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Abstract:  
 

Cyber-Physical Systems (CPS) have become a research hotspot due to their vulnerability 

to stealthy network attacks like ZDA and PDA, which can lead to unsafe states and system 

damage. Recent defense mechanisms for ZDA and PDA often rely on model-based 

observation techniques prone to false alarms. In this paper, we present an innovative 

approach to securing CPS against Advanced Persistent Threat (APT) injection attacks by 

integrating machine learning with blockchain technology. Our system leverages a robust 

ML model trained to detect APT injection attacks with high accuracy, achieving a 

detection rate of 99.89%. To address the limitations of current defense mechanisms and 

enhance the security and integrity of the detection process, we utilize blockchain 

technology to store and verify the predictions made by the ML model. We implemented 

a smart contract on the Ethereum blockchain using Solidity, which logs the input features 

and corresponding predictions. This immutable ledger ensures the integrity and 

traceability of the detection process, mitigating risks of data tampering and reducing false 

alarms, thereby enhancing trust in the system's outputs. The implementation includes a 

user-friendly interface for inputting features, a backend for data processing and model 

prediction, and a blockchain interaction module to store and verify predictions. The 

integration of blockchain with Machine learning enhances both the precision and 

resilience of APT detection while providing an additional layer of security by ensuring 

the transparency and immutability of the recorded data. This dual approach represents a 

substantial advancement in protecting CPS from sophisticated cyber threats. 

 

1. Introduction 
 

A dependable detection and response mechanism for 

general and APT attacks on CPS is critical for 

maintaining system integrity and security. This 

paper presents a unified framework for intrusion 

detection and response in CPS designed to identify 

and counteract covert attacks effectively. The 

designed architecture offers flexibility, supporting 

the analysis of diverse data streams to effectively 

uncover hidden attacks, while also significantly 

lowering the chances of generating false alarms. By 

incorporating diverse data inputs, this system 

enhances the precision and reliability of attack 

detection, ensuring a robust defense against 

sophisticated cyber threats. This comprehensive 

approach ensures that even the most concealed 

threats are identified and mitigated promptly. The 

ability to analyze and cross-reference various data 

streams allows for a more accurate and timely 

response to potential security breaches. 

Consequently, this architecture not only improves 

security but also enhances the overall resilience of 

CPS. 

In many industrial control systems, obtaining the 

exact models used by attackers or defenders is often 

impractical, leading to mismatches between actual 

and nominal models. When only nominal models are 

available, the stealthiness of model-based attacks 

can be compromised. However, there are advanced 

methodologies in model-based attacks that have 

been developed to overcome these challenges. 

Techniques such as data-driven feedback loops [1], 

two-loop covert attacks [2], robust zero-dynamics 
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attacks [3], and robust physical-digital attacks 

(PDAs) [4] are examples of improved strategies. 

This paper will conduct a thorough review of these 

advanced techniques, providing insights into their 

mechanisms and effectiveness in CPS security. 

Understanding these methodologies is crucial for 

developing robust defense strategies against 

sophisticated model-based attacks. The review will 

highlight the strengths and weaknesses of each 

approach, offering a comprehensive perspective on 

their practical applications. 

Data flow attacks occur when attackers can be 

injected False data into the network regarding the 

load at individual meters, potentially leading to 

system breakdowns [5]. One of the most damaging 

and impactful threats to the data integrity of energy 

management systems involves False Data Injection 

(FDI) attacks [6]. In networks with multiple 

interleaved systems, control and data flow attacks 

become more elusive as attackers exploit various 

vulnerabilities and entry points. These complex 

attacks require robust defense mechanisms to protect 

against such multifaceted threats. The increasing 

interconnectivity of modern energy systems makes 

them particularly vulnerable to these types of 

attacks, necessitating comprehensive security 

measures. Understanding the nature and potential 

impact of data flow attacks is essential for 

developing effective countermeasures. By 

identifying the vulnerabilities and entry points that 

attackers might exploit, system designers can 

implement more robust protections to safeguard 

against these threats. 

In a communication-based train control system, 

trains and ground stations are interconnected 

through advanced communication protocols, 

enabling dynamic feedback control. This system 

uses a real-time wireless network to continuously 

share vital data, such as train conditions and 

operational commands [7]. By optimizing the 

dispatch process and ensuring timely 

communication, it significantly enhances 

operational efficiency and safety, reducing the risk 

of collisions and other hazards, in contrast to 

traditional train control methods[8]. The integration 

of real-time communication ensures higher 

operational efficiency and safety. This advanced 

control system highlights the importance of reliable 

communication networks in maintaining the safety 

and efficiency of CPS. The ability to respond 

promptly to real-time data is crucial for preventing 

accidents and ensuring smooth operations. This 

system's success underscores the potential benefits 

of similar implementations in other CPS 

applications. 

