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Abstract:  
 

Breast cancer is the most common cancer among women, making early detection 

crucial for effective treatment. Traditional diagnostic methods often face limitations, 

leading to potential errors in diagnosis. This study explores the transformative potential 

of artificial intelligence (AI) and machine learning (ML) in breast cancer diagnosis, 

particularly through models like AdaBoost, SVM, Random Forest, and logistic 

regression. By analyzing key variables—such as age, tumor size, and menopausal 

status—this research aims to accurately differentiate between malignant and benign 

lesions. The findings reveal that the AdaBoost model significantly outperforms others, 

achieving an impressive AUC of 93.60% and a precision rate of 95.65%. This indicates 

its exceptional ability to accurately classify cases, minimizing false positives and 

ensuring reliable detection of true positives. With an F1 score of 86.27%, AdaBoost 

effectively balances precision and recall, positioning it as a valuable tool in clinical 

settings. Overall, this study underscores the importance of integrating AI-driven 

approaches in breast cancer diagnosis, enhancing accuracy and improving patient 

outcomes while reducing unnecessary invasive procedures. The promising results 

advocate for the adoption of these advanced techniques in healthcare, paving the way 

for more personalized and effective treatment strategies. 

 

1. Introduction 
 

Breast cancer stands out as the most prevalent 

cancer type among women worldwide, affecting 

millions of lives each year [1]. Early detection is 

critical in the treatment of this disease, as the 

effectiveness of therapeutic options varies 

significantly depending on the stage of cancer [2]. 

In this context, the rapid and accurate 

differentiation between malignant and benign 

lesions has become an essential requirement.  

While traditional diagnostic methods, particularly 

imaging techniques and biopsies, are vital, human 

factors and limitations in these processes can lead 

to diagnostic errors [3]. In recent years, the 

application of artificial intelligence (AI) and 

machine learning (ML) in the medical field holds 

the promise of a revolutionary shift in breast cancer 

diagnosis. Specifically, deep learning algorithms, 

trained on large datasets, have demonstrated high 

accuracy in distinguishing between malignant and 

benign lesions [4]. 

AI systems have emerged as supportive tools in 

various domains such as image analysis, biomarker 

identification, and disease prognosis. This not only 

accelerates diagnostic processes but also reduces 

the rate of misdiagnosis, enabling better patient 

outcomes [5]. The advancements offered by AI in 

breast cancer diagnosis represent not just technical 

progress but also a fundamental shift in patient 

care. AI applications, with their ability to rapidly 

analyze large volumes of data, are enhancing the 

decision-making processes of physicians. For 

example, AI algorithms have the potential to detect 

subtle differences in mammography and ultrasound 

images, identifying malignant lesions at an early 

stage that may have previously been overlooked 

[6]. Such developments can guide more accurate 

treatment pathways from the outset, protecting 

patients from unnecessary biopsies and invasive 

procedures. Additionally, AI systems can analyze 
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individual data, such as patient history and genetic 

information, contributing to the creation of 

personalized treatment strategies. As a result, 

diagnostic accuracy increases, and patient 

satisfaction and quality of life improve significantly 

[7]. For these reasons, the integration of AI 

applications is becoming a critical element shaping 

the future of breast cancer diagnosis. This study 

will explore the role of AI in breast cancer 

diagnosis, focusing on novel approaches for 

differentiating between malignant and benign 

lesions. 

The aim of this study is to predict malignant and 

benign breast lesions using machine learning 

algorithms, including AdaBoost, SVM, Random 

Forest, and logistic regression. Accurate and early 

differentiation in breast cancer diagnosis positively 

impacts patient treatment outcomes. This study 

seeks to distinguish between malignant and benign 

lesions through analyses performed on variables 

such as age, menopausal status, tumor size (cm), 

number of invasive lymph nodes, breast type, 

metastasis status, breast region, and medical 

history. 

The evaluation of the employed machine learning 

models using performance metrics such as 

accuracy, precision, F1, and AUC will provide 

valuable insights for clinical applications and 

highlight the potential of AI in medical diagnostic 

processes. This research aims to emphasize the 

effectiveness of these algorithms in breast cancer 

diagnosis and their role in improving patient care in 

healthcare settings. 

 

2. Material and Methods 

 
2.1 Data Source  

 

The breast cancer dataset used in this study was 

obtained from the publicly available Kaggle 

database, containing the medical records of 213 

patients. Out of these patients, 120 were diagnosed 

with benign lesions, while 93 were diagnosed with 

malignant lesions. 

