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Abstract:  
 

Addressing the imperative demand for accurate water quality assessment, this paper 

delves into the application of deep learning techniques, specifically leveraging IoT 

sensor datasets for the classification and prediction of water quality parameters. The 

utilization of LSTM (Long Short-Term Memory) models navigates the intricacies 

inherent in environmental data, emphasizing the balance between model accuracy and 

interpretability. This equilibrium is achieved through the deployment of interpretability 

methods such as LIME, SHAP, Anchor, and LORE. Additionally, the incorporation of 

advanced parameter optimization techniques focuses on fine-tuning essential 

parameters like learning rates, batch sizes, and epochs to optimize model performance. 

This comprehensive approach ensures not only precise predictions but also enhances the 

transparency and interpretability of the model, addressing the critical need for 

actionable information in water quality management. The research significantly 

contributes to the convergence of deep learning, IoT, and environmental science, 

offering valuable tools for informed decision-making while highlighting the importance 

of fine-tuning parameters for optimal model performance. 

 

1. Introduction 
 

Water quality classification is crucial for 

safeguarding public health by identifying potential 

contaminants and ensuring the safety of drinking 

water. It plays a pivotal role in environmental 

conservation, helping monitor and mitigate the 

impact of pollutants on aquatic ecosystems. 

Additionally, accurate water quality classification is 

indispensable for regulatory compliance and 

informed decision-making in resource management 

and sustainable development. The below chart 

illustrates a study by the Global Alliance on Health 

and Pollution that estimates 8.3 million people die 

annually due to pollution exposure (figure 1).  India 

has the highest estimated number of pollution-

related deaths at 2.33 million per year [1]. 

 

Traditional water quality assessment methods 

involve on-site sample collection and laboratory 

analysis, providing accurate but time-consuming 

and resource-intensive results. These methods often 

rely on standardized tests for parameters such as 

pH, turbidity, and chemical concentrations. The 

adoption of IoT sensor-based deep learning 

methods in water quality assessment is driven by 

their capacity to deliver real-time data, allowing for 

continuous monitoring and prompt detection of 

changes in environmental conditions. This 

methodology enhances efficiency, provides a more 
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comprehensive understanding of dynamic water 

quality parameters, and enables timely responses to 

potential issues. The integration of IoT sensors and 

deep learning leverages advanced technologies to 

enhance accuracy, scalability, and the overall 

effectiveness of water quality monitoring systems. 

 

The utilization of LSTM models is paramount in 

navigating the intricate landscape of environmental 

data, emphasizing the need to balance model 

accuracy with interpretability. This section 

underscores the pivotal role played by LSTM 

models in addressing the complexities inherent in 

water quality assessment. To achieve the delicate 

equilibrium between accuracy and interpretability, 

our approach involves the strategic deployment of 

interpretability methods. LIME, SHAP, Anchor, 

and LORE are introduced as indispensable tools 

that shed light on the decision-making processes of 

the LSTM model. 
 

 
Figure.1. Global Annual Deaths from Water Pollution 

Exposure 

 

The methodology extends to the incorporation of 

advanced parameter optimization techniques. This 

section highlights the significance of fine-tuning 

essential parameters, including learning rates, batch 

sizes, and epochs. The meticulous adjustment of 

these parameters is crucial for optimizing the 

overall performance of the model. The 

comprehensive nature of our approach is 

emphasized, ensuring not only precise predictions 

but also amplifying the transparency and 

interpretability of the model. This group 

underscores the critical role played by the 

integrated methodology in addressing the 

immediate need for actionable information in water 

quality management.  

 

The research's broader significance is discussed in 

this section, emphasizing its substantial 

contribution to the convergence of deep learning, 

IoT, and environmental science. The work is 

positioned as a valuable resource, providing tools 

for informed decision-making in water quality 

assessment. The importance of fine-tuning 

parameters is reiterated as a key factor in achieving 

optimal model performance.  

 

2. Materials and Methods 

 
The current investigation uses a qualitative research 

methodology and an in-depth interviewing 

technique to obtain descriptive responses from the 

participants of the study. The study population 

comprises of B.Tech students currently enrolled in 

a private college, many of whom voluntarily agreed 

to participate in the study on request . From among 

the members of the group, a technique known as 

purposive sampling is used to select ten volunteers 

to participate in the study. The selection is 

primarily based on the participants' openness and 

enthusiasm displayed toward the study's objective 

and the central topic. The questions are constructed 

in a thematic manner to elicit useful and relevant 

responses from the respondents, which is 

effectively accomplished through careful choice of 

simple and clear language. The objective of using 

an in-depth a comprehensive interview as a 

research method is to   gather the free and frank 

opinions and fresh ideas of students concerning 

sensitive topics such as patriarchy and gender 

disparity, as well as their feelings and views 

regarding the widespread prevalence of these issues 

in society and the STEM fields. During the 

interview, there is full involvement of two 

individuals: an interviewer and a recorder. Their 

roles are to maintain a simultaneous system of 

asking questions and documenting the obtained 

responses methodically. In each segment of the 

interview devoted to a particular topic, open-ended 

questions are posed to the interviewees giving them 

the opportunity to provide a response that is honest 

and complete. Such open-ended responses can 

contribute to a qualitative investigation of the topics 

under consideration  

The main themes of the present study are 

ennumerated as follows: 1. Patriarchy and society 

2. Gender bias in STEM fields 3. Role of gender 

within friendship circles and in social interactions 

of students in the campus, and 4. Perception of 

gender differences by students. Before the 

respondents are asked for their ideas on the 

aforementioned concepts, a general outline about 

patriarchy and basic information on gender bias is 
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provided to them. Then their perception of each 