Networks linking physical systems with their control 

software are especially susceptible to external 

threats, as attackers may target these systems to 

disrupt CPS functionality and trigger malfunctions 

in the physical components [9]. Machine learning is 

increasingly adopted in cyber-physical security 

because it can establish correlations between inputs 

and outputs using vast data sets without relying on 

physical laws [10]. ML-based approaches offer 

advanced detection capabilities, making them 

critical in safeguarding CPS. ML algorithms, 

through the analysis of vast datasets, can detect 

patterns and irregularities that may signal potential 

security breaches. This capability is especially 

important given the complexity and 

interconnectedness of modern CPS. ML's ability to 

enhance detection and response mechanisms makes 

it a valuable tool in the ongoing effort to secure CPS 

against various threats. The integration of ML into 

CPS security strategies represents a significant 

advancement in the field, providing a higher level of 

protection against potential attacks. 

Cyber-physical systems face a range of 

vulnerabilities that go beyond cybersecurity 

concerns. These include potential network outages, 

system errors, and deliberate attacks. Notable real-

world incidents highlight these risks, such as attacks 

on sewage treatment facilities, nuclear power plants, 

military drones, and industrial blast furnaces, 

demonstrating the critical need for comprehensive 

security measures, highlight the critical need for 

effective countermeasures [11]. Research into 

potential attack countermeasures is ongoing [12], 

emphasizing the importance of a comprehensive 

approach to CPS security. Addressing these diverse 

vulnerabilities requires a multifaceted strategy that 

includes both technological and procedural 

measures. By understanding the range of potential 

threats, system designers can develop more effective 

defenses. The need for robust security measures in 

CPS is underscored by the increasing frequency and 

severity of attacks on critical infrastructure. A 

comprehensive approach to CPS security must 

consider all possible vulnerabilities and implement 

protections accordingly. 

Attacks on CPS can cause severe damage, affecting 

both the cyber and physical environments. CPS 

components are susceptible to various forms of 

attacks, making it clear that information and 

cybersecurity measures alone are insufficient for 

ensuring CPS reliability [13]. Control systems can 

augment information security protections, providing 

robustness against attacks. These systems can be 

integrated into a broader intrusion detection and 

compensation framework, enhancing the overall 

security and resilience of CPS. By combining 

control systems with information security measures, 

a more comprehensive defense strategy can be 

developed. This approach ensures that CPS can 
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withstand and recover from attacks more effectively. 

The integration of control systems into security 

strategies highlights the importance of a holistic 

approach to CPS security. By addressing both cyber 

and physical threats, a more robust and resilient 

system can be achieved. 

The key contributions of this research can be 

outlined as follows: 

 Develop a Blockchain-Enhanced Machine 

Learning framework to detect APT injection 

attacks in CPS. 

 Achieve robust APT detection with a high 

accuracy using a trained machine learning 

model. 

 Implement a Solidity-based smart contract 

to securely log ML predictions and input 

data on the Ethereum blockchain. 

 Create an intuitive user interface for data 

input and result visualization. 

 Ensure efficient backend integration to 

handle data preprocessing, ML predictions, 

and blockchain interactions. 

 Utilize blockchain's immutable ledger to 

enhance the security and credibility of the 

detection process. 

 Conduct extensive testing and validation of 

the integrated system under various 

conditions. 

 

2. Literature Survey 

 
This work provides an in-depth examination of ML 

methodologies related to security and privacy in the 

Internet of Medical Things (IoMT). The structured 

analysis offers valuable statistical insights regarding 

publication trends, such as the geographical 

distribution of research teams and the annual growth 

of published works. A major focus of their work is 

on ML-based intrusion detection methods, which 

play a critical role in securing IoMT environments 

[14]. These methods utilize advanced algorithms to 

identify and mitigate potential threats, enhancing the 

overall security framework. Additionally, Hameed 

et al. explore various security measures tailored for 

software-defined Wireless Sensor Networks 

(SDWSNs), offering a comparative analysis of 

malware detection approaches in the IoMT context 

[15]. This comparison underscores the effectiveness 

of different techniques and their applicability in real-

world scenarios. The study provides a 

comprehensive overview of current trends and 

advancements in ML-based security for IoMT, 

paving the way for future research and development. 

