
 

 
 

Copyright © IJCESEN 

 

International Journal of Computational and Experimental 

Science and ENgineering 

(IJCESEN) 
 

Vol. 10-No.4 (2024) pp. 867-878 
http://www.ijcesen.com 

ISSN: 2149-9144 

 Research Article  
 

 

Integrated Fuzzy Cognitive Map and Chaotic Particle Swarm Optimization for 

Risk Assessment of Ischemic Stroke 
 

Bhanu Sekhar OBBU1*, Zamrooda JABEEN2 

 
1Department of Mathematics, National Institute of Technology, Srinagar, Jammu and Kashmir, India; Email:  

* Corresponding Author Email: o.bhanusekhar@gmail.com - ORCID:0000-0001-9300-6054  (you can get it in orcid.org) 
 

2Department of Mathematics, National Institute of Technology, Srinagar, Jammu and Kashmir, India; 

Email: zjabeen19@nitsri.net- ORCID: 0000-0003-2548-9079 

 
Article Info: 

 
DOI: 10.22399/ijcesen.540 

Received : 21 August 2024 

Accepted : 23 October 2024 

 

Keywords : 

 
Soft Computing, 

Swarm Intelligence,  

Particle Swarm Optimization,  

Fuzzy Cognitive Maps 

Abstract:  
 

Stroke diagnosis is an incredibly difficult process since it involves the interaction of both 

controllable and uncontrollable factors. The diagnosis of stroke is significantly influenced 

by these factors, which include a variety of factors such as age, blood pressure, gender, 

obesity, diabetes, smoking, and heart disease, amongst others. It is vital to develop an 

intelligent system that enables treatment to be administered in a timely and effective 

manner. This study discusses the application of the soft computing approach, more 

specifically fuzzy cognitive mapping (FCM), for the goal of estimating the possibility of 

patients suffering from an ischemic stroke. The chaotic particle swarm optimization 

technique has been utilized for the purpose of training the FCM training system. The 

consideration the opinions that were provided by neurologists in order to ascertain the 

risk rate that was associated with each individual. In order to a cross-validation with 

tenfold overlap was utilized. The results obtained from this method were compared to 

those obtained by support vector machine (SVM) and K-nearest neighbour computations, 

which were performed on 110 real-world observations. The proposed method 

demonstrated an exceptional level of performance, as seen by its overall accuracy of 94.6 

percent and its standard deviation of 3.1 percent. 

 

1. Introduction 
 

Main Main Fuzzy Cognitive Maps (FCMs) are a 

modelling approach first introduced by Kosko in [1]. 

A combination of neural networks and fuzzy logic is 

utilized in this approach. Systems that are 

characterized as neuro-fuzzy are known as FCMs. 

They were initially developed by Axelrod and Kosko 

[1,2] as an expansion of other types of cognitive 

maps. These systems are equipped with the capacity 

to integrate human knowledge and become more 

proficient in it through the process of learning. Fuzzy 

concept maps (FCMs), which are an integration of 

fuzzy set theory and cognitive mapping, offer a 

helpful framework for capturing the dynamics of 

connected concepts that are contained inside 

complex systems. 

 Diagrammatic representations of FCMs can be 

thought of as graphical models that consist of nodes 

and weighted edges. Each node in the diagram is a 

representation of a tangible concept that exists in the 

real world. These concepts include characteristics 

such as quality, performance, and properties. Within 

the context of a causal approach, the weighted edges 

illustrate the relationships that exist between these 

concepts. Fuzzy cognitive models (FCMs) are 

characterized by enhanced interpretability, 

numerical reasoning, and knowledge representation 

competency. These models inherit properties from 

both fuzzy logic and neural networks. Consequently, 

FCMs have many uses in many different domains 

within the field of numerical science. Among the 

applications that fall under this category are the 

following: decision-making, [3,4,5] expert systems 

development Á. Garzón Casado et al. [6], smart city 

initiatives [7], modelling gene regulatory networks 

(GRNs) [8], the development of intelligent machines 

[9] and the solving of difficult problems like the 

modelling of COVID-19-related issues [10]. 