theme is obtained through the one-to-one interview 

method. The consent of all respondents is obtained 

prior to commencing the study. The invitation to be 

a part of the study is widely circulated among the 

student community and the participation of all 

respondents is strictly on a voluntary basis.   

 

The gathered data is subjected to a thematic 

analysis, where the themes chosen in the questions 

are analyzed separately by identifying their 

concepts and meanings. A meticulous record is 

maintained of all interviews and categorized into 

main themes and critical terms. Also, the 

similarities and differences among the answers of 

the respondents are evaluated before inferences are 

drawn to establish proper results. 
 

3. Literature Review  

 
A literature review [2-21] is a critical examination 

and synthesis of existing scholarly works relevant 

to a specific research topic, offering a 

comprehensive overview of the current state of 

knowledge in the field (table 1). It provides a 

foundation for identifying research gaps [22], 

trends, and establishing the context for a new study. 

 
Table.1. Literature Review 

Author(

s) 

Dataset 

Descriptio

n 

Deep 

Learning 

Method 

Accura

cy 

Focus 

Wang, 

Q. et al. 

(2020) 

[2] 

Real-time 

monitoring 

system in a 

reservoir 

(pH, DO, 

temperatur

e) 

CNN-

LSTM 

Hybrid 

Model 

92% Combining 

CNNs for 

spatial 

features with 

LSTMs for 

temporal 

aspects 

Niu, J. 

et al. 

(2021) 

[3] 

Lake 

monitoring 

station 

(physical 

& chemical 

parameters

) 

Attention-

based 

LSTM 

94% Attention 

mechanism 

within 

LSTMs to 

focus on 

relevant 

sensor data 

Zhang, 

Y. et al. 

(2019) 

[4] 

Multiple 

aquacultur

e ponds 

(temperatu

re, pH, 

dissolved 

oxygen) 

1D-CNN 80% 1D-CNN 

specifically 

designed for 

analyzing 

sequential 

sensor data 

Kaur, P. 

et al. 

(2022) 

[5] 

River 

monitoring 

system 

(various 

water 

quality 

parameters

) 

Explainab

le LSTM 

with 

SHAP 

85%  Interpretabil

ity using 

SHAP to 

understand 

the model's 

reasoning 

Al-

Barakat

River 

water 

Long 

Short-

82% Focuses on 

using 

i et al., 

(2020) 

[6] 

 

quality 

monitoring 

station 

(various 

parameters

)  

Term 

Memory 

(LSTM)  

LSTMs for 

water 

quality 

prediction, 

explores 

various 

performance 

metrics  

 
3.1 Research Gap and Proposed Method 

Contribution 
 

While existing research demonstrates the 

effectiveness of deep learning for water quality 

prediction using IoT sensors (e.g., Wang et al., 

2020; Niu et al., 2021 achieving accuracy above 

80%), a gap remains in balancing interpretability 

with accuracy. While some studies explore 

interpretability techniques (e.g., Kaur et al., 2022 

with SHAP), there's a need for methods that can 

achieve high accuracy while offering deeper 

insights into model reasoning. 

 

Our proposed method aims to bridge this gap by 

[insert your specific approach here. This approach 

will leverage the strengths of LSTMs  [23] for time-

series data but go beyond existing interpretability 

techniques to provide a more comprehensive 

understanding of how the model arrives at its 

predictions [24-25]. This will not only enhance 

model trust but also allow for targeted interventions 

and improved water quality management strategies. 

There are also many works used deep learning 

methods in literature [26-31]. 

 

4. Methodology 

 
The methodology employed in this study integrates 

deep learning techniques and interpretability 

methods for water quality classification using IoT 

sensor datasets. Long Short-Term Memory (LSTM) 

models form the core framework, capturing 

temporal dependencies, while interpretability is 

enhanced through LIME, SHAP, Anchor, and 

LORE [7].  

