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Abstract:  
 

The digital imaging technique known as Computed Radiography (CR) has transformed 

the medical imaging industry by providing a number of advantages. It eliminates the 

need for traditional film-based methods, making it more efficient and convenient. A 

common issue faced with CR images is the presence of grid artifacts and other pattern 

artifacts, which can have a significant impact on the quality of the images when viewed 

on a computer screen, especially if a clinic-grade display is not accessible. This paper 

presents a novel framework for removing grid line artifacts from X-ray images, which 

is a critical challenge in medical imaging. The framework proposes a hybrid Deep Grid 

model that combines a Gaussian band-stop filter with ADAM optimization to produce 

high-quality, grid-line free X-ray images that are suitable for further analysis and 

diagnosis. Deep learning (DL) models for instance the Convolutional Neural Network 

(CNN), DenseNet, VGG-Net, and Fast R-CNN were utilized to classify images, and the 

grid-by-grid removal of grid lines in the image was performed. The proposed 

framework achieved a high accuracy rate of 98% in eliminating grid line artifacts from 

X-ray images, demonstrating its possibility for a big improvement the accuracy and 

reliability of diagnostics for medical based on X-ray images. 

 

1. Introduction 
 

The transition from conventional analog systems to 

digital radiographic (DR) systems, which offer 

customizable signals and higher image quality, has 

revolutionized medical diagnostics. Even with these 

advancements, grid artifacts can still appear in DR 

pictures when anti-scatter grids are used to boost 

contrast [1–6]. Gridline artifacts may outcome of 

the use of anti-scatter grids, which can make it 

difficult to accurately diagnose patients and 

interpret images [7–18]. The complexity of the 

imaging process places a limit on the gridline 

artifact mitigation strategies now in use. To respond 

to this problem, we have developed a novel 

framework which uses Hybrid Deep Learning 

techniques in the elimination of gridline artifacts 

from X&Y images.  Digital twin and container 

network technology, in particular for Internet of 

Things applications, are also integrated into the 

system to improve its capabilities. In order to 

ensure optimum performance, the digital twin 

provides real time monitoring and predictive 

maintenance of the imaging system [19-20]. Deep 

learning models can be deployed rapidly and 

effectively through the use of container network 

technology, which enhances adaptability and 

integration [21-22]. A Gaussian band-stop filter and 

ADAM optimization are combined in the proposed 

Hybrid Deep Learning model to produce high-

quality X-ray images that are free of grid-line 

artifacts and suited for precise analysis and 

diagnosis [23–24]. We use deep learning models 

like CNN, DenseNet, VGG-Net, and InceptionNet 
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to accomplish grid-by-grid removal and identify X-

ray pictures.  Furthermore, we deal with different 

kinds of Xray noise that can affect the quality of an 

image, for example quantum noise, e.g. electrical 

noise, structure noise, scatter radiation and 

movement artifacts [25-37]. In order to improve 

image clarity and diagnose accuracy, it is essential 

that you understand and mitigate these types of 

noise. The integration of digital twins and container 

networks represents a significant benefit for our 

framework, which is in the process of improving 

Xray radiography in the healthcare sector. The 

Digital Twin ensures a constant improvement of the 

picture quality and system performance by allowing 

real time monitoring, preventive maintenance or 

adaptive optimization. Our approach is well suited 

to medical imaging applications that are connected 

to the Internet of Things, thanks to a container 

network technology enabling rapid integration and 

deployment. With a view to enhancing image 

quality, improving diagnosis accuracy and 

expanding possibilities for the use of health care 

applications, it is expected that this framework will 

have important effects in healthcare imaging and X 

ray radiography. We can contribute to a wider set 

of medical diagnostics with an emphasis on the 

Internet of Things through research that addresses 

gridline artifact and other Xray noise sources, 

thereby giving rise to new kinds of innovation in 

this vital area.  

In the domain of X-ray imaging, various forms of 

noise can have adverse effects on the quality and 

clarity of the acquired images. These noise types 

originate from different sources and exhibit distinct 

characteristics. Here, I will provide a concise 

overview of some common varieties of X-ray noise: 

1. Quantum Noise: Quantum noise, sometimes 

referred to as statistical noise or photon noise, is 

a natural part of X-ray imaging. It results from 

the stochastic interactions of X-ray photons with 

the detector and the patient's body. Following a 

Poisson distribution, quantum noise can lead to 

image artifacts and reduced image quality, 

particularly in scenarios involving low radiation 

doses [38]. 

2. Electronic Noise: Electronic noise emerges 

during signal acquisition and processing stages. 

It can stem from diverse sources such as 

detector electronics, amplifiers, analog-to-digital 

converters, and transmission lines. Random 

variations in pixel values characterize electronic 

noise, which can impair image clarity and 

contrast [39]. 