An anomaly detector's failure to identify abnormal 

behavior can lead to significant vulnerabilities in a 

system. Successful execution of such an attack 

hinges on having detailed knowledge of the model in 

question. The first version of the ZDA examines how 

well the attack performs and its stealthiness by 

utilizing geometric control theory. In the following 

iteration, the ZDA applies the Byrnes-Isidori normal 

form to illustrate the dynamics of the system [16]. 

This attack is particularly relevant for physical plants 

with zero dynamics, as it requires the presence of an 

unstable mode within these dynamics to effectively 

inflict damage. Understanding these dynamics is 

essential for developing effective countermeasures. 

The detailed study of ZDA provides insights into the 

intricate vulnerabilities of control systems and 

highlights the need for robust detection mechanisms. 

By focusing on these specific conditions, researchers 

can better protect against such sophisticated attacks. 

This paper introduces a control strategy designed to 

manage and mitigate cyber attacks targeting the 

inputs and outputs of a rotary gantry-type CPS. It 

specifically addresses Denial of Service (DoS) 

attacks, which are likely to result in significant 

packet loss for both control inputs and output sensor 

signals. The study investigates a variety of 

traditional and advanced control techniques, 

assessing their resilience and effectiveness in the 

face of cyber threats [17]. The objective of these 

strategies is to preserve system stability and 

performance during attack scenarios. By employing 

robust control mechanisms, the system can continue 

functioning amid disruptions. Additionally, the 

research offers an in-depth evaluation of various 

control methods, providing critical insights into 

improving the security and reliability of CPS. This 

holistic approach ensures that the system can not 

only endure but also recover from different forms of 

cyber attacks. Residual generation approaches 

Linear observers are commonly employed for fault 

detection in control systems. However, Luenberger-

like observers are often constrained by their 

asymptotic performance and their sensitivity to 

naturally occurring bounded modeling disturbances. 

To overcome these limitations, robust sliding mode 

observers have been developed for linear cyber-

physical systems (CPSs). These observers are 

capable of detecting state and sensor attacks while 

also estimating the attacks within a finite timeframe 

[18]. These observers offer enhanced detection 

capabilities and resilience against disturbances. By 

incorporating robust sliding mode techniques, the 

system can more accurately identify and respond to 

potential threats. This approach significantly 

improves the reliability and security of CPS. The 

study highlights the importance of robust fault 

detection mechanisms in maintaining system 

integrity. In the domain of Internet of Things (IoT) 

architecture, the demand side prefers IoT 
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implementations, while the supply side often adopts 

the Extensible Authentication Protocol (EAP) model 

[19]. The battlegrounds between nations have 

evolved, with cyberspace becoming a critical area of 

conflict. Modern warfare strategies increasingly 

involve intruding upon an adversary’s cyberspace 

and disrupting their communication channels, 

thereby hindering their information transfer. This 

shift emphasizes the importance of robust cyber 

defenses to protect national security interests. As 

cyber warfare becomes more prevalent, 

understanding and mitigating these threats is crucial. 

This study offers an in-depth examination of existing 

strategies and emphasizes  the need for continued 

vigilance in securing cyberspace. This evolving 

landscape underscores the importance of adaptive 

and resilient security measures. From a control-

theoretical viewpoint, large and intricate systems are 

often represented by high-order differential 

equations, which are particularly susceptible to noise 

interference that can impact state variables [20]. 

Developing an exact mathematical representation for 

such complex physical systems presents 

considerable challenges. Any overlooked 

mathematical components in an inaccurate dynamic 

model can create weaknesses for model-based attack 

detection systems. These inaccuracies can result in 

false alarms, thereby compromising the overall 

security of the system. Understanding these 

weaknesses is crucial for creating more precise and 

reliable detection mechanisms. This study highlights 

the critical need for accurate modeling and the 

implementation of robust detection techniques to 

safeguard against potential threats. By addressing 

these challenges, researchers can significantly 

bolster the security and dependability of complex 

control systems. To maintain system security over 

the long term, a model can be developed to 

determine the most effective set of response actions. 

One proposed method for cyber network intrusion 

response utilizes the Partially Observable Markov 

Decision Process (POMDP) [21]. This approach 

allows for dynamic decision-making under 

uncertainty, providing a structured framework for 

responding to security threats. By incorporating 

POMDP, the system can evaluate various response 

strategies and select the most effective one. The 

study highlights the potential of POMDP-based 

approaches in developing robust intrusion response 

mechanisms. This innovative strategy offers a 

promising direction for future research and 

implementation in cyber security. 