 

2.2 Predictor Variable  

 

The predictor variables in the breast cancer dataset 

include age, menopausal status, tumor size (cm), 

number of invasive lymph nodes, breast type, 

metastasis status, breast region, and medical 

history. 

 

2.3 Data Splitting 

 

The dataset was split into training and test sets with 

a 7:3 ratio. 

2.4 Model Development 

 

In this study, four different machine learning 

models—Adaptive Boosting (AdaBoost), Support 

Vector Machine (SVM), Random Forest, and 

Binary Logistic Regression—were applied to 

analyze the breast cancer data. These algorithms 

were developed using Python version 3.10.12 to 

ensure compatibility with the latest libraries and 

features.  

Below, the key features and critical 

hyperparameters of each model are presented in 

detail. For hyperparameter optimization, the Grid 

Search method was employed. This method helped 

create a systematic workflow, ensuring the best 

model performance by addressing class imbalance 

and determining the optimal hyperparameters. The 

goal of this process was to enhance the 

effectiveness of each model by identifying the most 

suitable hyperparameter combinations. The grid 

search framework, k-fold cross-validation with k=5 

was employed to identify the necessary 

hyperparameters that would yield the best model 

performance. The all process is shown in Figure 1. 

 

 
Figure 1:. Flow Chart 

 

2.4.1 AdaBoost 
AdaBoost is an ensemble learning method that 

combines weak learners to create a strong classifier. 

Developed by Freund and Schapire in 1995, this 

algorithm improves performance by sequentially 

adding new learners that focus on the errors of 
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previous learners. AdaBoost dynamically updates 

the weights of each sample, aiming to minimize the 

errors made by previous classifiers. This approach 

enhances the overall accuracy of the model while 

allowing classifiers to become more complex over 

time. 

The algorithm starts by assigning equal weights to 

all samples. After training each weak learner, the 

algorithm increases the weights of the misclassified 

samples. This adjustment encourages subsequent 

learners to focus more on correcting those errors, 

leading to improved model performance. 

AdaBoost Hyperparameters: 

 n_estimators: Determines the total number of 

weak learners. 

 learning_rate: Controls the contribution of each 

weak learner. 

 base_estimator: Specifies the type of weak 

learner used in the ensemble.  

 algorithm: Defines the algorithm used during 

the classification process. There are two main 

options: "SAMME": Considers the contribution 

of each weak learner directly during boosting. 

"SAMME.R": Uses the weak learners' 

probability estimates to improve performance, 

often leading to better results when using 

probabilistic classifiers [8]. 

 

2.4.2 SVM 

SVM, is a widely used method in supervised 

learning, particularly effective for classification 

problems. Developed in the mid-1990s by Vapnik 

and colleagues, SVM aims to find the hyperplane 

that best separates data points. Its ability to perform 

effectively even in high-dimensional spaces allows 

SVM to excel in complex classification tasks. 

SVM utilizes the concept of maximum margin to 

classify data points. This approach seeks to identify 

the optimal separation line (or hyperplane) that 

maximizes the distance between the class 

boundaries, thereby enhancing the model's 

generalization capability and minimizing the risk of 

overfitting. Additionally, SVM offers the ability to 

transform non-linearly separable data into a higher-

dimensional space through a method known as the 

"kernel trick." This transformation facilitates the 

classification of more complex data. 

SVM's robust performance, even in high-

dimensional spaces, makes it a powerful tool for a 

variety of classification problems. 

SVM hyperparameters: 

 C (Regularization Parameter): This parameter 

controls the complexity of the model. 

 kernel: Determines the type of kernel function 

used to transform the data points.  

 gamma: A hyperparameter used for RBF and 

polynomial kernels. 

 degree: This parameter specifies the degree of 

the polynomial when using a polynomial kernel. 

 class_weight: Used to determine the importance 

of different classes [9]. 

 

2.4.3 Random Forest 

 Random Forest is an algorithm that belongs to 

supervised learning methods and stands out as 

one of the ensemble learning techniques. 

Developed by Leo Breiman, this method aims to 

create a powerful classifier by combining 

multiple decision trees. Random Forest allows 

for the independent construction of each 

decision tree, which are then aggregated to 

produce a final prediction. This process 

enhances the model's generalization ability and 

reduces the risk of overfitting. 