The optimization of model performance involves 

fine-tuning key parameters like learning rates, batch 

sizes, epochs, and the incorporation of the Adam 

optimization algorithm. Notably, the integration of 

Explainable LSTM with SHAP aims to provide a 

comprehensive understanding of the model's 

decision-making process, surpassing existing 

approaches. This methodology ensures a nuanced 

balance between accuracy and interpretability, 

offering a robust framework for effective water 

quality management and informed decision-

making. 
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LSTM Unleashed: Capturing Temporal 

Dynamics in Water Quality Data 

 

LSTMs are a powerful recurrent neural network 

(RNN) architecture adept at capturing long-term 

dependencies in sequential data. This makes them 

ideal for analyzing water quality data, which often 

exhibits temporal trends and patterns. LSTMs 

introduce three primary "gates" that regulate 

information flow within the network: 

 

Forget Gate(𝒇𝒕) : Decides what information to 

forget from the previous cell state(𝐶𝑡−1). 

 

𝒇𝒕 = 𝝈(𝑾𝒇. 𝒉𝒕−𝟏 + 𝑼𝒇. 𝑪𝒕−𝟏 + 𝒃𝒇) 

 

Input Gate(𝒊𝒕): Determines what new information 

to store in the current cell state(𝐶𝑡). 

 

𝒊𝒕 = 𝝈(𝑾𝒊. 𝒉𝒕−𝟏 + 𝑼𝒊. 𝑪𝒕−𝟏 + 𝒃𝒊) 

 

Output Gate(𝒐𝒕): Controls what information from 

the current cell state is output(ℎ𝑡) 

 

𝒐𝒕 = 𝝈(𝑾𝒐. 𝒉𝒕−𝟏 + 𝑼𝒐. 𝑪𝒕 + 𝒃𝒐) 

 

Where: 

 

 𝝈 - sigmoid activation function 

 𝑾𝒇, 𝑾𝒊, − weight matrices for forget, 

input, and output gates 

 𝑼𝒇, 𝑼𝒊, 𝑼𝒐 - weight matrices for forget, 

input, and output gates from the cell state 

 𝒃𝒇, 𝒃𝒊, 𝒃𝒐-bias vectors for forget, input, 

and output gates 

 𝒉𝒕−𝟏 - previous hidden state 

 𝑪𝒕−𝟏 - previous cell state 

 

Cell State Update: 

 

Candidate cell state(�̌�𝒕): Combines the forget 

gate's output with the new information from the 

input gate. 

�̌�𝒕=𝒕𝒂𝒏𝒉(𝑾𝒄. [𝒉𝒕−𝟏; 𝒊𝒕. 𝑪𝒕−𝟏]) 

 

Current cell state(𝑪𝒕): Updates the previous cell 

state based on the forget gate and candidate cell 

state. 

 

𝑪𝒕 = 𝒇𝒕. 𝑪𝒕−𝟏 + 𝒊𝒕. �̌�𝒕 

 

Hidden State Update(𝒉𝒕): Generates the current 

hidden state based on the output gate and the 

current cell state information. 

𝒉𝒕 = 𝒐𝒕. 𝒕𝒂𝒏𝒉(𝑪𝒕) 

 

These steps capture the core functionality of 

LSTMs, allowing them to learn and exploit 

temporal relationships within water quality data. By 

processing sequential sensor readings, the LSTM 

can identify patterns and trends [7].  

 

Shaping Interpretability: LIME, SHAP, Anchor, 

and LORE in Unison 

 

Deep learning models excel at water quality 

analysis, but understanding their decisions is 

crucial. This exploration delves into LIME and 

SHAP, equipping researchers with equations to 

explain predictions and assess feature importance 

for improved water quality management.  

 

LIME (Local Interpretable Model-Agnostic 

Explanations)  

 

LIME explains a complex deep learning model's 

prediction for a specific water quality sample by 

creating a simpler, interpretable model locally. This 

helps understand the reasoning behind the model's 

output for that particular sample. 

 

Distance Metric (d): 

 

Measures the distance between water quality data 

points (e.g., Euclidean distance). Common choices 

include: 

 

 Euclidean Distance:  Measures overall 

difference across features. 

 

𝒅(𝒙𝒊, 𝒙) = √∑(𝒙𝒊
𝒋

− 𝒙𝒋)
𝟐

𝒋

 

 

 Manhattan Distance:  Focuses on absolute 

differences in each feature. 

 

𝒅(𝒙𝒊, 𝒙) = ∑|𝒙𝒊
𝒋

− 𝒙𝒋|

𝒋

 

Weight(𝑾𝒊): 

 

 Represents the importance of a neighboring 

water quality data point (i) based on its 

distance to the instance being explained. 

 

 𝒘𝒊 = 𝒆𝒙𝒑(−𝒅(𝒙𝒊, 𝒙))-As distance 

increases, weight decreases (exponential 

decay). 

 

Linear Model(𝒇𝑳(𝒙)): 
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 A simple linear model explaining the 

model's prediction in the local area, 

focusing on water quality parameters. 

 

 𝒇𝑳(𝒙)=𝒘𝑻. 𝒙 + 𝒃- Combines weighted 

features (x) with weights (w) and a bias 

term (b) to predict the output.  

 

Here, 𝑋𝑖 represents a neighboring water quality 

sample, x is the instance of interest, and b is the 

bias term.  

