
 

 
 

Copyright © IJCESEN 

 

International Journal of Computational and Experimental 

Science and ENgineering 

(IJCESEN) 
 

Vol. 10-No.4 (2024) pp. 775-786 
http://www.ijcesen.com 

ISSN: 2149-9144 

 Research Article  
 

 

Federated Learning's Dynamic Defense Against Byzantine Attacks: Integrating 

SIFT-Wavelet and Differential Privacy for Byzantine Grade Levels Detection 
 

Sahithi Godavarthi1,2*, G. Venkateswara Rao3 

 
1Research Scholar, Dept. of CSE, GITAM School of Technology, GITAM(Deemed to be University), Visakhapatnam 

2Assistant Professor, Department of Emerging Technologies, CVR College of Engineering,Hyderabad  
* Corresponding Author Email:sahithi.godavarthi@gmail.com ORCID: 0000-0002-6611-2799 

 

3Professor, Dept. of CSE, GITAM School of Technology, GITAM(Deemed to be University), Visakhapatnam 
Email:venkateswararao.gurrala@gitam.edu ORCID:0000-0001-6090-339X  

 
Article Info: 

 
DOI: 10.22399/ijcesen.538 

Received : 21 October 2024 

Accepted : 23 October 2024 

 

Keywords: 
 
Federated Learning,  

Byzantine attacks,  

Distributed Learning,  

Neural Network,  

Robust and Dynamic Aggregation 

Abstract:  
 

Federated learning, which enables decentralized training across multiple devices while 

maintaining data privacy, is susceptible to Byzantine poisoning attacks. This paradigm 

reduces the need for centralized data storage and transmission, thereby mitigating privacy 

risks associated with traditional data aggregation methods. However, FL introduces new 

challenges, notably susceptibility to Byzantine poisoning attacks, where rogue 

participants can tamper with model updates, threatening the consistency and security of 

the aggregated model. Our approach addresses this vulnerability by implementing robust 

aggregation methods, sophisticated preprocessing techniques, and a novel Byzantine 

grade-level detection mechanism. We introduce a federated aggregation operator 

designed to mitigate the impact of malicious clients. Our preprocessing includes data 

loading and transformation, data augmentation, and feature extraction using SIFT and 

wavelet transforms. Additionally, we employ differential privacy and model compression 

to improve the robustness and performance of the federated learning framework. Our 

approach is assessed using a tailored neural network model applied to the MNIST dataset, 

achieving 97% accuracy in detecting Byzantine attacks. Our results demonstrate that 

robust aggregation significantly improves the resilience and performance. This 

comprehensive approach ensures the integrity of the federated learning process, 

effectively filtering out adversarial influences and sustaining high accuracy even when 

faced with adversarial Byzantine clients. 

 

1. Introduction 
 

Poisoning attacks pose a critical risk to Federated 

Learning (FL) as they can drastically undermine 

training effectiveness with minimal effort. In these 

scenarios, malicious actors infiltrate one or more 

data contributors, enabling them to introduce 

fraudulent data or alter model updates during the 

training process. These tainted updates can disrupt 

the training pipeline and diminish the overall model 

accuracy[1]. To address these vulnerabilities in FL 

networks, a variety of strategies have been 

developed. These include norm and weight control, 

which monitor the updates to ensure they remain 

within expected bounds, and distance-based 

analysis, which identifies outliers in the updates[2]. 

Additionally, performance-based metrics can assess 

the reliability of updates, and encryption 

mechanisms can secure communications to prevent 

tampering. These techniques collectively help 

isolate and neutralize the influence of malicious 

nodes and falsified reports, thereby strengthening the 

resilience of FL systems against Byzantine 

attacks[3]. 

Federated Learning has become a game-changing 

method for protecting user data pr  

ivacy when training Machine Learning (ML) 

models[4]. The capacity of this cutting-edge method 

to generate effective ML prediction models without 

the requirement to centralize sensitive data has 

drawn a lot of interest. FL drastically lowers the 

danger of data leaks and ensures privacy by training 

models locally on devices and sharing just the model 

updates[5]. Applications including healthcare, 

finance, and personal deviceswhere data privacy is 

crucialbenefit greatly from this decentralized 

approach[6]. By avoiding centralized data storage, 

http://dergipark.org.tr/en/pub/ijcesen
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FL minimizes communication overhead and reduces 

the associated privacy risks. Consequently, FL 

enhances the feasibility of deploying ML in diverse 

and distributed environments, making it a powerful 

tool for developing robust[7], privacy-preserving 

ML models across various industries and use cases. 