The widespread recognition of fuzzy cognitive 

models (FCMs) as a potentially useful technique for 

modelling and simulating complex systems, which 

are characterized by flexibility, abstraction, and 

fuzzy reasoning, has led to the development of novel 

http://dergipark.org.tr/en/pub/ijcesen
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concepts and learning algorithms for FCMs. This 

research has been going on for quite some time. The 

currently available learning algorithms for FCMs, on 

the other hand, are in need of enhancement, a more 

robust mathematical basis, and more validation on 

more complex systems. To make FCMs far more 

useful and practical, we need to fix their flaws like 

the abstract estimation of the initial weight matrix 

and find ways to refine expert knowledge even more. 

As a consequence of this, the design of learning 

algorithms continues to be an intriguing and 

significant research avenue in this context (figure 3). 

Few algorithms have been created specifically for 

learning FCM, as stated in the literature [11,12]. 

Recent technological advancements have resulted in 

the implementation of these algorithms. The major 

purpose is to identify appropriate values for the 

weights of the FCM so that it may be guided to the 

steady state that is desired. In order to achieve this 

purpose, it is necessary to minimize a function that 

has been precisely defined. Experts' provision of the 

initial weight matrix approximation is crucial to the 

success of several well-established algorithms. As 

suggested by Koulouriotis et al. [13] an innovative 

method of FCM learning suggests the 

implementation of Evolution Strategies for 

computing appropriate weight matrices. This is just 

one example of the unique approach. 

To maximize the structure and weights of FCMs, 

evolutionary strategies must be applied, which 

means evolutionary computation techniques must be 

used. Evolutionary algorithms belong to a class of 

optimization techniques that are inspired by natural 

selection and genetic processes. It is possible to 

optimize the architecture or structure of FCMs by 

applying evolutionary algorithms. Part of this 

procedure is figuring out how many concepts, 

relationships, and feedback loops the map contains. 

In FCMs, the optimization of the weights of the 

connections can be accomplished by the utilization 

of genetic algorithms, differential evolution, or other 

evolutionary methodologies. This optimization aims 

to identify the set of weights that minimizes the 

value of an objective function, which is commonly 

linked to the FCM's performance or accuracy in 

capturing system dynamics. When it comes to 

learning rule augmentation, evolutionary algorithms 

can be applied to modify or develop the learning 

rules used in FCMs. In order to do this, the rules 

governing how the FCM modifies its weights in 

response to provided data or expert information must 

be changed. 

Particle Swarm Optimization (PSO) was used by 

Parsopoulos [14] to train the FCM algorithm. His 

approach utilizes historical facts and progresses 

toward a specific state of affairs. The search space in 

PSO is explored by a swarm of virtual particles. It is 

necessary to establish constraints in order to preserve 

the integrity of the FCM structure while it is being 

trained. If this is not done, there is a possibility that 

the FCM will be altered to such an extent that it will 

lose its intended meaning and will no longer 

accurately represent the physical system that it was 

designed to model. A memetic technique that mixes 

PSO with deterministic and stochastic local search 

strategies was utilized in the tests that carried out 

[15,16]. When compared to other methodologies, 

this hybrid strategy produced outcomes that were 

more favorable. For the purpose of diagnosing celiac 

disease (CD) in 89 individuals, the PSO technique 

was utilized in the research that was described in 

[17]. When compared to the Bayesian networks that 

are often utilized for this diagnostic task, the results 

indicated a greater level of accuracy and a faster 

convergence rate. Khan and Chong provide an 

alternative approach that utilizes a genetic algorithm 

[18]. The original concept vector is derived from the 

desired ultimate state through the process of 

backward engineering, which is carried out using 

this algorithm. In their study [19], introduced a 

genetic optimization technique designed especially 

for multi-objective decision-making applications. 

This method simultaneously considers the activation 

values of two or more nodes at the same time when 

constructing the weight matrix. An alternative 

method to solve this problem was provided by (Stach 

et al. [20,21] using a Real-Coded Genetic Technique 

(RCGA) parallel processing algorithm. There's a 

chance that this solution works better. This method 

is especially intended for training big models with 

several dozen nodes. At the apex of the efforts made 

to overcome these obstacles, an inventive algorithm 

was published in the literature [22]. This novel 

method combines ensemble Fuzzy Cognitive Maps 

(FCMs) with a multi-objective evolutionary 

algorithm to reconstruct gene regulation networks 

(MOEA). 

This paper proposes a novel learning method for 

fuzzy cognitive maps (FCM) using a swarm 

intelligence algorithm. More precisely, the system's 

proper weight matrices are found by applying the 

Chaotic Particle Swarm Optimization (CPSO) 

technique [22]. A clearly defined objective function 

is minimized in order to achieve this. 