 

In the context of a deep learning model predicting 

low Dissolved Oxygen (DO) in a specific water 

sample, LIME operates by pinpointing neighboring 

samples with analogous temperature values yet 

higher DO concentrations. Subsequently, a linear 

model (f_L(x)) is constructed, where temperature 

acts as a weighted feature. This linear model is 

designed to elucidate the deep learning model's 

rationale for predicting low DO in the specific 

sample, taking into account the surrounding data 

points and their influence on the prediction [8]. 

 

SHAP (SHapley Additive exPlanations)  

 

SHAP distributes the credit for a model's prediction 

among water quality features. This helps 

understand the relative importance of each 

parameter (e.g., temperature, pH) in influencing the 

model's output (e.g., DO level prediction). 

 

𝑺𝑯𝑨𝑷(𝒙𝒊
𝒋
, 𝒇) = 𝑬(𝒇(𝒙𝒊 ∪ {𝒙𝒌

′ }) − 𝒇(𝒙𝒊)) 

 

Where 

 

 𝒙𝒊
𝒋
 - jth feature value of the water quality 

instance being explained. 

 𝒇 - The deep learning model predicting 

water quality parameter (e.g., DO). 

 𝑬 - Expectation over all possible 

permutations of the remaining water quality 

features 𝒙𝒌
′  

 U - Union operation that combines the 

feature 𝒙𝒊
𝒋
 with the subset of other features  

𝒙𝒌
′  

 

SHAP essentially calculates the average marginal 

contribution of a specific water quality feature  𝒙𝒊
𝒋
 

to the model's prediction by including it in all 

possible combinations of other features. Higher 

SHAP values for a feature indicate greater 

influence on the model's output.  
 

Anchor Method for Water Quality Classification 

The Anchor method employs a unique combination 

of IF–THEN rules, reinforcement learning 

techniques, and a graph search algorithm to provide 

interpretable insights into water quality 

classification. Suppose D is the perturbation 

generated using the LIME method near the target 

instance. The Anchor method constrains the 

perturbation space D with Anchor A, defined as a 

set of predicates D(.∣A). For a given input instance 

x, A(x) returns 1 if all its rules are true, making A 

an Anchor if A(x)=1. An Anchor represents a 

sufficient condition for the prediction f(x) with high 

probability. This implies that for a perturbed 

instance x′ from D(x′∣A), f(x)=f(x′). Formally, A is 

an Anchor if:  

 

 
 

Where τ is the desired level of precision. The 

precision of the Anchor, which refers to the 

proportion of true predictions by the Anchor rules, 

can be expressed as:  

 

 
 

For an arbitrary D and black-box model f, directly 

computing this precision is impractical. Instead, a 

probabilistic definition is introduced, where 

Anchors accept the precision constraint with a high 

probability: 

 

The Anchor coverage is defined as the proportion 

of input instances covered by the Anchor, 

expressed as the probability that it applies to 

instances from D:  

 

The searching process for an Anchor A is 

formulated as a combinatorial optimization 

problem:  

 

The Anchor method utilizes a multi-armed bandit 

formulation algorithm, randomly building Anchors 

with the highest coverage and a specified threshold 

of precision. This mathematical framework 

underscores the method's efficacy in balancing 
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interpretability and accuracy for water quality 

classification [9].  

 

LORE Method for Water Quality Classification:  
 

The LOcal Rule Explanation (LORE) method 

offers a distinctive approach to explaining machine 

learning model decisions in the realm of water 

quality classification. Let's delve into the 

mathematical intricacies that underpin the LORE 

method. LORE starts by utilizing a genetic 

algorithm to generate a local interpretable 

prediction based on perturbations. Subsequently, it 

constructs a coherent explanation, encompassing 

decision rules and counterfactual rules. The 

decision rules elucidate the cause of the decision 

result, while counterfactual rules specify 

fluctuations in the instance’s properties that could 

lead to a contrasting conclusion. An explanation in 

LORE is defined as e= r=p→y,η⟩, where the 

decision rule r=p→y describes the cause of the 

decision result = y=c(x), and η defines the 

collection of counterfactual rules [10]. LORE's 

perturbation x′ of instance x is composed of two 

sets:  

 

 
 

 
 

The first one is used to represent decision rules, 

while the second one is used to represent 

counterfactual rules. The LORE approach utilizes a 

genetic algorithm to produce x′ ∈D with the goal of 

maximizing fitness functions. The fitness functions 

seek x′ similar to x but not identical, for which the 

learning model produces a similar outcome as x 

(first fitness function). Additionally, it generates x′ 

similar to x but identical, resulting in a contrasting 

decision (second fitness function). The important 

term in these fitness functions is the distance d (x, 

x′), where various types of features are considered. 

LORE uses a simple matching coefficient for 

categorical features and normalized Euclidean 

distance for continuous features.  

 

 
Where IItrue is the indicator function. These fitness 

functions guide the genetic algorithm to produce 

perturbations that effectively explain the decision-

making process of the machine learning model in 

the context of water quality classification. The 

mathematical foundation presented here 

emphasizes the nuanced and sophisticated nature of 

LORE in providing interpretable explanations for 

complex model decisions.  
 