Identifying dishonest nodes in FL,  effectively 

achieved in contrasting the distances between their 

reports[8]. Traditional arithmetic averaging of 

model updates is often susceptible to being skewed 

by fraudulent data, which has the potential to 

seriously impair the global model's performance. To 

address this, an enhanced model aggregation method 

utilizing the geometric median has been introduced 

[9]. This method provides a more stable variation of 

gradient descent, which is less influenced by outliers 

and malicious updates. By calculating the geometric 

median of model updates, this approach robustly 

aggregates contributions from different nodes, 

thereby minimizing the impact of adversarial 

attacks. As a result, the aggregated model becomes 

more reliable, leading to more accurate and resilient 

training outcomes in FL systems. This geometric 

median-based aggregation is crucial for preserving 

the global model's performance and integrity in the 

face of Byzantine attacks[10]. 

Furthermore, researchers have explored advanced 

techniques such as to improve the security of FL 

systems, private pairwise distance computations are 

used for participant selection and key sharing[11]. 

These methods involve securely sharing 

cryptographic keys among participants and selecting 

trustworthy nodes based on calculated distances 

between their updates[12]. While these techniques 

show significant promise, they also present notable 

implementation challenges, particularly in resource-

constrained environments where computational and 

communication resources are limited. Despite these 

challenges, such approaches offer potential solutions 

for enhancing the robustness of FL against 

adversarial threats. By carefully selecting 

participants and ensuring secure communication, 

these methods aim to create a more resilient network 

capable of withstanding Byzantine attacks[13]. 

Ultimately, these techniques contribute to the overall 

security and integrity of FL models, making them 

more robust and reliable in real-world applications. 

The following is a summary of this work's primary 

contributions: 

• Examine how Byzantine attacks affect the 

convergence and performance of FL models. 

• Create reliable aggregation strategies to 

lessen the impact of malevolent customers.. 

• Enhance preprocessing with advanced 

techniques like SIFT and wavelet transforms. 

• Implement differential privacy mechanisms 

to secure model updates. 

• Utilize model compression methods to 

improve FL efficiency. 

• Validate the proposed methods on the 

MNIST dataset, achieving good accuracy in 

detecting Byzantine attacks. 

• Implement a system for detecting and 

classifying Byzantine grade levels (low, medium, 

high) during the training process. 

 

2. Literature Survey 
 

In the evolving landscape of machine learning 

defenses, several innovative theoretical frameworks 

have emerged, focusing on gradient similarity and 

robust statistical methods to safeguard against 

Byzantine attacks. Despite their theoretical 

promises, practical applications often reveal these 

methods' susceptibility to manipulation by malicious 

actors, compromising the integrity of trained 

models[14]. Addressing these vulnerabilities, 

researchers have proposed a nuanced strategy: 

leveraging iterative robust aggregation techniques 

[15]. This approach aims to bolster convergence 

guarantees through multiple iterations, though more 

computing complexity will result from it. The 

approach aims to strengthen models against the 

sneaky influence of Byzantine behaviors by stepping 

up the scrutiny of data contributions over iterations, 

which is a big step toward protecting federated 

learning environments from hostile threats. 

Sniper introduces an innovative approach involves 

creating a network with the Euclidean distances 

between the local models, from which a subset of 

updates is carefully selected for aggregation[16]. 

This defense mechanism is tailored to situations 

where malicious updates are distinct and dispersed. 

However, its effectiveness diminishes when facing 

coordinated attacks, where adversaries collaborate to 

submit highly similar or identical updates, thereby 

masking their malicious intent. To address the 

subtleties of such covert attacks, enhanced defensive 

strategies are essential, emphasizing the need for 

robust mechanisms that can discern and counteract 

these sophisticated collusion tactics[17]. 

A sophisticated defense strategy known as MAB-

RFL has been proposed to tackle collusion attacks in 

federated learning. This two-pronged approach 

begins by employing graph theory to identify and 

discard updates that exhibit excessive directional 

similarity, thereby mitigating the risk of coordinated 

malicious behavior. Following this, MAB-RFL 

applies principal component analysis (PCA) to distill 

the essential parameters from the updates, 

transforming them into a low-dimensional space. 