3. Structured Noise: Structured noise refers to 

patterns or artifacts introduced into X-ray 

images due to various factors. These factors may 

include mechanical imperfections, external 

interference, calibration issues, or non-uniform 

detector responses. Streaks, lines, grid patterns, 

or irregularities in the image can manifest as 

structured noise, compromising the diagnostic 

quality [40]. 

4. Scatter Radiation: Scatter radiation occurs when 

X-ray photons interact with tissues and change 

their trajectory. These scattered photons reach 

the detector, contributing to image degradation 

by reducing contrast and introducing a hazy 

appearance. Scatter radiation can be reduced by 

using methods like post-processing algorithms 

or anti-scatter grids [41]. 

5. Motion Artifacts: Motion artifacts arise when 

there is patient or equipment motion during the 

X-ray exposure. They result in blurred or 

distorted images, making accurate interpretation 

of diagnostic information challenging. Strategies 

such as immobilization, shorter exposure times, 

or motion compensation algorithms can help 

minimize motion artifacts [42]. 

The characteristics and impact of noise can differ 

based on the specific imaging system, patient 

factors, and imaging protocols employed. 

Addressing and reducing these noise types are vital 

for enhancing the quality and reliability of X-ray 

images, thereby enabling more precise diagnosis 

and treatment.  When an anti-scatter grid is used 

during picture acquisition, a particular kind of 

structured noise known as "grid line artefacts" may 

appear in X-ray images. Thin lead strips or septa 

positioned across the patient and the X-ray detector 

make up an anti-scatter grid. By absorbing or 

rerouting scattered photons, it aims to lessen the 

impact of scattered radiation on image quality [43]. 

Grid line artifacts become visible as grid-like 

patterns that overlay the X-ray image. These 

patterns can manifest as alternating dark and light 

lines or grid lines. The presence of grid line 

artifacts can significantly degrade the quality of the 

image for diagnostic purposes, as they can obscure 

important anatomical details and mimic 

pathological findings. Several factors contribute to 

the occurrence of grid line artifacts: 

 Grid misalignment: Grid line artefacts may arise 

from improper anti-scatter grid alignment with 

respect to the X-ray beam. Inaccurate placement 

of the grid or an angle between the grid's 

orientation and the X-ray beam might cause 

misalignment. 

 Grid cutoff: Grid cutoff occurs when the lead 

strips of the grid obstruct X-ray photons, leading 

to incomplete exposure of the detector. This can 

happen if the X-ray tube is not properly aligned 

with the grid, causing the grid lines to block 

some of the primary radiation. 
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 Moiré effect: The moiré effect can contribute to 

grid line artifacts when there is an interference 

pattern between the grid lines and the pixel 

structure of the X-ray detector. This effect can 

occur if the grid lines and the pixel pitch of the 

detector are not appropriately matched. 

To minimize or eliminate grid line artifacts, precise 

alignment and positioning of the grid are essential. 

Careful arrangement of the X-ray tube, grid, and 

detector can help mitigate grid cutoff and reduce 

the likelihood of artifacts. Furthermore, the use of 

grids with higher frequencies (finer lead strips) can 

decrease the visibility of grid lines and mitigate 

their impact on the image. Post-processing 

techniques, such as grid line artifact removal 

algorithms, can also be employed to mitigate grid 

line artifacts after image acquisition. These 

algorithms analyze the grid patterns and utilize 

image processing methods to suppress or remove 

the grid lines while preserving the relevant 

diagnostic information.  

The suppression of gridline artifacts in X-ray 

images is a complex issue that requires a 

multidisciplinary approach [12-22]. To address this 

issue, several image processing techniques have 

been developed, and these approaches can be 

broadly categorized into trio groups: wavelet 

domain suppression techniques, frequency domain 

filtering techniques, and space domain techniques. 

 Space domain methods analyze gridline artifacts 

as per the Gray level information of the image 

and suppress them in the spatial domain. 

However, these approaches are limited, in that, 

the gridline discovery procedure can be 

influenced by information in the output image, 

and the traditional gridline suppression 

procedure may result in blurring of the object 

image [12-15]. 

 In order to distinguish gridline signals and 

imaging objects in the spatial frequency domain, 

frequency domain filtering techniques make use 

of the previous information of the picture state. 

The gridline artifacts can then be suppressed by 

filtering the relevant frequencies. However, this 

approach also has its limitations, as suppressing 

the gridline frequency may reduce the object 

image information with similar frequencies [16-

20]. 

 Wavelet domain suppression approaches are 

designed to reserve detailed object information, 

but are limited by the zero-assignment process, 

which can cause a ringing outcome in the final 

image. Additionally, these approaches do not 

deliver a stopping state for recursive wavelet 

transformation. [21-22]. 