 The Random Forest algorithm selects a random 

subset of training data for each tree and builds 

decision trees on these samples. Additionally, a 

random subset of features is chosen at each node 

to evaluate the best split. These two stages 

increase the diversity of the model, resulting in 

more stable and accurate predictions. By 

aggregating the predictions of many trees, 

Random Forest mitigates the variance associated 

with individual decision trees and improves 

overall model performance. 

 Random Forest hyperparameters: 

 n_estimators: This parameter specifies the total 

number of decision trees in the model. 

 max_depth: Determines the maximum depth of 

each decision tree. 

 min_samples_split: Defines the minimum 

number of samples required to split a node. 

 min_samples_leaf: Specifies the minimum 

number of samples that must be present in a leaf 

node. 

 max_features: Determines the maximum 

number of features to consider when evaluating 

each tree. 

 bootstrap: Specifies the sampling method used 

for creating the trees. When set to True, the data 

samples for the trees are drawn using 

bootstrapping (sampling with replacement); 

when set to False, the entire dataset is used [10]. 

 

2.4.4 Binary Logistic Regression  

Binary logistic regression is a statistical model used 

in binary classification problems, typically applied 

when the dependent variable is divided into two 

categories. This model is based on the assumption 

that independent variables (features) influence an 

outcome, utilizing a logistic function to determine 
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the effect of each independent variable on the 

dependent variable. 

L2 regularization is a technique applied to control 

the model's complexity, minimizing the sum of the 

squares of the regression coefficients to prevent 

overfitting. This helps enhance the model's 

generalizability, allowing for more reliable 

predictions [11]. 

 

2.5 Performance metrics comparison of machine 

learning algorithms 

 

Four machine learning algorithms were used to 

compare the accuracy, precision, recall and F1 

scores, area under the curve (AUC) of the model 

metric values.  

 

2.6 SHAP and Interpretability of Machine 

Learning Models 

 

The Shapley Additive Explanations (SHAP) 

method is employed to enhance the interpretability 

of machine learning models, making their decision-

making mechanisms more comprehensible. By 

utilizing SHAP values and feature importance plots, 

this approach visualizes the effects of the model's 

inputs, providing insights into how individual 

features contribute to the overall predictions [12]. 

 

2.7 Statistical Analysis 

 

In the study, median (minimum-maximum) values 

were reported for numerical variables as descriptive 

statistics, while categorical data were presented as 

number and percentage n (%). The differences 

between benign and malignant groups in terms of 

numerical variables were analyzed using the Mann-

Whitney U test, and for categorical variables, the 

Pearson Chi-square test was applied. A p-value of 

less than 0.05 (p<0.05) was considered statistically 

significant. All analyses were conducted using 

Python version 3.10.12. 
 

3. Results and Discussions 
 

The performance evaluations presented in the table 

compare various classification metrics for the 

AdaBoost, Support Vector Machine (SVM), 

Random Forest, and Logistic Regression models 

using the examined breast cancer dataset. Among 

these, the AdaBoost model demonstrates superior 

performance, particularly in the AUC (Area Under 

the Curve) metric (Table 2). 

With an AUC value of 93.60%, AdaBoost is the 

strongest model in terms of classification 

capability. AUC measures the model's ability to 

distinguish between positive and negative classes, 

and in this context, AdaBoost outperforms all other 

models. Additionally, it achieves a high precision 

rate of 95.65%, indicating that the majority of 

samples classified as positive by the model are 

indeed positive, resulting in a very low false 

positive rate. The recall value of 78.57% shows that 

AdaBoost has a strong ability to detect true 

positives. Furthermore, the model achieves an F1 

score of 86.27%, reflecting its capacity to balance 

precision and recall effectively. 

In comparison, the SVM and Random Forest 

models exhibited moderate performance but fell 

short of AdaBoost, particularly in AUC values. 

SVM provides a balanced performance with an 

accuracy of 75% and recall, but its precision rate of 

70% indicates a deficiency in reducing false 

positives. The Random Forest model garnered 

attention with an AUC and precision rate of 

91.67%, yet it did not reach the overall 

performance level of AdaBoost. 

The Logistic Regression model demonstrated 

effective performance with an accuracy of 89.06%, 

but its recall rate of 75% suggests that it may miss 

some true positives. The exceptionally high 

precision rate of 99.99% indicates very few false 

positives; however, this imbalance slightly limits 

the model's overall success. 

There were significant differences between benign 

and malignant tumors in terms of tumor size, age, 

history, presence of inv-nodes, presence of 

menopause, and breast quadrant (Table 1). 