 

3. Proposed Approach 
 

The main focus of this method is to bolster the 

resilience and protection of CPS against APT 

Table 1: Survey on Security Approaches and Their 

Limitations in CPS 

Reference Approach Limitations 

[14] ML-based intrusion 

detection methods for 

securing IoMT 

Requires significant 

computational 

resources and large 

datasets for training 

[15] Comparative analysis of 

malware detection 

approaches in IoMT 

Effectiveness can 

vary based on the 

specific context and 

type of malware 

[16] Analysis of ZDA using 

geometric control theory 

and Byrnes-Isidori 

normal form 

representation 

Limited 

applicability to 

systems with zero 

dynamics 

containing an 

unstable mode 

[17] Control strategies for 

tolerant control and 

compensation against 

DoS attacks in CPS of 

rotary gantry type 

High probability of 

packet loss in 

control input and 

output sensor 

signals 

[18] Robust sliding mode 

observers for detecting 

state and sensor attacks 

in linear CPSs 

Sensitivity to 

modeling 

disturbances, 

despite robustness 

against finite-time 

attacks 

[19] IoT architecture and 

EAP model 

implementation for 

cybersecurity 

Potential 

vulnerabilities in 

adapting to rapidly 

evolving cyber 

threats 

[20] High-order differential 

equations for modeling 

complex systems 

Vulnerability to 

noise affecting state 

variables, leading to 

inaccurate 

detections 

[21] POMDP-based intrusion 

response method for 

cyber networks 

Complexity in 

dynamic decision-

making under 

uncertainty 

 

injection vulnerabilities by integrating machine 

learning and blockchain technologies. The process 

begins with comprehensive data preprocessing of 

sensor data. Various machine learning classification 

methods are explored, and the best-performing 

model is selected and rigorously trained. Blockchain 

integration is achieved through the development and 

deployment of smart contracts, ensuring secure and 

immutable logging of predictions and input data. 

 

3.1. Preprocessing 

Data Collection: 

Data is collected from various CPS sensors and 

systems, including operational data and data from 

known APT injection attack scenarios. This involves 

ensuring diverse data sources for comprehensive 

coverage and utilizing time-series data for temporal  
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Figure 1: Flowchart of Proposed Approach 

 

analysis. By gathering diverse data, the system can 

learn to differentiate between normal and malicious 

activities. Various sources are leveraged to ensure 

comprehensive coverage of possible attack vectors. 

This diversity in data helps in creating a robust 

training set for the machine learning model. 

Data Cleaning and Normalization: 

The gathered data undergoes thorough cleansing to 

eliminate noise and irrelevant details. Methods such 

as outlier identification (Z-score, IQR), handling of 

missing values (imputation, deletion), and anomaly 

detection (Isolation Forest, Local Outlier Factor) are 

utilized. This process guarantees that the data input 

into the model is of superior quality, minimizing the 

chances of detection errors. High-quality data is 

essential for the precision and reliability of the 

machine learning model. Ensuring data integrity at 

this stage lays a solid groundwork for the following 

phases. To maintain consistency, the data is 

standardized. This procedure adjusts the features to 

a uniform scale using techniques like Min-Max 

Scaling and Standard Scaling, while also addressing 

feature distribution through Box-Cox 

Transformation. Standardization accelerates the 

training process and enhances model convergence, 

ensuring that no single feature disproportionately 

influences the learning process due to its scale [22]. 

This phase is critical for upholding fairness and 

uniformity across all features.  

 

3.2. Data Segmentation and Cross-Validation 

 

The processed and standardized dataset is 

partitioned into training and testing sets using 

techniques like Stratified Sampling to retain class 

balance, and time-based splitting for sequential data. 

Generally, 80% of the data is allocated for training 

the model, while the remaining 20% is reserved for 

testing, allowing the model to learn from a 

significant portion of the data while being evaluated 

on unseen data to assess its generalization ability 

[23]. This partitioning strategy follows best practices 

to strike a balance between effective training and 

accurate validation. To reinforce the model’s 

stability and minimize overfitting, cross-validation 

techniques such as k-fold cross-validation, Stratified 

k-fold, and Time Series Cross-Validation are 

applied. These methods divide the training set into k 

distinct segments, with the model being trained k 

times, each iteration using a different segment for 

validation and the others for training. This approach 

offers a more comprehensive evaluation of the 

model’s performance and facilitates fine-tuning 

[24]. Cross-validation also ensures consistent 

performance across various data subsets, improving 

the model's dependability and adaptability. 