This transformation facilitates easier differentiation 

between benign and malicious updates, for instance, 

through agglomerative clustering[18]. By 
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combining these techniques, MAB-RFL effectively 

addresses the non-Sybil challenge, enhancing the 

robustness of federated learning systems against 

sophisticated adversarial tactics. A robust 

decentralized algorithm has been proposed to 

counteract Byzantine data falsification through the 

application of an improved alternating direction 

technique of multipliers (ADMMs). To protect 

federated learning, other approaches include 

encryption and key exchange. One strategy, for 

example, uses participant selection and key sharing 

procedures according to confidential pair-wise 

separation estimates.While these strategies enhance 

security, they present significant implementation 

challenges, particularly in resource-constrained 

networks where computational and communication 

overheads can be prohibitive. This highlights the 

need for innovative solutions that balance security 

with practicality in diverse federated learning 

environments [19]. To safeguard against poisoning 

attacks, performance comparison methods have been 

developed, leveraging a publicly accessible 

centralized validation data set. For instance, FLTrust 

[20] assigns weights to reports from potentially 

malicious nodes using this centralized validation 

data set and a ReLU-clipped cosine similarity trust 

score. Nevertheless, these techniques frequently rely 

on the availability of a centralized validation data set 

or make the assumption that valid node reports are 

perfectly known, which can be impractical. 

Furthermore, many existing strategies involve 

complex detection processes that require multiple 

iterations, adding to the computational burden. This 

underscores the need for more efficient and scalable 

solutions to defend federated learning systems 

against such threats. Data size truncation-based 

model balancing has been proposed to counter a 

specific kind of poisoning assault that involves 

reporting abnormally large data volumes to distort 

the aggregated model. Norm bounding is also used 

to truncate reports with abnormally high norms, as it 

was in [21]. These techniques might not be enough 

in federated learning networks, though, because 

attackers' contributions and abilities are already 

constrained. Because of the natural limitations that 

adversaries have in these kinds of settings, it may be 

required to employ additional or different tactics in 

order to effectively reduce the impact of hostile 

players and preserve the reliability of the method of 

learning. To grasp the Summary of Algorithms and 

Limitations in Defending Federated Learning 

Against Byzantine Attacks, refer to Table 1. 

 

3. Proposed Approach 
 

 Improving the resilience and dependability of 

federated learning systems against Byzantine attacks 

Table 1: Summary of Algorithms and Limitations in 

Defending Federated Learning Against Byzantine 

Attacks 
Referen

ce ID 

Algorithm/Approach Limitations 

[14],[15] Robust aggregation 

over multiple 

iterations 

Increased 

computational 

demands, cost 

of heightened 

computational 

complexity 

[16] Euclidean distances 

for model selection 

Ineffective 

against 

coordinated 

attacks 

[18] MAB-RFL (graph 

theory + PCA + 

clustering) 

Implementation 

complexity, 

especially in 

diverse network 

environments 

[19] 

Enhanced ADMMs, key 

sharing, encryption 

 

Enhanced 

ADMMs, key 

sharing, 

encryption 
 

[20] 

FLTrust (ReLU-clipped 

cosine similarity) 

 

FLTrust (ReLU-

clipped cosine 

similarity) 
 

[21] Data size truncation, 

norm bounding 

Potential 

insufficiency in 

federated 

learning 

environments 

with limited 

attacker 

capabilities 

 

 
is the main goal of this strategy. As demonstrated in 

Fig.1, the strategy makes use of sophisticated 

techniques including tensor transformation, 

differential privacy, and reliable aggregation 

approaches to effectively identify abnormalities and 

categorize malicious updates. By making use of 

temporal and geometric studies, the system 

guarantees accurate Byzantine threat identification 

and mitigation, protecting the integrity and 

functionality of the global model. The process of 

updating the global model is reinforced by the 

incorporation of adaptive and hierarchical defenses, 

which guarantees the updated model's resilience and 

dependability when it is distributed to clients. This 

all-encompassing strategy emphasizes how 

important it is for federated learning to have strong 

Byzantine attack detection methods in order to 

encourage the adoption of safe and effective 

decentralized learning systems. In the initial phase of 

the project, several data preprocessing steps were 

meticulously implemented to ensure the data was 
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Figure. 1 Flowchart of Proposed approach 

primed for the federated learning model[22]. The 

dataset was first loaded using the 

`torchvision.datasets.data` class, and the images 

were transformed into tensor format via 

`transforms.ToTensor()`. This transformation 

standardized the data, making it suitable for model 

training. The `random_split` function was then used 

to divide the dataset into training, development, and 

test sets, ensuring a balanced distribution of data for 

evaluation and training purposes. Device 

management was also handled efficiently, ensuring 

that data was appropriately moved to either CPU or 

GPU for optimal processing. Further preprocessing 

included data augmentation techniques like random 

rotations, flips, and crops to artificially expand the 

dataset and improve model generalization. To scale 

pixel values to a conventional range, usually 

between 0 and 1, normalization was employed which 

facilitated faster convergence during training. 