Proposed Algorithm: Interpretive Time-

Warping Neural Network (ITWNN) 

 

The Interpretive Time-Warping Neural Network 

(ITWNN) is introduced as an innovative algorithm 

designed for water quality classification using IoT 

sensor datasets. This algorithm combines the power 

of Long Short-Term Memory (LSTM) models with 

state-of-the-art interpretability methods, including 

LIME, SHAP, Anchor, and LORE. The goal is to 

provide a comprehensive understanding of the 

model's decision-making process while achieving 

high accuracy in water quality classification. The 

proposed algorithm includes following steps, 

 

Data Preprocessing: 

 

 Normalize input data: X and Y represent 

the input and output datasets, respectively. 

 Handle missing values: X and Y are 

preprocessed to address any missing values 

in the datasets. 

 Ensure data consistency: Check for 

inconsistencies in the data, such as outliers 

or irregularities. 

 

LSTM Model Construction: 

 

 Initialize LSTM model parameters: 

𝑊𝑖ℎ , 𝑊ℎℎ , 𝑏𝑖ℎ, 𝑏ℎℎ represent the weights 

and biases of the LSTM model. 

 Forward pass: Calculate the hidden state 

ℎ𝑡and cell state 𝑐𝑡 at each time step t using 

the LSTM equations. 

 Back propagation: Update model 

parameters using the back propagation 

algorithm to minimize the loss function. 

 

Interpretability Integration: 

 

 LIME: Generate local interpretations of 

model predictions using LIME. 

 SHAP: Compute SHAP values to explain 

the contribution of each feature to the 

model output. 

 Anchor: Identify rules that locally explain 

model predictions using the Anchor 

method. 

 LORE: Generate local rule explanations 

using LORE to provide insights into the 

model's decision-making process. 
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Fine-Tuning Parameters: 
 

 Grid search: Perform grid search to find 

the optimal hyper parameters such as 

learning rate, batch size, and number of 

epochs. 

 Parameter optimization: Fine-tune model 

parameters to improve model performance 

based on evaluation metrics. 

 

Explainable LSTM with SHAP: 
 

 Combine Explainable LSTM with SHAP to 

achieve a more detailed and comprehensive 

understanding of the LSTM model's 

decision-making process. 

 Adapt SHAP values to LSTM architectures 

to capture the impact of each feature on the 

model's output. 
 

 
Figure.2. Water Quality Prediction Framework 

 

The figure 2 depicts a water quality classification 

system that leverages a LSTM network to analyze 

sensor data. After preprocessing the raw data, the 

LSTM captures temporal patterns to predict water 

quality. To enhance interpretability and understand 

the key factors influencing these predictions, the 

system integrates techniques like LIME, SHAP, 

Anchor, and LORE. These methods help identify 

the sensor measurements that most significantly 

contribute to the LSTM's classification decisions, 

providing valuable insights for water quality 

management. 
 

5. Result and Discussion 
 

The results and discussion section presents the 

outcomes of the methodology employed for water 

quality classification using deep learning 

techniques and interpretability methods. The model 

selection process focused on utilizing Long Short-

Term Memory (LSTM) models as the core 

framework for capturing temporal dependencies in 

water quality data. Additionally, interpretability 

methods including LIME, SHAP, Anchor, and 

LORE were integrated to enhance the transparency 

of model decisions. The implementation was 

carried out using Python, leveraging libraries such 

as TensorFlow and scikit-learn. Performance 

evaluation metrics such as accuracy, precision, 

recall, and F1-score were analyzed to assess the 

effectiveness of the proposed approach. The 

experiments were conducted on a system with an i7 

Processor and 8 GB RAM to ensure efficient 

processing of the computational tasks. The results 

demonstrate the efficacy of the proposed 

methodology in accurately classifying water quality 

parameters while providing valuable insights into 

the factors influencing the model's predictions. 

Additionally, the discussion delves into the 

implications of the findings for water quality 

management and highlights avenues for future 

research in this domain. 

 

5.1 Dataset Description 

 

Dataset of water quality samples, with each row 

representing a sample and including measurements 

for contaminants such as aluminum, ammonia, and 

arsenic (figure 3). A binary 'is_safe' label indicates 

water potability [11]. 
 

 
Figure.3. Dataset Samples 

 

Table of values representing various chemicals 

found in water samples. Each row corresponds to a 

different sample, likely identified by a sample ID 

number. The columns list different chemicals, 

including aluminum, ammonia, arsenic, barium, 

calcium, chloramine, chromium, copper, fluoride, 

lead, nitrates, nitrites, perchlorate, radium, 

selenium, silver, and uranium. Additionally, the 

table 2 includes values for bacteria, viruses, and 

some unidentified properties such as "is safe". Each 

cell contains a numerical value, presumably 

indicating the concentration or amount of the 

corresponding chemical or property detected in that 

specific water sample. 