X-ray image classification has traditionally relied 

on conventional methods that involve manual 

feature extraction and the application of ML 

methodologies corresponding Random Forest (RF) 

and Support Vector Machines (SVMs). Though, 

these approaches often necessitate extensive 

manual feature engineering and may struggle to 

effectively represent complex patterns found in X-

ray images. A significant change in methodology 

has resulted from the field's revolution brought 

about by the progress of DL. DL frameworks like 

TensorFlow and PyTorch have demonstrated 

impressive performance across various image 

classification tasks. These frameworks make use of 

neural networks' capacity to automatically extract 

relevant features from unprocessed data, removing 

the requirement for time-consuming manual feature 

engineering and making it possible to identify 

complicated designs. In summary, X-ray picture 

gridline artefact suppression is a complicated 

problem that necessitates carefully weighing the 

benefits and drawbacks of the many image 

processing techniques. A combination of 

approaches and techniques may be needed to 

achieve optimal results, depending on the specific 

situation. The proposed method for removing 

gridline artifacts from X-ray images is an 

autonomous process that involves several stages to 

enhance its performance. Deep learning method is 

important and also used in different applications 

[44-54]. 

 

2. Methods 
 

Xray radiographic images play an essential role in 

medical diagnosis, but the existence of gridline 

artifacts can be a major influence on image quality. 

To enhance the standard of the image for additional 

diagnostic analysis, here we deploy an innovative 

methodology that will autonomously identify and 

remove gridline artifacts from Xray images. This 

will be achieved by using the Digital Twin and 

Container Networking Technologies for integration 

of Internet of Things technologies, in order to 

ensure that the proposed technique is performing 

better than before (figure 1). The proposed 

methodology is set out in the following order: 

 A set of xray images is fed to stateoftheart deep 

learning models, including CNN.NET, VGGNet 

and the Inception Network in order to classify 

them into two categories: Dense Lines with Grid 

artifacts and No Grid artifacts  

 Images identified with grid-line artifacts are 

saved and subsequently processed for grid-line 

elimination. 

 The dense net architecture then receives the 

saved grid-line-present radiography images and 

applies a brand-new, improved hybrid deep grid 

model (GBS-ADAM). To eliminate grid lines in 
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the resulting photos, this customized activation 

function combines Gaussian band-stop filters 

with ADAM optimization. 

 The clean, noise-free radiographical images with 

no grid-line artifacts are kept in a separate 

folder. 

 These radiographical pictures with the grid-line 

artifacts removed are accessible for additional 

analysis and user-specific requirements. 

We gathered a dataset of almost 3000 

radiographical pictures, including COVID lung X-

rays, pneumonia lung X-rays, and bone fracture X-

rays, from a variety of online sources, including 

Kaggle and the UCI repository, in order to assess 

the suggested method. Combinations of photos with 

and without grid-line artifacts are included in the 

dataset. About 2000 photographs include grid-line 

artifacts, while 1000 images were given the grid 

lines manually removed using Photoshop, making 

up the category of clean images. The "stratified 

random sampling" method was used to divide the 

dataset into training and testing sets, guaranteeing 

an equivalent distribution of various classes across 

both sets for a thorough evaluation and 

generalization of the classification model. 

The use of the latest deep learning models, e.g. 

CNN, DenseNET, VGGnet and InceptionNet, is 

made for classification of images. To carry out 

classification, the proposal uses a method of split 

and conquer to select the most accurate model. 

Images that can be grouped according to gridlines 

and with no gridline are generated from the best 

accuracy model results. Subsequently, an additional 

assessment is carried out on the images with grid 

lines. 

Our methodology shows an innovative approach to 

the removal of grid artifacts from Xray 

radiographic images, using Digital Twin and 

container network technologies for Internet of 

Things applications. The Digital Twin ensures real 

time monitoring and predictive maintenance of the 

Imaging System, while container Network 

technology allows effective and scalable 

deployment of a deep learning model to increase 

system performance. The aim of this approach is to 

significantly increase the quality of Xray images in 

order to facilitate more accurate diagnosis, which 

would contribute to advancing medical technology 

through use of internet of things enabled imaging. 

 

2.1 Data Preparation.  

 

In preparation for deep learning, all the sample 

images were standardized to a uniform size of 224 

x 224 pixels. Additionally, data normalization was 

applied to enhance the learning capabilities of the 

system. With these steps taken, the dataset was 

deemed ready for input into various advanced deep 

learning methodologies and to commence the 

training process. During the training of a DL 

methodology for X-ray image classification, it is 

critical to address potential biases associated with 

the manual pixel-shift (PS) based noise removal 

technique. Manual interventions, such as PS-based 

noise removal, can unintentionally introduce biases 

that distinguish PS images from non-PS images 

based on subjective perceptions of image quality 

and individual operations. These biases can 

significantly impact the model's performance and 

generalizability. Moreover, manual operations 

involved in PS-based noise removal can introduce 

additional variations or artifacts into the images. If 

not carefully controlled, these variations can create 

differences between PS and non-PS images that are 

dissimilar to the occurrence of noise. Consequently, 

the methodology may learn to associate specific 

visual cues or artifacts with the presence or absence 

of PS rather than accurately identifying and 

classifying noise patterns. In order to address the 

issues, autonomous deep learning methods are 

utilized. 