 

3.3. Feature Extraction and Dimensionality 

Reduction 

 

Relevant features that contribute significantly to the 

detection of APT attacks are selected. Techniques 

like correlation analysis (Pearson, Spearman), 

feature importance ranking (Gini Importance, SHAP 

Values), and mutual information are used to identify 

these features. By focusing on the most impactful 

features, the model's performance is optimized. 

Feature selection helps in reducing the 

dimensionality of the dataset, making the model 

more efficient [25]. This stage is essential for 

boosting the model's precision and clarity. To 

streamline complexity and improve overall 

efficiency, dimensionality reduction strategies like 

Principal Component Analysis (PCA), Linear 

Discriminant Analysis (LDA), and t-Distributed 

Stochastic Neighbor Embedding (t-SNE) are 

employed. These methods focus on extracting the 

most significant features, reducing the data's 

dimensional space while maintaining critical 
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information, ultimately enhancing model 

performance and reducing computational demands. 

This step ensures that only the most important 

features are used for model training. PCA helps in 

capturing the variance in the data with fewer 

features, making the model faster and more efficient. 

Reducing the number of features without losing 

significant information is key to building a robust 

model. 

 

4. Classification Methods 

4.1 Model Selection: 

 

A range of machine learning algorithms is 

scrutinized for their ability to effectively detect APT 

attacks. Approaches such as Support Vector 

Machines (SVM), Random Forests, and Artificial 

Neural Networks (ANNs) [26] are explored, each 

evaluated for its precision, adaptability, and 

detection prowess in handling advanced threats. 

Each model has its strengths, and their performance 

is compared to select the best one for this 

application. Model selection involves rigorous 

testing and validation to ensure the chosen model 

meets the desired performance criteria. The 

objective is to identify the model that offers an 

optimal trade-off between high accuracy and 

computational efficiency, ensuring reliable detection 

without compromising performance [27]. 

 

4.2 Model Training: 

 

The selected model is trained on the training dataset. 

Hyperparameter tuning is performed using grid 

search and random search methods to determine the 

ideal parameters that enhance both the model's 

accuracy and overall performance, ensuring optimal 

results in detection and efficiency. This step involves 

adjusting parameters Key parameters like learning 

rate, number of layers, and the number of neurons 

are fine-tuned to boost the model's performance, 

ensuring improved accuracy and efficiency. 

Hyperparameter tuning is crucial for maximizing the 

potential of the machine learning model [28]. It helps 

in achieving better generalization and performance 

on unseen data. 

 

4.3 Model Evaluation: 

 

The performance of the trained model is assessed 

using the testing dataset, employing metrics such as 

accuracy, precision, recall, and F1-score for 

evaluation. Furthermore, confusion matrices and 

ROC curves are scrutinized to obtain a 

comprehensive understanding of the model's 

effectiveness and its capability to differentiate 

between various categories. Evaluating the model 

with multiple metrics ensures a comprehensive 

understanding of its performance [29]. This step 

helps in identifying any shortcomings and areas for 

improvement in the model. 

 

5. Blockchain Integration 
 

5.1 Smart Contract Development: 

 

A Solidity-based smart contract is developed to store 

the predictions and input data securely on the 

Ethereum blockchain. The smart contract includes 

functions to log the predictions and emit events that 

record the data immutably. This ensures that all 

predictions are recorded in an immutable ledger, 

enhancing security and transparency. The smart 

contract is a critical component for integrating 

Blockchain [30] with the ML model, ensuring data 

integrity. 

 

5.2 Deployment: 

 

The smart contract is deployed using Truffle, a 

development framework for Ethereum. The Truffle 

configuration is set to specify the network settings, 

including the local Ganache network for 

development and testing. Deployment involves 

compiling the smart contract, migrating it to the 

blockchain, and verifying its functionality. This step 

ensures that the smart contract is correctly 

implemented and accessible for logging predictions. 

Proper deployment is essential for the smart contract 

to function as intended in a real-world scenario [31]. 

 

5.3 Backend Integration: 

 

The backend application is developed to handle the 

interaction between the machine learning model and 

the blockchain. This includes preprocessing 

incoming data from the frontend, making predictions 

using the trained ML model, and calling the smart 

contract to log predictions and input data on the 

blockchain using Web3.py. The backend ensures 

smooth communication between the ML model, 

blockchain, and frontend interface. Effective 

backend integration is crucial for the seamless 

operation of the entire system. 