 
Table 1: Intergroup comparison results 

 Bening Malign p 

Tumor Size 

(cm) 

3.0 (1.0 - 

7.0) 

6.0 (1.0 - 

14.0) 
<0.001a 

Age 33.0 (13 - 

69) 

47.0 (25 - 

77) 
<0.001a 

Breast 

Left/right 

66 (55.0%)/ 

51 (42.5%) 

41 (44.1%)/ 

49 (52.7%) 

0.287b 

History No / 

Yes 

80 (66.7%)/ 

39 (32.5%) 

44 (47.3%)/ 

48 (51.6%) 
0.018b 

Inv-Nodes No 

/ Yes 

119 

(99.2%)/ 1 

(0.8%) 

20 (21.5%)/ 

72 (77.4%) 
<0.001b 

Menopause 

No / Yes 

21 (17.5%) / 

99 (82.5%) 

50 (53.8%) / 

43 (46.2%) 
<0.001b 

Metastasis No 

/ Yes 

116 (96.7%) 

/ 4 (3.3%) 

23 (24.7%) / 

69 (74.2%) 
<0.001b 

Year  

2019/2020 

56 (46.7%) / 

64 (53.3%) 

45 (48.4%) / 

47 (50.5%) 

0.496b 

Breast 

Quadrant 

  <0.001b 

Lower inner 35 (29.2%) 9 (9.7%)   

Lower outer 36 (30.0%) 18 (19.4%)   

Upper inner 24 (20.0%)  21 (22.6%)   

Upper outer 24 (20.0%) 43 (46.2%) 
a: Mann-Whitney U test; median(min-max) 

b: Pearson chi-Square test; n(%) 
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Table 2: Evaluation metrics of algorithms 

 
AdaBoost SVM 

Random 

Forest 

Logistic 

Regression 

Accuracy  0.8906 0.75 0.8750 0.8906 

Recall 0.7857 0.75 0.7857 0.75 

Precision 0.9565 0.70 0.9167 0.9999 

F1 0.8627 0.7241 0.8462 0.8571 

AUC 0.9360 0.7669 0.9167 0.9226 

 

As age increases, the model's predicted partial 

dependence value initially fluctuates but reaches its 

highest level in the 60s. This indicates that age has 

a positive effect on the model up to a certain point, 

after which a declining trend is observed (Figure 2). 

As tumor size increases, the model's predicted 

dependence value generally rises. 

 

 
Figure 2: Age and Tumor size partial dependence graph 

 

Notably, tumor sizes exceeding 5 cm significantly 

enhance the model's predictions, peaking around 10 

cm. When examining the SHAP summary plot and 

SHAP importance graph, tumor size, age, and 

metastasis status emerge as the most important 

features (Figure 3-4). 

 

 
Figure 3: SHAP Summary Plot 

 

 
Figure 4: Importance graph 

  
3.1 Discussion 

 

This study compared the performance of AdaBoost, 

SVM, Random Forest, and Logistic Regression 

algorithms on breast cancer data. The findings 

indicate that the AdaBoost algorithm outperformed 

other models in terms of the AUC metric (%93.60). 

AUC is a metric used to measure the model's 

capacity to accurately distinguish between positive 

and negative classes, and AdaBoost's high success 

in this context supports similar studies in the 

literature [13][14]. In a study by Zuo et al. on a 

different breast cancer dataset, an AUC value of 

%98.7 was reported for the AdaBoost algorithm, 

highlighting its high discriminative ability in 

classification tasks[13]. Chai et al. examined the 

relationship between depression and breast cancer, 

reporting that the AdaBoost algorithm achieved the 

best modeling results with an AUC value of %84 

[14]. 

The %95.65 precision rate achieved by AdaBoost 

indicates that the model maintains a very low risk 

of producing false positives. This finding reveals 

the model's significant success in distinguishing 

true positive classes and limiting positive results 

that could lead to unnecessary treatments or 

misdiagnosis. 

Montazeri et al. (2016) evaluated machine learning 

algorithms to predict breast cancer survival using 

large datasets, obtaining the best result with the 

Random Forest algorithm at %91.67 AUC [15]. In 

our study, the AUC value for the Random Forest 

algorithm was also calculated as %91.67, 

supporting the findings of Montazeri et al. 

In a study conducted by Zhou et al. (2024) on the 

Wisconsin breast cancer dataset, various machine 

learning algorithms were employed for predicting 

benign and malignant tumors, with the best 

modeling achieved through a combination of 

AdaBoost and logistic regression, resulting in an 

accuracy rate of %99.12 [16]. In our study, both 

AdaBoost and Logistic Regression exhibited 
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similar evaluation metrics. These findings suggest 

that future research could explore the AdaBoost-

logistic regression combination proposed by Zhou 

et al. 