 

2.2 Convolutional Neural Network (CNN).  

 

The CNN, also identified as ConvNet, is a kind of 

NN that is primarily utilized in image classification 

as well as in recognizing speech. A CNN's 

architecture is made up of several layers. The layers 

in the CNN receive the input, and then process it to 

convert the data from the image, and then the 

processed data are passed to the successive layers. 

This kind of processing is called convolution. In 

each convolution process, the number of filters to 

be utilized should be properly defined. Filters are 

image processing tools that identify specific 

patterns in an image, such as edges, shapes, curves, 

objects, textures, or colors. The complexity of the 

detected patterns is directly proportional to the 

depth of the filter. These filters are implemented as 

small matrices, known as image kernels, that are 

applied to an entire image. Convolution and 

pooling layers are often used in conjunction with 

filters, where the pooling layer helps to down 

sample the input image, reducing its dimensionality 

by retaining the most relevant features in 

subregions. The stride is the number of pixels that 

are moved across the input matrix during the 

filtering process. When stride is set to 1, the filter 

advances one pixel at a time; when stride is set to 2, 

the filter advances two pixels at a time. Large 

photos can be processed more effectively by using 

larger strides and filter sizes. Figure 2 illustrates the 

CNN architecture that was used for both Grid and 

non-Grid artefact categorisation. Convolutional, 
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pooling, and Fully Connected Layers (FCL) are the 

three different layers that make up the suggested 

CNN framework. RGB images with dimensions of 

224 × 224 × 3 are fed into the framework. The 

initial layer is the convolutional layer, which uses 

filters, also referred to as "kernels," with a size of (3 

× 3). 

 
Figure 1. Proposed Architecture 

 

These filters serve as feature identifiers and extract 

lower-level features such as edges and curves. By 

adding additional convolutional layers, the model 

can extract deep features from images and 

determine their complete characteristics. The filter 

achieves a convolution process with a sub portion 

of the image, which is referred to as the "receptive 

field." The parameters of the filter, also known as 

weights, are learned through training. The spatial 

dimension of the input volume decreases with an 

increase in the stride value, which determines the 

amount by which the filter is shifted. Padding is 

employed to keep the output dimensional volume 

equal to the input in order to get around this. To 

extract various features, the convolutional layer 

employs many filters. To include a nonlinear to the 

linear operation, the convolutional output is given 

the activation-function ReLU (Rectified-Linear 

Unit). Subsequent two convolutional layers, the 

max-pooling layer is used to minimise the input's 

spatial dimensions by utilising the maximum 

receptive field value with a stride of two and a filter 

of size 2 2. Then, using a threshold-value of 0.251, 

the dropout layer is used to randomly eliminate 

some activations in order to avoid overfitting. The 

flattened layer transforms the 2D feature map into a 

1D feature vector, which the FCL then uses for 

classification. The final output layer uses the 

"softmax" activation to forecast the class label of 

grid artefacts against nongrid artefacts. The FCL is 

made up of 64 neurones. Table 1 shows the 

specifics of the layer. 

 
Figure 2. CNN architecture 

 

Table 1: Layers of CNN 
Layer Siz

e of 
the 

Filt

er 

Siz

e 
of 

the 

Po
ol 

Stri

de 

Paddi

ng 

Tot

al 
filte

rs 

Dropo

ut 
thresh

old 

Activat

ion 
functio

n 

Conv2D 3 X 

3 

- 2 Valid 32 - Relu 

Conv2D 3 X 
3 

- 2 Valid 128 - Relu 

MaxPoolin

g2D 

- 2 

X 
2 

2 - - - - 

Dropout - - - - - 0.25 - 

Conv2D 3 X 
3 

- 2 Valid 64 - Relu 

MaxPoolin

g2D 

- 2 

X 
2 

2 - - - - 

Dropout - - - - - 0.25 - 

Conv2D 3 X 
3 

- 2 Valid 128 - Relu 

MaxPoolin

g2D 

- 2 

X 
2 

2 - - - - 

Dropout - - - - - 0.25 - 

Conv2D 3 X 

3 

- 2 Valid 512 - Relu 

MaxPoolin

g2D 

- 2 

X 
2 

2 - - - - 

Dropout - - - - - 0.25 - 

Conv2D 3 X 

3 

- 2 Valid 512 - Relu 

MaxPoolin
g2D 

- 2 
X 

2 

2 - - - - 

Dropout - - - - - 0.25 - 

Flatten - - - - - - - 

FCL - - - - 64 - Relu 

Dropout - - - - - 0.25 - 

FCL - - - - 2 - Sigmoi

d 



U. S. Pavitha, S. Nikhila, Mamtha Mohan/ IJCESEN 10-4(2024)763-774 

 

768 

 

DenseNet. The DenseNet201 architecture consists 

of a 201-layer dense connected convolutional 

network. The network comprises four densely 

linked blocks and transition layer pooling that 

connects these blocks uniformly [27-28]. The 

network can gain additional input features and 

improve feature reuse efficiency by employing a 

structure of Batchnorm + ReLU + 3 x 3 Conv. In 

doing so, the vanishing gradient problem would be 

partially mitigated and the total amount of network 

parameters would be reduced [29]. 