  

5.4 Frontend Interface: 

 

The frontend interface is designed to allow users to 

input features and view the predictions. The 

interface communicates with the backend to send 

input data and retrieve results, ensuring a seamless 

user experience. The frontend is developed using 

HTML and is user-friendly and intuitive, making it 

easy for users to interact with the system. A well-
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designed frontend enhances the usability and 

accessibility of the system, making it more effective 

in real-world applications. 

 

5.5 Data Verification: 

 

The blockchain's immutable ledger is used to verify 

the integrity and authenticity of the logged data. 

Each prediction and its corresponding input data can 

be retrieved and validated against the blockchain 

records, ensuring transparency and trust in the 

system. Data verification ensures that the logged 

data has not been tampered with, maintaining the 

system's integrity. This step is vital for building trust 

and reliability in the detection process. 

 

6. System Testing and Validation 
6.1 Unit Testing: 

 

Individual components of the system, including the 

ML model, smart contracts, and backend functions, 

are unit tested to ensure they work correctly and 

reliably. Unit testing involves testing each 

component in isolation to identify and fix any issues. 

This step ensures that all parts of the system function 

as expected before integration. Effective unit testing 

is crucial for identifying and resolving issues early 

in the development process. 

 

6.2 Integration Testing: 

 

The entire system is tested as a whole to ensure that 

the components interact seamlessly and that the 

overall workflow is robust and efficient. Integration 

testing focuses on the interactions between different 

components, verifying that they work together as 

intended. This step is essential for identifying any 

issues that may arise during the integration of 

various components. Thorough integration testing 

ensures the system's reliability and robustness. 

 

6.3 Performance Testing: 

 

The system is subjected to various performance tests 

to evaluate its response time, throughput, and 

scalability [32]. This includes testing the system 

under different load conditions to ensure it can 

handle real-world scenarios. Performance testing 

helps in identifying any bottlenecks or performance 

issues that need to be addressed. Ensuring the system 

performs well under load is crucial for its success in 

practical applications. 

 

7. Methodology 

 
The architecture diagram for securing CPS against 

APT injection attacks illustrates the comprehensive 

process where data is collected from various CPS 

sensors, undergoes preprocessing, and is then 

analyzed using machine learning models. These 

models detect potential APT attacks, and the results 

are securely logged on the blockchain. The 

integration ensures enhanced security, robustness, 

and real-time feedback, as depicted in Fig 2. 

   

 
Figure 2: Architecture Diagram for Securing CPS 

against APT Injection Attacks 

 

Algorithm: Robust Detection of APT Injection 

Attacks in Cyber-Physical Systems  

Input: 

 CPS sensor data D 

 Set of features F 

 Training and testing data Dtrain, Dtest 

 Model parameters θ 

 Blockchain smart contract SC 

 Total training iterations (E) 

 Mini-batch size (B) 

Parameters: 

 Learning rate α 

 Regularization term λ 

 Smart contract deployment parameters 

Output: 

 Trained model M 

 Blockchain ledger with secure logs 

 Evaluation metrics (accuracy, precision, recall, 

F1-score) 

Algorithm Steps: 

1. Initialization: 

 Initialize model parameters θ  with random 

weights. 
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 Initialize blockchain smart contract  SC 

2. Data Collection from CPS Sensors: 

 Ensure diverse data sources for comprehensive 

coverage. 

 Collect time-series data D for temporal analysis. 

3. Data Cleaning: 

 Outlier Detection: 

 𝑧𝑖 =
𝑥𝑖−μ

σ
  (1) 

                   𝐼𝑄𝑅 =  𝑄3 −  𝑄1    (2) 

 Missing Values Handling: 

a) Imputation 

          xi = mean(X) (for numerical data) 

             xi = 𝑚𝑜𝑑𝑒(𝑋) (𝑓𝑜𝑟 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙 𝑑𝑎𝑡𝑎) 

b) Deletion: Remove rows/columns with 

missing values. 