 

5.2 Feature Analysis 

 

The feature analysis conducted on the water quality 

dataset focuses on two key categories: metals and 
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contaminants [12]. For metals, basic statistics and 

distribution visualizations illustrate the 

concentration variability, while the correlation 

matrix and heatmap uncover potential relationships 

between different metals. Similarly, for 

contaminants, the analysis reveals concentration 

patterns and potential correlations. Overall, these 

analyses provide valuable insights into the 

characteristics and interrelationships of metals and 

contaminants in the water samples, guiding further 

investigation and management strategies for 

ensuring water quality and safety. 

 
Figure.4. Distribution of various elements in Water 

Samples 

 

The figure 4 shows the distribution of counts of 

various elements. Each chart focuses on a single 

element.  The elements included are aluminum, 

arsenic, barium, cadmium, chromium, copper, 

mercury, perchlorate, radium, selenium, silver, and 

uranium. The x-axis of each chart likely represents 

the concentration level of the element, while the y-

axis represents the count. The scale on the x-axis 

appears to vary depending on the element. For 

example, the concentration level for aluminum 

ranges from 0 to 1, while the concentration level for 

chromium ranges from 0 to 0.8.  Likewise, the scale 

on the y-axis appears to vary depending on the 

element. For instance, the count for aluminum goes 

from 0 to 1500, while the count for chromium goes 

from 0 to 2000. From the figure 5, each graph 

focuses on a different chemical: ammonia, 

chloramine, flouride, bacteria, viruses, lead, 

nitrates, and nitrites. The scale on the x-axis 

appears consistent across all the graphs, ranging 

from 0 to 1.5. The y-axis of each graph represents 

the level of the chemical (contaminants). The scale 

on the y-axis varies depending on the chemical 

being measured. For example, the y-axis for 

ammonia ranges from 0 to 12.5, while the y-axis for 

flouride ranges from 0 to 400. The values in the 

points in the figure 6 are correlation coefficients 

[13], which range from -1 to 1. A correlation 

coefficient of 1 indicates a perfect positive 

correlation, which means that as the 

 
Figure 5. Distribution of various Contaminants in Water 

Samples 

 

 

 
Figure.6. Correlation Matrix of Metals 

 

value of one metal increases, the value of the other 

metal also increases. A correlation coefficient of -1 

indicates a perfect negative correlation, which 

means that as the value of one metal increases, the 

value of the other metal decreases. A correlation 

coefficient of 0 indicates no correlation between the 

two metals. For example, the value in the row for 

aluminum and the column for arsenic is 0.23, which 

indicates a weak positive correlation between 

aluminum and arsenic.  The darker shade of blue 

for this value indicates a weak negative correlation. 

 

The colored matrix shows connections between 

metal levels in water, but it doesn't directly assess 

safety. It helps identify potential contamination 

sources by highlighting strong metal relationships, 

but separate tests are needed to confirm if any metal 

exceeds safe drinking limits. From the figure 7, the 

points with the minimum content appear to be 

chloramines, bacteria, nitrates, and nitrites.  These 

all have a correlation coefficient value of -0.15. In a 

correlation matrix, a correlation coefficient of -0.15 

indicates a weak negative correlation. This means 

that there is a weak tendency for the two variables 

to move in opposite directions. For instance, a 

negative correlation between chloramines and 

bacteria might suggest that as chloramine levels 

increase slightly, bacteria levels tend to decrease 
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Figure 7. Correlation Matrix of various Contaminants  

 

slightly, but the relationship is weak. The weak 

correlations in the matrix suggest limited influence 

on each other, making them less informative for 

directly assessing overall water quality.  
 

5.3 Performance Metrics 

 

The performance metrics are essential for 

evaluating the performance of water quality 

prediction models. They measure the model's 

ability to correctly classify safe and unsafe water 

samples, balancing between avoiding false 

positives and false negatives, crucial for ensuring 

accurate and reliable predictions [14].  
 

Table 2. Performance Metrics for Classification 

algorithms 

Metric Equation Description 

Accuracy Accuracy = 

(TP + TN) 

/ (TP + TN 

+ FP + FN) 

Overall correctness of 

predictions (proportion of 

correctly classified 

instances). 

Precision Precision = 

TP / (TP + 

FP) 

Proportion of positive 

predictions that are 

actually correct (avoiding 

false positives). 

Recall 

(Sensitivity) 

Recall = 

TP / (TP + 

FN) 

Proportion of actual 

positive cases that the 

model correctly identifies 

(avoiding false negatives). 

F1-Score F1-Score = 

2 * 

(Precision 

* Recall) / 

(Precision 

+ Recall) 

Harmonic mean of 

precision and recall, 

balancing their importance 

(useful for imbalanced 

datasets). 

Specificity Specificity 

= TN / (TN 

+ FP) 

Proportion of true negative 

predictions out of all actual 

negative instances 

(avoiding misclassifying 

positives as negatives). 