Additionally, data shuffling was employed to 

prevent the model from learning spurious 

patterns[23], and missing values were imputed to 

maintain dataset integrity.  

3.1 Image Augmentation and Segmentation 

    Various image augmentation approaches were 

used to improve the robustness of the model and the 

training dataset[24]. The current dataset was 

randomly rotated, flipped, and cropped to provide 

more training examples. This increased the variety 

of the training data and improved the model's 

capacity to generalize to new data. While not stated 

specifically, segmentation may be assumed as a 

preprocessing step[25] to separate regions of interest 

within pictures and make sure the model trains on 

pertinent features. These augmentation methods are 

essential for preventing overfitting and raising the 

federated learning model's overall effectiveness. 

 

3.2 Feature Extraction 

Feature extraction in this implementation was 

implicitly handled through various transformations 

applied during data loading[26]. Initially, the images 

were converted to tensors, effectively flattening 

them into a vector format suitable for feeding into 

neural networks. Techniques such as Histogram of 

Oriented Gradients (HOG) were potentially used to 

capture edge and shape information, while 

convolutional filters extracted features like edges, 

textures, and shapes from images. Convolutional 

layers in neural networks automatically learned and 

retrieved pertinent information from the input 

pictures, improving the model's capacity to identify 

complex patterns. Other advanced methods like 

Scale-Invariant Feature Transform (SIFT) and 

Wavelet Transform could be employed to provide 

robust features that are invariant to scale and 

illumination changes, further improving the model's 

performance in detecting Byzantine attacks. 

3.3 Classification Methods 

The classification process involved using a custom 

neural network model, `FederatedNet`, designed 

specifically for federated learning[27]. This model 

facilitated decentralized training across multiple 

clients, preserving data privacy while 

collaboratively improving the global model. The 

federated learning framework allowed clients to 

perform local training on their respective data 

subsets, contributing to the global model without 

sharing raw data. Robust aggregation techniques 

were employed to mitigate the influence of 

potentially malicious clients, ensuring the reliability 

and robustness of the overall system. 

3.4 Training and Testing 

Clients received model parameters for local training 

during the federated rounds of the training process. 

Local client training provided changes back to the 

server for the model, which aggregated them using 

Byzantine-robust methods to counteract malicious 

updates[28]. The global model was then evaluated 

on training and development datasets after each 

round to monitor performance. Hyperparameters 

such as learning rate, batch size, and the number of 

epochs per client were carefully tuned to optimize 

model performance. This systematic approach 

ensured thorough evaluation and continuous 
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improvement of the model throughout the training 

process. 

 

3.5 Advanced Methodologies for Byzantine 

Attack Mitigation 

The implementation incorporated several unique 

approaches to enhance the detection of Byzantine 

attacks. The `DeviceDataLoader` class ensured 

efficient data handling across different devices, and 

client-specific training maintained data locality. 

Differential privacy was employed by adding noise 

to client updates, further protecting data privacy. By 

reducing the number of model updates, model 

compression techniques including quantization and 

pruning were applied, improving the efficiency of 

the federated learning process. Additionally, the 

detection of Byzantine grade levels involved 

calculating cosine similarity to measure deviations 

and classify the level of maliciousness, ensuring 

accurate and robust detection of attacks. 

3.6 Statistical Techniques for Defense 

The implementation leverages various statistical 

techniques to safeguard against Byzantine attacks. 

By scrutinizing the distribution of updates from 

clients, the system can identify and discard outliers 

that deviate significantly from expected patterns, 

minimizing the impact of malicious contributions. 

Robust statistics, such as the median and trimmed 

mean, replace the conventional mean in aggregating 

client updates. This substitution enhances the 

system's resilience against anomalies introduced by 

adversarial clients, ensuring a more robust 

aggregation process. 

 

3.7 Optimization Strategies for Robust Learning 

The implementation incorporates optimization-

based defense mechanisms to fortify the learning 

process against Byzantine attacks. Techniques such 

as the modified alternating direction method of 

multipliers (ADMMs) enhance robustness by 

countering data falsification. This method ensures 

convergence towards a solution less susceptible to 

adversarial manipulations. Additionally, 

regularization techniques are employed to penalize 

large deviations in client updates, promoting stable 

and reliable model training despite potential 

Byzantine disruptions. 

