metrics

System efficiency indicators

Traceability query response times; transaction
latency measurements; request handling
capacity, and network load thresholds

Association Rule
Mining

Predictive relationship analysis

High-confidence commodity flow patterns;
antecedent-consequence trade relationships, and
commodity classification systems

Distributed Consensus
Validation

Multi-peer verification
mechanism

Pre-commitment peer node validation; scalable
request processing, and defined performance
degradation thresholds

Feature Importance
Analysis

Predictive variable ranking

Distance factors; economic indicators;
demographic statistics, and black swan event
disruption modeling

7. Conclusions

Duplicate trade detection is a basic control system
that defends current electronic trading infrastructure
against systematic risks linked to events of message
replay. This mix of idempotency solutions,
cryptographic  fingerprinting, and relationship
modeling using blockchain creates strong defenses
that can identify duplicate messages across
different types of communication channels. The
temporal window optimization approaches create a
trade-off  between detection precision and
computational efficiency by using multi-tier
methods that combine real-time narrow-window
filtering with long-run batch scanning. The
classification models in machine learning are very
good at telling the difference between real trade
changes and repeated actions, doing so accurately
while keeping false alarms to a minimum.
Distributed ledger architecture and graph-based
architecture  offer scalability in terms of
representation of complex trade lifecycle
relationships and the ability to generate highly
complex correlation algorithms to support multi-
venue execution strategy and partially filled
scenarios. In-memory caching, probabilistic filter
order structures, and progressive indexing methods
are used to optimize performance and achieve
microsecond latency when trading large volumes of
data in high-frequency trading environments. These
combined technology structures provide financial
institutions  with  resilience against position
inflation, corruption of profits, and loss reporting
transgressions and offer solid bases on which they
can effectively transact business in more and more
intricate and interlinked international businesses.
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