VGGNet16. The VGG network structure more 

especially, the VGG16 model is another method 

employed in this investigation. The VGG16 

architecture is intended to improve the network's 

performance while deepening it. A tiny 

convolutional kernel, a tiny pooling kernel, and the 

ReLU activation function make up the VGG16 

model's basic module. The network structure 

consists of five convolutional layers, three fully 

linked layers, and a final softmax output layer. All 

hidden layers use the ReLU activation function, and 

the layers are separated via max pooling [30]. The 

ease of the VGG network building is one of its 

primary advantages. After the 7 × 7 × 512 feature 

map is fully connected, the softmax activation 

function is used to achieve the final recognition 

results for the three objects. 

Inception Net. The Deep CNN (DCNN) 

methodology known as GoogLeNet, created by 

scientists at Google as part of their InceptionNet 

design, takes on the problem of boosting network 

depth while preserving effectiveness in processing. 

The "Inception module," one of its ground-breaking 

features, makes it possible to effectively retrieve 

multi-scale information from input photos. The 

fundamental idea behind the Inception module is to 

conduct concurrent convolutions with various 

filtering sizes, then combine the results. By 

enabling the network to record both local and 

global characteristics at different scales, this 

method improves the network's capacity for 

distinguish intricate trends and structures in visuals. 

The Inception module includes a bottleneck layer 

that uses a 1x1 convolutional algorithm to minimize 

input dimensionality. It is complemented by 

alternating branches made up of convolutions of 

various sizes (e.g., 1x1, 3x3, 5x5). The component 

also includes max pooling algorithms to gather 

geographical information and reduce spatial 

dimensions. Lastly, all branch outcomes are 

combined along the channel's length to provide the 

module's final outcome. Another of the 

InceptionNet architecture's significant benefits is its 

effectiveness in computing. The architecture 

decreases processing needs while successfully 

utilizing network parameters by implementing 1x1 

convolutions. As a consequence, deeper networks 

are able to be built using a parameter count similar 

to older models, leading to enhanced 

representational learning skills. InceptionNet has 

outperformed other picture classification algorithms 

in a variety of responsibilities, notably the 

extremely renowned ImageNet Large-Scale Visual 

Recognition Challenge (ILSVRC). Its effectiveness 

can be due to its ability to collect global as well as 

local features, effective networking parameter 

usage, and deep design that enables nested feature 

learning. The final output produced by this process 

is the classification of the image as either 

containing grid artifacts or not containing grid 

artifacts. 

The proposed framework compares the results from 

various state-of-the-art models and automatically 

selects the most accurate one. The best-trained 

model is then used to test images and classify them 

into two categories: images with "Grid Artifacts" 

and images without "Grid Artifacts." The classified 

images with "Grid Artifacts" are further processed 

by the framework. 

Grid Line Detection and Removal Module. The 

images classified as "Grid Artifacts" are then 

processed through the proposed DenseNet 

architecture with a custom activation function. The 

activation function is based on a novel hybrid deep 

grid model, which combines a Gaussian band stop 

filter with ADAM optimization (GBS-ADAM). 

The Adam optimizer, which is derived from the 

phrases Adaptive Moment Estimation, incorporates 

the benefits of the AdaGrad and RMSProp 

optimization techniques. Adam offers rapid and 

successful optimization through preserving variable 

learning rates for specific parameters.The Adam 

optimizer continually changes its learning rate for 

every parameter throughout training depending on 

the anticipated first and second values of the 

gradients. This variable learning rate technique 

speeds up closure and enhances the 

methodology ability to manage various types of 

data and complicated topologies. Using the Adam 

optimizer's skills, the model may effectively adjust 

its parameters during the tuning process, resulting 

in improved efficiency. This optimized hybrid 

model optimizes the images grid by grid, 

effectively removing the grid lines in the final 

output images. 

The process of recursive wavelet decomposition 

[37] continues until a subimage containing the main 

gridline signal is created by the gridline discovery 

unit. Gridline artifacts are characteristically 

characterized by line-shaped shades. To determine 

if the gridline is the primary signal in the image in 

question, statistical-texture features can be 

employed. Based on the picture Grey Level Co-
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Occurrence Matrix (GLCM), [35] has identified 14 

statistical-texture characteristics [37], although 

these features include duplicate information. 