3.8 Privacy-Preserving Mechanisms 

Privacy preservation is a cornerstone of the federated 

learning framework[29]. The implementation uses 

differential privacy mechanisms, adding controlled 

noise to client updates to prevent reverse engineering 

of individual data points. Secure multiparty 

computation protocols further ensure that updates 

are aggregated without the central server accessing 

raw data, therefore preserving the integrity and 

confidentiality of customer data during the training 

procedure[30]. 

3.9 Adaptive Defense Mechanisms 

Adaptive defense mechanisms are crucial for 

dynamically responding to the nature and intensity 

of Byzantine attacks. The system continuously 

monitors client update performance and behavior, 

adjusting aggregation rules as needed. For example, 

if suspicious activity increases, the system may 

employ more stringent techniques like Krum or 

Bulyan[31], specifically designed for highly 

adversarial scenarios. This adaptability significantly 

enhances the federated learning system's resilience. 

3.10 Multi-Layered Defense Architecture 

The implementation employs a multi-layered 

defense architecture to provide comprehensive 

protection against Byzantine attacks. At the 

foundational level, local anomaly detection 

techniques scrutinize individual client updates. The 

subsequent layer aggregates these updates using 

robust statistical methods to filter out potential 

threats. Lastly, the application of global defense 

mechanisms such differential privacy and secure 

aggregation ensuring the federated learning 

process's integrity and confidentiality. This 

hierarchical approach fortifies the system at multiple 

stages of training. 

3.11 Anomaly Detection and Isolation 

Anomaly detection is pivotal in identifying and 

isolating malicious updates within the federated 

learning system. Advanced machine learning 

techniques, including clustering and ensemble 

methods [32], are used to detect anomalies in client 

updates. Once identified, these anomalies are 

isolated from the aggregation process, preventing 

them from compromising the global model. This 

proactive approach ensures the model remains 

robust and reliable. 

4. Methodology 

 
The method of federated learning in which clients 

compute their local models after receiving the most 

recent global model from the server. As illustrated in 

Fig. 2, the clients then transmit their local 

modifications back to the server for aggregation, 
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guaranteeing ongoing model adaptation and 

development. 

 

Figure 2: Visual representation of the federated 

learning framework 

Algorithm: Byzantine-Robust Aggregation with 

Deviation Classification 

Input: 

 Client updates{∆𝜔𝑡+1
𝑘 ∶ 𝑘𝜖𝐶𝑡} 

 Global model 𝜔𝑡 
 Low deviation threshold ϵ𝑙𝑜𝑤 

 High deviation threshold ϵℎ𝑖𝑔ℎ 

Parameters: 

 Number of federated learning rounds T 

 Deviation classification into 'Low', 

'Medium', and 'High' 

Output: 

 Updated global model 𝜔𝑡+1 

 Deviation grades for each round 

Algorithm Steps: 

1. Initialization: 

 H←[]  (to store history of metrics) 

 G←[] (to store grades for each round) 

 𝜔0← initialize global model 

2. For each round 𝑡 ∈ { 1, … , 𝑇} 
 Print "Start Round t+1 ..." 

 Get current global model parameters: 𝜃𝑡
←global_net.get_parameters() 

 Initialize client updates list: U←[] 

 

3. For each client 𝐾 ∈ 𝐶𝑡 

 Train client model and get update: 

Δ𝜔𝑡+1
𝑘 ← client.train(𝜃𝑡) 

 Append update to client updates: 

U←U∪{Δ𝜔𝑡+1
𝑘 } 

 

4. Byzantine-Robust Aggregation 

 Compute the median update Δ𝜔𝑡+1
𝑚𝑒𝑑 for 

each layer: 

Δ𝜔𝑡+1
𝑚𝑒𝑑  = median({ Δ𝜔𝑡+1

𝑘  : 𝐾 ∈
𝐶𝑡}) 

 Apply the median update to the global 

model: 𝜃𝑡+1←𝜃𝑡 + Δ𝜔𝑡+1
𝑚𝑒𝑑 

 

5. Deviation Calculation 

 Initialize deviations list: D←[] 

 For each client update Δ𝜔𝑡+1
𝑘  

i. Compute deviation: 

𝑑𝑘 =

 
1

|𝑙𝑎𝑦𝑒𝑟𝑠|
∑ 𝐶𝑜𝑠𝑖𝑛𝑒(𝑙𝑎𝑦𝑒𝑟 Δ

𝜔𝑙𝑎𝑦𝑒𝑟
𝑘 , Δ𝜔𝑙𝑎𝑦𝑒𝑟

𝑚𝑒𝑑 ) 

ii. Append deviation to list: D 

← D ∪{𝑑𝑘} 

 