 

 Anomaly Detection: 

   Isolation Forest : Score(𝑥) = 2
−𝐸(ℎ(𝑥))

𝑐(𝑛)    (3) 

               𝐿𝑜𝑐𝑎𝑙 𝑂𝑢𝑡𝑙𝑖𝑒𝑟 𝐹𝑎𝑐𝑡𝑜𝑟 (𝐿𝑂𝐹) ∶

                  𝐿𝑂𝐹(𝑥) =
∑

reach-dist(𝑘,𝑥𝑖)

k-dist(𝑥𝑖)
𝑘
𝑖=1

𝑘
                   (4) 

4. Data Normalization: 

 Min-Max Scaling 

𝑥′

=
𝑥 − 𝑙𝑜𝑤𝑒𝑠𝑡 𝑣𝑎𝑙𝑢𝑒 𝑖𝑛 𝑋

highest value in X − 𝑙𝑜𝑤𝑒𝑠𝑡 𝑣𝑎𝑙𝑢𝑒 𝑖𝑛 𝑋
 

(5) 

 

 Standard scaling:    𝑥′ =
𝑥−𝑚𝑒𝑎𝑛 𝑜𝑓 𝑋

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑋
   (6) 

 Box-Cox Transformation  𝑦 =

 {
𝑥𝜆−1

𝜆
  𝜆 ≠ 0 

𝑙𝑛(𝑥)  𝜆 = 0
 

(7) 

5. Data Segmentation: 

 Partition Data into Training and Testing 

Sets: 

a) Stratified Sampling: Ensures adequate 

representation of each class. 

b) Time-based Splitting: Suitable for 

sequential or temporal datasets. 

 Implement Cross-Validation: 

a) K-Fold Cross-Validation: Divides the 

dataset into k subsets for iterative 

training and testing. 

b) Stratified K-Fold Cross-Validation: 

Maintains the same class distribution in 

each fold as in the original dataset. 

c) Time Series Cross-Validation: 

Preserves the temporal sequence of the 

data during validation. 

 

6. Feature Extraction: 

 Feature Selection: 

a) Correlation Analysis: 

Pearson correlation coefficient : 

 𝑟 =  

 
𝑆𝑢𝑚 𝑜𝑓 (𝑥𝑖 − 𝑚𝑒𝑎𝑛 𝑜𝑓 𝑋)(𝑌𝑖 − 𝑚𝑒𝑎𝑛 𝑜𝑓 𝑌)

√𝑆𝑢𝑚𝑜𝑓 (𝑥𝑖 − 𝑚𝑒𝑎𝑛 𝑜𝑓 𝑋)2 ∗ √𝑠𝑢𝑚𝑜𝑓(𝑌𝑖 − 𝑚𝑒𝑎𝑛 𝑜𝑓 𝑌)2 
 

   (8) 

                   𝑆𝑝𝑒𝑎𝑟𝑚𝑎𝑛 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡

∶ 𝜌 =
cov(rank(𝑋),rank(𝑌))

𝜎rank(𝑋)𝜎rank(𝑌)
 

     (9) 

b) Feature Importance: 

Gini Importance = ∑ p(t)[−p(t)]

t

 

  

          

(10) 

SHAP Values: ϕ𝑖 = 

∑
(𝑆𝑖𝑧𝑒 𝑜𝑑 𝑠𝑢𝑏𝑠𝑒𝑡)! ∗  (𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 − 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑠𝑢𝑏𝑠𝑒𝑡 − 1)!

(𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠)!
𝑆𝑢𝑏𝑠𝑒𝑡 𝑜𝑓 𝑁 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑖

∗ [𝑀𝑜𝑑𝑒𝑙 𝑜𝑢𝑡𝑝𝑢𝑡 𝑤𝑖𝑡ℎ 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑖 𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑑
− 𝑀𝑜𝑑𝑒𝑙 𝑜𝑢𝑡𝑝𝑢𝑡 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑖 

     (11) 

 

c) Mutual Information:  

𝐼(𝑋; 𝑌)

= ∑ ∑ 𝑝(𝑥, 𝑦)

𝑥∈𝑋

log (
𝐽𝑜𝑖𝑛𝑡 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑥 𝑎𝑛𝑑 𝑦

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑥 ∗ 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑦
)

𝑦∈𝑌

 

   (12) 

7. Dimensionality Reduction: 

 Principal Component Analysis (PCA):  

 Z=XW, Where W is the matrix of      

eigenvectors. 

     Linear Discriminant Analysis (LDA): 
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 𝑦 = 𝑋Σ−1𝜇 
 Where Σ is the within-class covariance 

matrix and μ is the mean vector. 