However, according to [36], only four of these 

features correlation, contrast, energy, and inverse 

moment are uncorrelated. For this reason, this study 

decided to define the intensity of gridline artefacts 

using correlation and contrast [37]. The spatial 

GLCM is constructed by calculating the frequency 

at which a pixel with intensity (gray-level) value k 

appears in a precise spatial relationship with a pixel 

with value l. To describe the spatial relationship, an 

angular relationship and a distance d are needed. 

Assuming that the gridline-artifacts are parallel to 

the image's axis, two angular relations of 0° and 90° 

were selected for this study in order to compute the 

consistent spatial GLCMs, which are represented as 

P(d, 0°) and P(d, 90°), respectively. The vertical 

GLCM is P(d, 90°), and the horizontal GLCM is 

P(d, 0°) [37]. 

Equation 1 below shows the results of the 

computations used to determine the correlation 

[37], which characterises pixel correlation in a 

particular angle of the image. 

                       𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 =

 ∑ ∑
𝑝𝑘𝑙(𝑘−𝜇𝑘)(𝑙−𝜇𝑙)

𝜎𝑖𝜎𝑗

𝐺−1
𝑙=0

𝐺−1
𝑘=0    

   (1) 

where 𝜇𝑘 = ∑ ∑ (𝑝𝑘𝑙 ∗ 𝑘),𝐺−1
𝑙=0

𝐺=1
𝑘=0   𝜇𝑘 =

∑ ∑ (𝑝𝑘𝑙 ∗ 𝑙)𝐺−1
𝑙=0

𝐺−1
𝑘=0 ,  𝜎𝑘 =

√∑ ∑ (𝑝𝑘𝑙 ∗ (𝑘 − 𝜇𝑘)2)𝐺−1
𝑙=0

𝐺−1
𝑘=0 ,                𝜎𝑙 =

√∑ ∑ (𝑝𝑘𝑙 ∗ (𝑙 − 𝜇𝑙)2)𝐺−1
𝑙=0

𝐺−1
𝑘=0  

The GLCM is also used to calculate contrast [37], 

which indicates the level of picture clarity and 

texture groove depth in the direction. The results 

are shown in Equation 2 below. 

𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 =  ∑ ∑ 𝑝𝑘𝑙|𝑘 − 𝑙2|𝐺−1
𝑙=0

𝐺−1
𝑘=0                       

     (2) 

Gaussian band-stop filter. Gridline artefacts in X-

ray images are suppressed by applying a Gaussian 

band-stop filter to the image's columns. The 

following Equation 3 shows the formula. 

𝐵(𝑢) = 1 − 𝑒−
1

2
(

𝑢−𝜇

𝜎
)2

, 𝑢 =  1, … , 𝑀  
    (3) 

where the actual frequency of the image's gridlines 

is represented by µ=p'u. The maximum value in the 

power spectrum is used to choose the µ value. The 

𝜎 value is calculated using interval values [p’u – 

0.50 * W, p’u + 0.50 * W], wherein W is the width 

of the wave peak in two or multiples. In order to 

create a gridline-free image (I′c(x,y)), the filter is 

intended to exclude the gridline signal (Ic(x,y)) 

from the image. This processed image is then 

blended with a pyramidal Discrete Wavelet 

Transform (DWT) to create the final restored image 

free of gridline artefacts. To sum up, the method 

needs an input X-ray image with gridlines (I(x,y)), 

the number of pixels in the image, the direction of 

gridline artefacts (d), and the number of gridlines 

per centimetre (fg). Procedure to eliminate gridlines 

in X-ray imagery using novel hybrid Deep Grid 

Model involves a combination of a Gaussian band-

stop filter and Adam optimization. The steps are as 

follows: 

 Initialization: Gridline artifacts [37] in the input 

X-ray picture (I(x,y)), frequency of gridlines per 

cm (fg), pixel resolution (Rs), and gridline 

artifact direction (d). 

 Gaussian Band-stop Filter Application: Apply 

Gaussian band-stop filter to columns of the X-

ray image to eliminate the gridline signals and 

produce the (I′c(x,y)). 

 Adam Optimization Utilization: To make the 

(I′c(x,y)) better, apply the Adam optimisation 

technique. To minimise the inaccuracy among 

the original X-ray image and the gridline-free 

image, the Adam optimisation technique uses 

gradient descent to modify the filter settings. 

 Inverse DWT Implementation: To create the 

final restored X-ray image devoid of gridline 

artifacts, an Inverse DWT [37] is applied to the 

optimized gridline-free image. 

 Output: The final product is the restored X-ray 

image free of gridline artifacts. 