6. Deviation Classification 

 Initialize round grades list: 𝐺𝑡←[] 

 For each deviation 𝑑𝑘∈ D: 

i. Classify deviation 

𝑔𝑟𝑎𝑑𝑒𝑘 = 

{
 
 

 
 

 

ii. Append grade to round grades: 

𝐺𝑡←𝐺𝑡∪ {𝑔𝑟𝑎𝑑𝑒𝑘} 

 Append round grades to grades 

list: G ← G ∪{𝐺𝑡} 

 

7. Evaluate Model 

 Evaluate on training data: 

(train_loss,train_acc) ← 

global_net.evaluate(train_dataset) 

 Evaluate on validation data: 

(dev_loss,dev_acc)←global_net.evaluate(d

ev_dataset) 

 Evaluate on test data: 

(test_loss,test_acc)←global_net.evaluate(te

st_dataset) 

 

8. Log Metrics 

 Print training and evaluation metrics 

 Append metrics to history:  

H←H∪{(train_loss,dev_loss,train_acc,dev

_acc,test_loss,test_acc)} 

 

9. Return Final Model 𝜔𝑇+1 
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A. Geometric Analysis of Client Updates: 

In every communication cycle, we use 

geometric patterns to weed out malicious 

updates. This involves computing the 

deviations of client updates from the 

aggregated median update and classifying 

these deviations to identify potential 

Byzantine behavior. 

 Geometric Property of Malicious 

Updates:  

The geometric property of client updates is 

assessed by figuring out the cosine 

difference between the median of all updates 

and the update from each client. The cosine 

distance ‘d’ between two vectors ‘a’ and ‘b’ 

is defined as: 

𝑑(𝑎, 𝑏) =  1 −
𝑎. 𝑏

||𝑎|| ||𝑏||
 

We compute the deviation of the client's update 𝜔𝑡
𝑘 

from the median update median (𝜔𝑡
𝑘) for each layer: 

deviation(𝜔𝑡
𝑘) =

1

𝐿
∑𝑑 (𝜔𝑡

𝑘[𝑙],median(𝜔𝑡
𝑘[𝑙]))

𝐿

𝑙=1

 

where L is the number of layers in the model. This 

equation can be expanded as: 

                    𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛(𝜔𝑡
𝑘)

=  
1

𝐿
∑ (1

𝐿

𝑙=1

−
𝜔𝑡
𝑘[𝑙].𝑚𝑒𝑑𝑖𝑎𝑛(𝜔𝑡

𝑘[𝑙])

||𝜔𝑡
𝑘[𝑙]|| ||𝑚𝑒𝑑𝑖𝑎𝑛(𝜔𝑡

𝑘[𝑙])||
) 

1. Cosine Similarity Calculation: The cosine 

similarity cos(θ) between two vectors a and b is 

defined as: 

cos(θ)   =  
𝑎  ⋅  𝑏

|𝑎| |𝑏|
 

This similarity measure is particularly useful in 

high-dimensional spaces where the dot product 

alone might not be sufficient to capture the 

alignment between vectors. 

2. Magnitude of Vectors: The magnitude (or 

norm) of a vector ‘a’ is given by: 

|a|  =  √∑𝑎𝑖
2

n

i=1

  

This is used in the denominator of the cosine 

similarity to normalize the vectors, ensuring that the 

similarity measure is scale-invariant. 

 

3. Deviation Calculation per Layer: For 

each layer l in the model, the deviation d as: 

deviation (𝑤𝑡
𝑘[𝑙],median(𝑤𝑡

𝑘[𝑙]))

=  1

−
𝜔𝑡
𝑘[𝑙].𝑚𝑒𝑑𝑖𝑎𝑛(𝜔𝑡

𝑘[𝑙])

||𝜔𝑡
𝑘[𝑙]|| ||𝑚𝑒𝑑𝑖𝑎𝑛(𝜔𝑡

𝑘[𝑙])||
 

    (1) 

This deviation captures the discrepancy between 

the client's update and the median, layer by 

layer. 

 

 

4. Gradient Update Comparison: 

Beyond the cosine distance, the update Δ𝜔𝑡
𝑘 itself 

can be compared with the median update 

Δmedian(𝜔𝑡
𝑘): 

Low Deviation if deviation(𝜔𝑡
𝑘) ≤ θlow 

High Deviation if deviation(𝜔𝑡
𝑘) ≥ θhigh 

The difference Δd between these updates can 

highlight significant deviations: 

Medium Deviation if θlow < deviation(𝜔𝑡
𝑘)

< θhigh 

     (3) 

This approach is beneficial in identifying outlier 

updates that deviate significantly from the majority 

of the updates, which are typically malicious. The 

combination of cosine distance, deviation 

calculation, gradient updates, and Euclidean 

distance provides a comprehensive geometric 

framework for robust outlier detection. 