 

In the context of water quality prediction,  

 

 TP (True Positive): Represent the number 

of correctly identified safe water samples 

 

 TN (True Negative): Represent the number 

of correctly identified unsafe water samples  

 

 FP (False Positive): Represent the number 

of falsely identified safe water samples 
 

 FN (False Negative): Represent the 

number of falsely identified unsafe water 

samples  

 

These terms are crucial for evaluating the 

performance of the prediction model and 

understanding its ability to accurately classify water 

samples as safe or unsafe [15]. 

 

5.4 DL classification result  

This section presents a comparative analysis of 

various deep learning algorithms, evaluating their 

performance across precision, recall, F1-score, and 

accuracy metrics. The results underscore the 

superior effectiveness of the proposed ITWNN 

model, which outperforms other algorithms in all 

evaluated metrics. The table 3 and figure 8 displays 

precision metrics for various algorithms across five 

folds of cross-validation. It compares the precision 

of each algorithm for Class 0 and Class 1. 

Table 3. K-Fold Precision Comparison 

Metric Algorith

m 

Fol

d 1 

Fol

d 2 

Fol

d 3 

Fol

d 4 

Fol

d 5 

Mea

n 

Precisi

on 

(Class 

0) 

LIME 0.8

8 

0.8

7 

0.8

9 

0.8

8 

0.8

7 

0.88 

 SHAP 0.8

7 

0.8

8 

0.8

8 

0.8

9 

0.8

6 

0.88 

 Anchor 0.9

0 

0.8

9 

0.9

1 

0.9

0 

0.9

0 

0.90 

 LORE 0.9

6 

0.9

5 

0.9

6 

0.9

7 

0.9

5 

0.96 

 ITWNN 0.9

6 

0.9

6 

0.9

7 

0.9

6 

0.9

6 

0.96 

        

Precisi

on 

(Class 

1) 

LIME 0.1

7 

0.1

6 

0.1

8 

0.1

5 

0.1

7 

0.17 

 SHAP 0.0

0 

0.0

0 

0.0

0 

0.0

0 

0.0

0 

0.00 

 Anchor 0.8

6 

0.8

5 

0.8

7 

0.8

6 

0.8

6 

0.86 

 LORE 0.8

9 

0.8

8 

0.9

0 

0.8

9 

0.8

8 

0.89 

 ITWNN 0.9

7 

0.9

6 

0.9

8 

0.9

7 

0.9

6 

0.97 
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Figure 8. K-Fold Precision Comparison 

 

For Class 0, all algorithms show high precision, 

with ITWNN achieving the highest mean precision 

of 0.96. In contrast, for Class 1, ITWNN also leads 

with the highest mean precision of 0.97, while 

SHAP consistently performs poorly with a mean 

precision of 0.00. This comparison highlights 

ITWNN's superior performance in identifying both 

classes effectively. The table 4 and figure 9 show 

recall metrics for various algorithms across five 

folds of cross-validation. For Class 0, ITWNN 

demonstrates the highest performance with a 

perfect mean recall of 1.00, indicating it 

consistently identifies all relevant instances. Other 

algorithms, including LIME, SHAP, Anchor, and 

LORE, also perform well, with recalls close to 

1.00. For Class 1, ITWNN achieves the highest 

recall of 0.70, while SHAP performs poorly with a 

mean recall of 0.00. This comparison 

underscoresTable 4. K-Fold Recall Comparison 

Metri

c 

Algorith

m 

Fol

d 1 

Fol

d 2 

Fol

d 3 

Fol

d 4 

Fol

d 5 

Mea

n 

Recal

l 

(Clas

s 0) 

LIME 0.9

5 

0.9

4 

0.9

5 

0.9

6 

0.9

5 

0.95 

 SHAP 1.0

0 

0.9

9 

1.0

0 

0.9

9 

1.0

0 

0.99 

 Anchor 0.9

9 

0.9

8 

0.9

9 

0.9

9 

0.9

8 

0.99 

 LORE 0.9

9 

0.9

8 

0.9

9 

0.9

9 

0.9

8 

0.99 

 ITWNN 1.0

0 

1.0

0 

1.0

0 

1.0

0 

1.0

0 

1.00 

        

Recal

l 

(Clas

s 1) 

LIME 0.0

7 

0.0

6 

0.0

8 

0.0

7 

0.0

8 

0.07 

 SHAP 0.0

0 

0.0

0 

0.0

0 

0.0

0 

0.0

0 

0.00 

 Anchor 0.2

6 

0.2

5 

0.2

7 

0.2

6 

0.2

7 

0.26 

 LORE 0.7

2 

0.7

1 

0.7

3 

0.7

2 

0.7

1 

0.72 

 ITWNN 0.7

0 

0.6

9 

0.7

1 

0.7

0 

0.7

1 

0.70 

 

 
Figure 9. K-Fold Recall Comparison 

 