 

2. Fuzzy cognitive maps overview 
 

In Kosko's work [1], FCMs were introduced as 

directed graphs with signed edges, with the goal of 

modeling causal reasoning and computational 

inference processing. Symbolic representation is 

utilized by FCMs to describe and model systems. 

They use concepts to illustrate different system 

behaviors and properties with this representation. 
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The simulation of the system dynamics is achieved 

by means of the interaction among these concepts. 

Both qualitative and quantitative data can be 

represented in a variety of ways utilizing FCMs. 

When building an FCM, it is necessary to have 

human experience and information about the system 

incorporated into the design. For this reason, FCMs 

are utilized as a method for integrating the acquired 

knowledge regarding the causal linkages that exist 

between the various aspects, traits, and components 

that make up the system. An FCM is made out of 

nodes, which are concepts. 

Ci,  i = 1,..., N    (1) 

    

An FCM is a fuzzy digraph with signed edges, 

organized into Nn concept nodes. These concept 

nodes are represented by a vector C, which contains 

their respective state values. 

C = [C1 ,C2 ,...,CNn ]    (2) 

     

Ci is a member of the set [0, 1], where i is a number 

between 1 and Nn, where Nn is the value of the state 

of theith concept node. The weight matrix W, which 

is Nn × Nn in size, is used to specify the causal 

linkages that exist between every pair of relationship 

nodes. 

W=[■(w_11&w_12&…&w_(1N_n 

)@w_21&w_22&…&w_(2N_n )@⋮&⋮& 

⋮&⋮@w_(N_n 1)&w_(N_n 2)&…&w_(N_n N_n ) )]

 (3)     

Here, the relationship strength among concept nodes 

i and j is represented by the symbol wij, which 

belongs to the set [-1, 1], where i, j = 1, 2,,Nn. One 

of the most fundamental illustrations is shown in 

Figure 1, which has five concept nodes. The weight 

matrix that corresponds to this image is shown in 

Figure 1. The value of w12 equals 0.4, for example, 

shows that there is a positive excitatory connection 

between node 1 and node 2 with a strength of 0.4. In 

this case, the value of w13equals zero, which 

indicates that there is no connection between nodes 

1 and 3. In a similar manner, the value of w44 = 0.9 

indicates a positive feedback loop for node 4, which 

suggests that it has a self-reinforcing affect for the 

node. 

 

 
Figure 1. FCM fundamentals illustrations and weight 

matrix. 

 

It is possible to determine if the link between the two 

notions is direct or inverse by examining the sign of 

wij. The direction of causation specifies whether 

concept Ci influences concept Cjor whether concept 

Cjinfluences concept Ci. As a result, there are three 

distinct categories of weights: 

{█(&W_ij>0,    &&" represents positive causality," 

@&W_ij<0,    &&" represents negative causality," 

@&W_ij=0,    &&" represents no relation." )┤ 

There is a connection between the weight matrix and 

the state values of connecting concept nodes at thetth 

iteration, which has an impact on the value at the (t 

+ 1)th iteration, which indicates the time point t. 

consequence of this is that the dynamics of FCMs 

can be described by the equation that is presented 

below: 

C_i^(t+1)=g(C_i^t+∑_(j=1)^(N_n)▒  w_ji C_j^t )

  (4)     

At the tth iteration, the state value of node i is 

represented by the notation, which is written as 

C_i^t.  g (·) is a transfer function that allows the 

expression level to be contained within the range of 

[0, 1] in this particular context. The sigmoid transfer 

function is widely considered to be superior to other 

transfer functions, according to comparison 

research. However, there are several transfer 

functions that can be employed. The sigmoid 

transfer function that is utilized is as follows, as a 

result: 

g(x)=1/(1+e^(-βx) )    (5) 

In this context, the parameter β is utilized to 

ascertain the degree of steepness of the function in 

relation to zero, and the choice of this value is 

contingent upon the specific nature of the situation 

at hand.In most cases, a value of β that is relatively 

small is suitable for highly nonlinear systems. In this 

particular case, the value of β is established to be 5, 

which is a value that is frequently employed in a 

variety of FCM learning systems. 