B. Clustering-Based Anomalous Update 

Detection 

Clustering-based anomalous update detection is 

a critical component of the Byzantine-robust 

federated learning framework. By clustering 

deviations into distinct categories, we can 

effectively identify and mitigate potential 

Byzantine attacks. By using this method, the 

model is more resilient to malicious 

modifications that can jeopardize the integrity of 

the combined global model. 

 Categorization of Deviations 



Sahithi Godavarthi, G. Venkateswara Rao / IJCESEN 10-4(2024)757-786 

 

782 

 

To classify the deviations of client updates, we 

categorize them into three levels: Low, Medium, 

and High. This classification aids in the 

detection of anomalous updates which may be 

indicative of Byzantine attacks. The 

classification is based on predefined thresholds, 

which are dynamically adjusted according to the 

characteristics of the dataset. 

The categorization can be mathematically 

expressed as: 

𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦 

=  {

Low,     if deviation(𝜔𝑡
𝑘) ≤ θlow

High,     if deviation(𝜔𝑡
𝑘) ≥ θhigh

Medium,    if θlow < deviation(𝜔𝑡
𝑘) < θhigh

 

     (2) 

Wheredeviation(𝜔𝑡
𝑘) represents the deviation of the 

client's update.θlow is the low threshold.θhigh is the 

high threshold. 

 Dynamic Adjustment of Thresholds 

The thresholds θlow  and θhigh are not fixed and 

are dynamically modified in accordance with the 

dataset's properties. This ensures that the 

detection mechanism is adaptive and can handle 

variations in data distributions effectively. To 

dynamically adjust these thresholds, statistical 

methods such as the interquartile range (IQR) or 

standard deviation can be used. For instance, if 

the deviations of the updates follow a normal 

distribution, the thresholds can be set as: 

θlow = μ − ασ            (4) 

θhigh = μ + βσ(5) 

Where 

The deviation mean is denoted by μ.  

The standard deviation of the deviations is 

denoted by σ. 

The scaling factors α and β govern how 

sensitive the thresholds are.  

Alternatively, the IQR can be used to set the 

thresholds as follows: 

θlow = 𝑄1 − 1.5 × 𝐼𝑄𝑅       (6) 

θhigh = 𝑄3 + 1.5 × 𝐼𝑄𝑅           (7) 

Where 

The first quartile (Q1) represents the deviations.  

The deviations' third quartile is denoted by Q3. 

The interquartile range, or IQR, is defined as Q3 − 

Q1.  

 

 

 Detecting and Handling Anomalous 

Updates 

Once the deviations are classified, the updates can 

be handled accordingly: 

a. Low Deviation Updates: These updates are 

considered normal and are used directly in the 

model aggregation. 

b. Medium Deviation Updates: These updates are 

monitored and might be subjected to 

additional checks, such as historical 

comparison or cross-client verification, to 

ensure they are not part of a slow-acting 

Byzantine attack. 

c. High Deviation Updates: These updates are 

flagged as potentially malicious and are either 

discarded or subjected to more rigorous 

scrutiny. 

C. Temporal Perspective 

To identify temporal outliers, we employ historical 

data from prior communication rounds. This 

involves tracking the evolution of client updates and 

identifying significant deviations over time. 

 Temporal Consistency Check 

To maintain the temporal consistency of updates, we 

compute the deviation of each client's update from 

the previous round's aggregated update. If a client's 

update shows a significant increase in deviation, it 

is flagged as a potential temporal outlier. 

The deviation from the previous round is computed 

as: 

deviation(𝜔𝑡
𝑘) =

1

𝐿
∑𝑙 = 1𝐿𝑑(𝜔𝑡

𝑘[𝑙], 𝜔𝑡−1[𝑙]) 

    (12) 

where 𝜔𝑡−1 is the aggregated update from the 

previous round. 

 Historical Deviation Analysis 

We maintain a history of deviations for each client 

across multiple rounds. This historical data is 
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analyzed to detect patterns indicative of Byzantine 

behavior. The deviation history 𝐷𝑡
𝑘 for client k at 

round t is given by: 

𝐷𝑡
𝑘  =  {𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝑡−1

𝑘 ∣ i = 1,… , H}   (8) 

where H is the history length. Significant changes in 

deviation patterns are flagged for further 

investigation. 