The mean squared error (MSE) of the unfiltered 

image and the filtered image determines the 

stopping point for the Gaussian filter in the 

suggested study. The MSE is a statistic used to 

evaluate the difference between two images, having 

a lower MSE suggesting greater similarity and 

better elimination of gridline aberrations. The 

evaluation function considered for this study is also 

MSE. At every stage of the filtering procedure, the 

MSE is determined to establish the threshold for 

terminating the Gaussian filter. The MSE among 

the original image and the filtered image must be 

lower than the threshold in order for the threshold 

to be met. This minimizes the introduction of extra 

noise while ensuring that the filtering process ends 

when the appropriate level of artifact removal has 

been reached. The suggested method tries to 

achieve a balance between efficiently removing 

gridline artifacts and maintaining the entire quality 

and authenticity of the X-ray images by using the 

MSE as the halting criteria. This method ensures 

the best outcomes in terms of artifact elimination 

and image quality by providing an objective 

statistic to guide the filtering procedure's 

termination based on the obtained similarity among 

the original and filtered images. By combining the 

Gaussian band-stop filter and Adam optimization, 
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the aim is to effectively eliminate the gridline 

artifacts and produce high-quality X-ray images. 

The proposed hybrid deep grid algorithm is detailed 

below. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

3. Results and Discussion.  
 

A collection of 3000 radiography images was 

gathered for this investigation from a variety of 

online sources. The images include X-rays of 

COVID lungs, pneumonia lungs, and bone 

fractures, both with and without gridline artifacts. 

Of the 3000 images, 2000 had gridline artifacts, and 

1000 were manually processed using Photoshop to 

remove the gridlines. These 1000 images were 

considered as the reference category. The dataset 

was split 80:20, with 600 photos used for testing 

and 2400 images used for training. A sample of the 

images used is represented in Figure. 3. 

 

Figure 3. Sample of Image Collected 

 

To classify the images, advanced DL 

methodologies for instance the CNN, DenseNet, 

VGG-Net, and InceptionNet were used. The sample 

training accuracy and validation accuracy for the 

CNN and the training loss and validation loss are 

depicted in Figure. 4a and 4b. Comparison 

consequences of the advanced methodologies such  

 
Figure 4. a. Training Accuracy and Validation Accuracy 

for CNN  b. Training and Validation Loss for CNN 

 

as CNN, DenseNet, VGG-Net, and InceptionNet 

are depicted in Table 2. The comparative findings 

of cutting-edge models’ accuracy, precision, F1 

score, specificity and sensitivity are depicted in 

Figure. 5a. Figure 5a depicts that the accuracy of 

the convolutional neural network is 1.14%, 3.76%, 

and 1.95% higher than that of DenseNet, VGG-Net 

and InceptionNet, respectively. 

 
Table 2. Comparison results of the state-of-the-art 

models 

State of 

Art 

Models 

Accur

acy in 

% 

F1 

Sco

re 

in 

% 

Specifi

city in 

% 

Precis

ion in 

% 

Sensiti

vity in 

% 

CNN 92.64 95.

8 

78.4 96.6 95.00 

DenseNe

t 

91.5 93.

94 

74.19 94.80 92.30 

VGG-

Net 

88.64 93.

43 

73.49 95.66 91.02 

Inceptio

nNet 

90.45 97.

56 

95.66 94.24 94.68 

 

The F1 score of InceptionNet is 1.76%, 3.62% and 

4.13% higher than that of CNN, DenseNet and 

VGG-Net, respectively. Similarly, the specificity of 

InceptionNet is 17.26%, 21.47% and 22.17% 

higher than that of CNN, DenseNet and VGG-Net, 

respectively. The precision score of the CNN is 

1.8%, 0.94%, and 2.36% higher than that of 

DenseNet, VGG-Net and InceptionNet, 

respectively. The sensitivity score of CNN also 

performs higher by 2.7%, 3.98%, and 0.32% than 

DenseNet, VGG-Net and InceptionNet, 

respectively. From the results, it is clear that CNN 

outperforms the results of DenseNet, VGG-Net and 

InceptionNet, and the framework as per the 

accuracy value, it chooses the CNN as the best 

model, and the images classified by CNN are 

considered for further processing. The ROC curve 

of the CNN model is represented in Figure. 5b, 

which details that the true positive rate is gradually 

higher than the negative rate. The outcome of the 

prediction of the CNN are illustrated in Figure. 6, 

which shows that the positive prediction is higher than 

Algorithm: Hybrid Deep Grid 

INPUT: Gridline artifacts in the input X-ray 

picture (I(x,y)), frequency of gridlines per cm 

(fg), Rs, and d. 

OUTPUT: Restored X-ray image without 

gridline artifacts 

1. Initialize 𝐵(𝑢) [37] parameters 

2. For every column in the X-ray image: 

2.1 Apply 𝐵(𝑢) to attain (I′c(x,y)) 

3. Initialize Adam optimization algorithm 

parameters 

4. Repeat until convergence: 

   4.1 Compute gradient of error between original 

X-ray image and gridline-free image 

   4.2 Update filter parameters using Adam 

optimization algorithm 

5. To create the final restored X-ray image 

devoid of gridline artifacts, apply an  

IDWT [37] to the optimized gridline-free image. 