 

 t-Distributed Stochastic Neighbor 

Embedding (t-SNE): 

            𝑃𝑖𝑗   =
𝑒−|𝑥𝑖−𝑥𝑗|2/2𝜎2

∑ 𝑒−|𝑥𝑘−𝑥𝑙|2/2𝜎2
𝑘≠𝑙

     (13) 

8. Model Training: 

 For each epoch e from 1 to E: 

a) Shuffle Xtrain and divide into batches 

of size B. 

b) For each batch b: 

i. Perform forward propagation to 

compute predictions ŷ 

ii. Compute the loss ℒ(𝜃) using the 

loss function ℒ 

                            ℒ(θ) =
1

𝐵
∑(𝑦𝑖 − 𝑦�̂�)

2

𝐵

𝑖=1

+
λ

2
|θ|2 

         

(14) 

iii. Perform backward propagation 

to compute gradients ∇ ℒ(𝜃) 

iv. Update model parameters using 

gradient descent 

                                   𝜃 = 𝜃 − 𝛼∇ℒ(𝜃)  
 (15) 

c) Log training metrics (loss, accuracy) 

to the blockchain using SC. 

9. Model Evaluation: 

 Evaluate the trained model M on Dtest to 

obtain predictions ŷtest. 

 Compute evaluation metrics 

  Accuracy =
1

|𝐷test|
∑ 1(𝑦�̂� =

|𝐷test|
𝑖=1

𝑦𝑖) 

  Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 

  Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 

  𝐹1-score = 2 ⋅
Precision⋅Recall

Precision+Recall
 

 Log evaluation metrics to the blockchain 

using SC. 

10. Blockchain Integration: 

 Develop and deploy smart contracts using 

Solidity. 

 Utilize Truffle for deployment and 

migration. 

 Integrate backend application with 

Web3.py for smart contract interaction. 

 Ensure secure and immutable logging of 

model updates and predictions. 

11. Return Final Model: 

 Return the trained model M and the 

blockchain ledger with secure logs. 

 

8. Results 

 
Within the framework of safeguarding cyber-

physical systems against advanced persistent threat 

injection attacks, the accuracy of the model in 

detecting various types of attacks is demonstrated 

through detailed evaluations. The consistency in 

model testing accuracy (Fig 3) underscores the 

reliability of the implemented methodology. 

Analyzing the training time (Fig 4) and testing time 

(Fig 5) of the model reveals the efficiency of the 

approach in real-time application scenarios. 

                                         

 
Figure 3: Model Testing Accuracy 

 
Figure 4: Model Training Time Analysis 

                                                

 
Figure 5: Model Testing Time Analysis 
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The deployment process of smart contracts (Fig 6) 

showcases the incorporation of blockchain 

technology to strengthen the security and integrity of 

data within cyber-physical systems.The seamless 

input submission from the web application to the 

machine learning model (Fig 7) illustrates the 

practical implementation of the proposed solution. 

 

Figure 6: Smart Contract Deployment Process 
 

  
Figure 7: Input Submission from Web Application to 

Machine Learning Model 

Additionally, the secure storage of input data and 

prediction results in the blockchain (Fig 8) ensures 

tamper-proof records, further strengthening the 

system's defense against APT attacks. The detailed 

blockchain record results for prediction storage (Fig 

9) provide concrete evidence of the model's ability 

to accurately classify various types of APT attacks 

such as DoS, ZDA, and PDA, highlighting the 

robustness of the integrated security framework. 

These comprehensive assessments and 

visualizations confirm the effectiveness of our 

approach in enhancing the resilience and stability of 

CPS against sophisticated cyber threats. 

        

  
         

  
Figure 8: Input Data and Prediction Storage in 

Blockchain 

 

9. Conclusions 
 

This study highlights the efficacy of our proposed 

approach in bolstering cyber-physical systems 

against advanced persistent threat injection attacks. 

                

  
                 

 
                 

 
                 

 
Figure 9: Blockchain Record Result of Prediction 

Storage for APT attacks like Dos, ZDA, PDA etc 

 

By harnessing comprehensive data preprocessing, 

rigorous data segmentation, and advanced feature 

extraction techniques, we developed a robust 

mechanism for detecting and mitigating malicious 

activities. The integration of machine learning 

models with blockchain technology significantly 

enhanced the system's security and transparency, 

ensuring immutable logging and verification of data. 

Our evaluation, which included extensive testing and 

validation phases, demonstrated the method's 

efficiency and accuracy, achieving a notable 

improvement in attack detection and system 

resilience. This multi-layered defense strategy 

markedly improves the robustness and reliability of 

CPS, paving the way for more secure and efficient 

cyber-physical systems. Future research will explore 
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further enhancing these defense mechanisms and 

extending their applicability to diverse CPS 

environments, ensuring the continued advancement 

and security of critical infrastructure systems. This 

work will be an important literature data for 

researchers as many of them reported [33-41]. 
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