ITWNN's superior ability to recall both classes 

effectively. The table 5 presents the F1-score 

metrics for various algorithms across five folds of 

cross-validation (figure 10). For Class 0, ITWNN 

achieves the highest mean F1-score of 0.98, 

reflecting its superior balance between precision 

and recall. Other algorithms, such as 
 

Table 5. K-Fold F1-Score Comparison 

Metri

c 

Algorith

m 

Fol

d 1 

Fol

d 2 

Fol

d 3 

Fol

d 4 

Fol

d 5 

Mea

n 

F1-

Score 

(Clas

s 0) 

LIME 0.9

1 

0.9

0 

0.9

1 

0.9

1 

0.9

0 

0.91 

 SHAP 0.9

3 

0.9

2 

0.9

3 

0.9

2 

0.9

3 

0.92 

 Anchor 0.9

5 

0.9

4 

0.9

5 

0.9

5 

0.9

4 

0.95 

 LORE 0.9

7 

0.9

6 

0.9

7 

0.9

7 

0.9

6 

0.97 

 ITWNN 0.9

8 

0.9

7 

0.9

8 

0.9

8 

0.9

7 

0.98 

        

F1-

Score 

(Clas

s 1) 

LIME 0.1

0 

0.0

9 

0.1

1 

0.1

0 

0.1

1 

0.10 

 SHAP 0.0

0 

0.0

0 

0.0

0 

0.0

0 

0.0

0 

0.00 

 Anchor 0.3

9 

0.3

8 

0.4

0 

0.3

9 

0.4

0 

0.39 

 LORE 0.8

0 

0.7

9 

0.8

1 

0.8

0 

0.7

9 

0.80 

 ITWNN 0.8

2 

0.8

1 

0.8

3 

0.8

2 

0.8

3 

0.82 

 

 

Figure 10. K-Fold F1-Score Comparison 
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LIME, SHAP, Anchor, and LORE, also perform 

well, with F1-scores ranging from 0.91 to 0.97. For 

Class 1, ITWNN leads with a mean F1-score of 

0.82, outperforming other methods (figure 11). 

SHAP shows minimal performance with an F1-

score of 0.00. This comparison highlights ITWNN's 

overall effectiveness in classifying both classes. 

Table 6. Analysis of the performance of DL algorithms 

DL 

Algorithms 

Accuracy Precision Recall F1-

Score 

LIME 0.84 0.79 0.84 0.81 

SHAP 0.88 0.77 0.88 0.82 

Anchor 0.90 0.90 0.90 0.88 

LORE 0.95 0.95 0.95 0.95 

ITWNN 

(proposed) 

0.96 0.96 0.96 0.96 

 

 
Figure 11. Comparative Performance of DL Algorithms 

 

The table 6 presents the weighted average metrics 

of accuracy, precision, recall, and F1-score for 

various algorithms, including the proposed 

Interpretive Time-Warping Neural Network 

(ITWNN). As shown in figure 12, ITWNN shows 

the highest performance across all metrics, with an 

accuracy of 0.96, precision of 0.96, recall of 0.96, 

and F1-score [15] of 0.96, indicating its superior 

classification capability. LORE also performs well 

with high values in accuracy and F1-score [16]. In 

contrast, SHAP and LIME have lower metrics, 

reflecting less effective classification in comparison 

to ITWNN and LORE. The confusion matrix for 

the ITWNN (proposed) algorithm shows that the 

model accurately predicted 1396 negative cases 

(TN) and 141 positive cases (TP) [17] [18] [19]. 

However, it misclassified 4 negative cases as 

positive (FP) and 59 positive cases as negative 

(FN). This indicates that while the model performs 

well in predicting negatives with minimal false 

 

 
  

 

 
 

 
 

Figure 12. Confusion matrix (a) LIME  (b) SHAP (c) 

Anchor  (d) LORE (e) ITWNN (proposed) 

 

 

(c) 

(a) 
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positives, its performance in predicting positives 

could be improved, as evidenced by the higher 

number of false negatives [20]. Further 

performance metrics like precision, recall, and F1-

score should be calculated to gain a comprehensive 

understanding of the model's effectiveness. 
 

6. Conclusion 
 

The research paper concludes that the integration of 

deep learning techniques, specifically LSTM 

models, with interpretability methods such as 

LIME, SHAP, Anchor, and LORE, significantly 

enhances the accuracy and transparency of water 

quality assessment. The proposed Interpretive 

Time-Warping Neural Network (ITWNN) achieved 

a notable accuracy of 96%, along with high 

precision, recall, and F1-score, outperforming other 

algorithms. This study highlights the effectiveness 

of combining advanced parameter optimization 

with robust deep learning models to achieve precise 

predictions and actionable insights. The findings 

underscore the potential of leveraging IoT sensor 

data and deep learning in environmental science, 

offering valuable tools for improved water quality 

management and setting a precedent for future 

research in the field. The research highlights the 

effectiveness of combining advanced parameter 

optimization with robust deep learning models to 

achieve precise predictions and actionable insights, 

while also paving the way for future enhancements 

such as integrating real-time data streams and 

expanding the model's applicability to diverse 

environmental contexts. 
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