6. OUTPUT restored X-ray image without 

gridline artifacts  
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the negative prediction. In order to enhance the 

total performance of this framework, digital twin 

and container networks have been instrumental in 

enabling integration into the Internet of Things by 

improving image quality and diagnoseability. The 

digital twin's real time monitoring and predictive 

maintenance, as well as its adaptive optimization 

will make it more reliable and effective in the field 

of imaging. Moreover, the container network 

technology allows seamless deployment of deep 

learning models across a variety of health care 

environments and makes it possible to adapt them 

for several kinds of IoT enabled environment.  

 
 

Figure 5. a. Comparison results of the state-of-the-art, 

b. ROC curve of the CNN 

 

The proposed hybrid deep grid model involves a 

two-step process for removing gridline artifacts 

from X-ray images. First, the images are classified 

into those that contain grid artifacts and those that 

do not. For this classification task, a advanced DL 

methodologies for instance CNN, DenseNet, VGG-

Net, or InceptionNet are chosen based on their 

performance on a dataset of radiographical images. 

Once the images with grid artifacts have been 

identified, they are processed by the hybrid deep 

grid model. The model performs a grid-by-grid 

analysis of the image, considering each subimage 

separately, and applies a customized activation 

function that combines a Gaussian band-stop filter 

and Adam optimization. The purpose of this 

combination is to remove the gridline signals 

effectively and produce a high-quality gridline-free 

image as the final output. 

The hybrid deep grid model is capable of refining 

grid lines of any angle, including horizontal, 

vertical, and diagonal grid lines. The result of the 

model's processing is an X-ray image free of grid 

artifacts, as shown in Figure. 7. The proposed 

framework outputs these gridline-free X-ray images 

as the result. Finally, the output image produced by 

the proposed framework is completely free of grid 

lines and can be used for further classification and 

analysis. However, several limitations are worth 

considering. Acquiring a large and diverse dataset 

of X-ray images can be challenging due to privacy 

concerns and the need for collaboration with 

medical institutions. Additionally, training deep 

learning models often necessitates significant 

computing power and resources. Developing the 

custom activation function and optimizing the grid 

removal process also presented its own set of 

challenges. The study analyzes the performance of 

various DL methodologies for image classification. 

CNN achieved the highest accuracy (92.64%) 

compared to DenseNet, VGGNet, and Fast R-CNN. 

For grid removal, the framework employs a 

customized activation function that combines 

filtering and optimization techniques. The 

comparison of the deployed methodology along 

with additional existing models like CNN [28], 

deep CNN [29], 3D CNN [30], UNet with band 

patch [31] are performed and the comparison 

ablation studies are represented in Table 3. From 

Table 3, it is understood that the proposed model 

holds higher accuracy than other related studies. 

 

4. Conclusion 
 

The proposed framework that combines the 

Gaussian band-stop filter with the ADAM 

optimization algorithm has demonstrated its 

effectiveness in removing grid line artifacts from  
 

Table 3. Comparison of accuracy of the Proposed model 

with the related works 

Models Techniques Accuracy(in 

%) 

Kim [28] CNN with learning 

data construction 

96 

Lopes [29] Deep CNN  97 

Duffy [30] 3D CNN 97.5 

Okamoto [31] UNet with band 

patch 

96.5 

Proposed 

Model 

Hybrid deep grid 

model 

98 

. 

 
Figure 6. Predicted Results of CNN 
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Figure 7. Final output of the hybrid deep grid model 

 

X-ray images. The implementation of this 

framework addresses a significant challenge faced 

in medical imaging, which is producing clear and 

unobstructed images for accurate diagnosis. The 

use of DL methodologies like the CNN, DenseNet, 

VGG-Net, and Fast R-CNN for image classification 

and the grid-by-grid removal of grid lines in the 

image have shown promising results. The output of 

the framework is a high-quality, grid-line free X-

ray image that can be used for further analysis and 

diagnosis. An accuracy rate of 98% is achieved 

through the deployed framework in removing grid-

line artifacts in X-ray images. All things 

considered, the suggested framework could greatly 

increase the accuracy of and reliability of medical 

diagnoses based on X-ray images. Thus the 

proposed model demonstrates the efficacy of 

conjucting Gaussian band stop filter with ADAM 

optimizer for removing grid-lines in radiographical 

images. However, a large dataset with the proposed 

model’s exploration with various artifacts would 

strength the research’s generalizability. Further the 

research is improved by expanding the dataset with 

more number of images for improving the 

generalizability along with addressing other 

different variants of artifacts and its corresponding 

clinical impacts by exploring real-time diagnosis. 
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