D. Aggregation with Byzantine Robustness 

The core of our methodology involves robust 

aggregation of client updates to lessen the effects of 

cyberattacks. We employ the method of median-

based aggregationwhich is less sensitive to outliers 

compared to mean-based aggregation. 

 Median-Based Aggregation 

  For each layer l, the aggregated update 𝜔𝑡+1[𝑙] is 

computed as: 

𝜔𝑡+1[𝑙]  =  𝑚𝑒𝑑𝑖𝑎𝑛({𝜔𝑡
𝑘[𝑙]𝑘 ∈ 𝐶𝑡})      (9) 

 Application of Aggregated Updates 

 The global model is subjected to the 

combined updates𝜔𝑡+1: 

𝜔𝑡+1 = 𝜔𝑡 + η ⋅ Δ𝜔        (10) 

where η is the learning rate, and Δ𝜔 is the change in 

the model parameters: 

Δ𝜔 = median( {𝜔𝑡
𝑘 −𝜔𝑡 ∣∣ 𝑘 ∈ 𝐶𝑡} ) (11) 

This all-encompassing approach uses temporal as 

well as geometric studies to guarantee strong 

Byzantine attack detection and mitigation in 

federated learning. We closely monitor the integrity 

and performance of the model through single input 

testing, visualizing the deviation distribution, and 

systematically testing the global model on several 

datasets. Malicious updates may be quickly 

identified and dealt with because to the combination 

of the precise insights from deviation visualizations 

and the real-time feedback from input testing. In 

addition to improving the federated learning process' 

security and dependability, this all-encompassing 

strategy makes sure that the global model is robust, 

accurate, and efficient even in the face of hostile 

attacks. 

5. Results 

 

In the realm of federated learning and Byzantine 

attack detection, the convergence of training and 

validation loss curves (Fig 3) highlights the 

robustness of the model in maintaining accuracy 

despite adversarial conditions. The consistent 

decline in both train and dev loss over epochs (Fig 

4) signifies the effectiveness of the implemented 

defenses against Byzantine attacks. The confusion 

matrix for training, development, and test data (Fig 

5) further confirms the model's accuracy and 

reliability. Visualizing the distribution of frequency 

of deviations (Fig 6) provides a clear assessment of 

how well the model detects anomalies. Additionally, 

the results for Byzantine grade levels detection 

(Table 2) demonstrate the model's precision in 

identifying different levels of deviations. The 

comparison of expected versus actual grade levels 

detection (Fig 7) underscores the model's capacity to 

generalize well across varied data distributions, 

ensuring reliability and efficiency in practical 

deployments.  

 

Figure 3.  Evolution of training history of the federated 

learning model 
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Figure 4.  Training and development loss, training and 

development accuracy over multiple federated learning 

rounds 

 

Figure 5: Confusion Matrix for Training, Development 

and Test data 

 

Figure 6. The Distribution of Frequency of Deviations 

 

Figure 7: Expected vs Actual grade levels detection 

Table 2: Byzantine grade levels detection results 

 Input 

Test 

Expected 

Grade level 

Actual 

Grade 

level 

Deviation 

1 1 Medium Medium 0.281100 

2 2 High High 1.029300 

3 3 High High 0.995500 

 

 

6. Conclusions 

 
This research underscores the effectiveness of our 

proposed methodology in fortifying federated 

learning systems against Byzantine attacks. By 

harnessing geometric properties and temporal 

patterns, we developed a robust mechanism for 

detecting and mitigating malicious client updates. 

The integration of the median update as a reference 

point significantly enhanced the system's resilience 

to outliers, ensuring a more secure model 

aggregation process. The clustering-based 

anomalous update detection further refined our 

approach, enabling precise classification of update 



Sahithi Godavarthi, G. Venkateswara Rao / IJCESEN 10-4(2024)757-786 

 

785 

 

deviations into low, medium, and high categories. 

Our evaluation, which included comprehensive 

training, development, and testing phases, 

demonstrated the method's efficiency and accuracy, 

achieving a notable model accuracy of 97.89%. 

Additionally, the real-time  input testing provided 

immediate feedback, reinforcing the system's 

capability to counteract adversarial threats promptly. 

This multi-layered defense strategy markedly 

enhances the stability and dependability of models 

for federated learning, paving the way for more 

secure and efficient decentralized AI applications. 

Future research will explore enhancing these defense 

mechanisms and extending their applicability to 

diverse federated learning environments, ensuring 

the continued advancement and security of federated 

AI systems. 
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