Additionally, Ramakrishna et al. (2023) achieved 

the highest performance in breast cancer diagnosis 

by combining AdaBoost and Random Forest 

algorithms, resulting in an accuracy rate of %97.95. 

These types of hybrid algorithms could be 

considered for further analyses in light of the 

results obtained in our study. The use of hybrid 

algorithms is believed to provide higher accuracy 

and generalization capabilities [17]. In our study, 

AdaBoost stood out, particularly with high 

precision and AUC values, but lower results were 

obtained for recall. Therefore, it may be beneficial 

for future studies to investigate the hybrid modeling 

strategies proposed by Ramakrishna et al. to 

improve recall values. 

Conversely, the %78.57 recall value of AdaBoost 

indicates the model's potential to miss some true 

positive cases. This situation suggests the negative 

impact of undiagnosed cases on clinical outcomes 

in cancer screenings. Notably, the study by He and 

Garcia (2009) highlights that low recall values can 

pose significant issues in imbalanced datasets and 

are critical for the early detection of diseases [18]. 

In this context, the low recall rate suggests that 

AdaBoost may overlook certain cases, which could 

affect patient prognosis. 

 

The SVM and Random Forest algorithms have 

exhibited lower AUC values compared to 

AdaBoost. While SVM demonstrates balanced 

performance with a %75 accuracy and %70 

precision, it falls short in classification capacity 

with a %75 AUC value. This finding is consistent 

with the studies conducted by Hsu and Lin (2002), 

which reported that SVM tends to perform 

inadequately, particularly in imbalanced datasets 

[19]. 

Logistic Regression has achieved an exceptionally 

high precision rate of %99.99; however, its %75 

recall value indicates that the model is inadequate 

in capturing true positive cases. Studies by Menard 

(2002) have noted that the low recall values of 

Logistic Regression can lead to classification 

errors, particularly pronounced in imbalanced 

datasets [20]. The imbalance observed in this study 

raises the risk that Logistic Regression may miss 

some cases. These findings highlight the potential 

negative implications of false negative results on 

clinical outcomes. SHAP analysis indicates that 

tumor size, age, and metastasis status are the most 

significant factors in breast cancer diagnosis. The 

weights of these factors in the model are similarly 

emphasized in clinical literature. For instance, 

Smith et al. (2019) highlight the critical importance 

of tumor size on cancer prognosis and demonstrate 

that delays in cancer diagnosis associated with 

increasing age can adversely affect clinical 

outcomes. In our study, the model's predictive 

ability increased with age, although a decline was 

observed for individuals over 60. This finding 

suggests that while age increases cancer risk, other 

clinical factors also come into play in older 

populations [21]. The prominence of tumor size as 

one of the most important factors in the model, as 

indicated by SHAP analysis, aligns with findings in 

the literature. Notably, the study by Harris et al. 

(2016) reveals a direct relationship between 

increasing tumor size and metastasis, establishing 

this factor as a significant determinant in breast 

cancer diagnosis [22]. In our study, it was observed 

that tumor sizes exceeding 5 cm significantly 

enhanced the model's predictions. The comparison 

of sample sizes in other studies with the sample size 

in this study reveals the existence of not only 

studies with a similar number of participants but 

also those conducted with significantly larger 

datasets. Despite the small size of our dataset, high 

evaluation metrics have been achieved; however, 

working with larger datasets presents important 

opportunities to enhance the generalizability of the 

results and increase statistical power. 

 

4. Conclusions 
 

In conclusion, the AdaBoost model has emerged as 

the most successful classification algorithm for 

breast cancer diagnosis in this study. Its high 

precision rate provides a significant advantage in 

minimizing false positive cases, which is crucial for 

clinical applications. However, the lower recall 

value indicates potential risks associated with 

missed cases, which should not be overlooked. 

Therefore, it is recommended that hybrid models 

combining different algorithms or conducting 

model optimizations be implemented in clinical 

settings to achieve more balanced results. 

Furthermore, the results of the SHAP analysis have 

clearly identified the model's key determining 

factors, confirming the critical roles of tumor size 

and age in breast cancer diagnosis. 

Future studies should assess the performance of 

algorithms more comprehensively, particularly 

using larger datasets and various data sources. 
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