The weight matrices that are generated by automated 

learning methods have a tendency to be significantly 

denser than the weight matrices that are actually 

used. To put it another way, when compared to the 

genuine weight matrices, the learnt weight matrices 

have a considerably higher number of individuals 

that are not zero. Taking into account not only the 

variance between the data that is accessible and the 

data that is generated, but also the structure of the 

weight matrix that is learned, is of utmost 

significance when it comes to the process of 

learning. The objective function of an evolutionary 

algorithm in FCM often entails determining whether 

or not a certain solution is optimal or fit for the 

problem at hand. In this context, the fitness or 

optimality of a solution correlates to a specific 

weight matrix. Quantifying the degree to which the 
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FCM, which is represented by its weight matrix, 

corresponds to the behavior that is either observed or 

desired by the system is the objective function's 

primary goal. More precisely, the objective function 

often comprises measuring the difference or error 

between the replies generated by the FCM and the 

response sequences that are actually gathered from 

the system. The objective of evolutionary 

algorithms, such as genetic algorithms, is to optimize 

this objective function by iteratively modifying the 

parameters of the FCM, which are the weights in the 

weight matrix. To improve the FCM's ability to 

capture the dynamics of the system, this is done in 

order to improve its performance. It is common 

practice to minimize the difference between the 

simulated responses of the FCM and the actual 

responses of the system when formulating the 

objective function. The formulation of the objective 

function is dependent on the particular learning goals 

and characteristics of the system that is being 

investigated. 

 

3. Chaotic particle swarm optimization (cpso) 
 

In order to improve the swarm's capabilities in terms 

of exploration and exploitation, the CPSO algorithm, 

which is a unique form of the standard PSO 

algorithm, incorporates concepts from chaos theory. 

The addition of controlled chaotic behavior into the 

equations used to update the velocity of particles in 

CPSO results in the particles exhibiting behaviors’ 

that are more diverse and unexpected within the 

search space. This feature facilitates improved 

global convergence and the ability to escape local 

optima. The infusion of chaos into CPSO strikes a 

balance between exploration and exploitation, 

enabling the algorithm to adeptly navigate intricate 

and multi-modal optimization landscapes. CPSO has 

exhibited promising outcomes in addressing 

demanding optimization problems, particularly 

those characterized by high dimensionality or 

nonlinearity. The original PSO velocity and position 

updating equations of particles are given as   

         v_i^(k+1)=〖wV〗_i^k+c_1*〖rand〗

_1*(P_besti-P_i^k  )+ c_2*〖rand〗_2*(G_best-

P_i^k  )               (6) 

         P_i^(k+1)= 〖P_i^k+v〗_i^(k+1)             (7) 

The term "chaos" characterizes the seemingly 

unpredictable behaviour of a nonlinear, bounded, 

and non-converging dynamical system with only a 

few independent variables. Chaotic sequences, 

demonstrating easily and rapidly generated patterns, 

can be efficiently stored. Among the various maps 

illustrating chaotic behaviour, logistic maps find 

widespread use. The following equations can 

describe the chaotic sequences and random variables 

produced by employing logistic maps. 

 

rand_1(k)=λ*rand_1(k-1)*[1-rand_1(k-1)] 

  (8) 

rand_2(k)=λ*rand_2(k-1)*[1-rand_2(k-1)] 

  (9) 

 

When considering the logistic map, the chaotic 

sequence is determined by the equation: 

 

c_r (k)=λ*c_r (k-1)*[1-c_r (k-1)] (10) 

   

rand_1(0),rand_2(0)" and " c_r 

(0)∉{0,0.25,0.5,0.75,1} 

 

When λ = 4, the logistic map displays argotic 

behaviour within the interval (0, 1). However, with 

a given value of k, the distribution of the logistic map 

deviates from uniformity. Specifically, values within 

the intervals [0, 0.1] and [0.9, 1] occur more 

frequently than across the rest of the range [0, 1]. In 

the context of CPSO, the velocity equation 

undergoes modification as follows: 

 

V_i^(k+1)=w*V_i^k+C_1*C_r*(P_"best " -P_i^k 

)+C_2*(1-C_r )*(G_"best " -P_i^k ) 

 (11) 

wmax The initial inertia weight value is equal to 

0.9. 

wmin The inertia weight's final value is 0.4. 

itermax Maximum amount of allowable iterations 

Cr Deterministic displaying chaotic dynamics 

λ The driving parameter, which ranges from 0 

to 4, governs the behavior of the chaotic sequence. 

C_r x_i^k ith chaotic variable for kth iteration, 

which has been distributed in range [0, 1] 

Optimization algorithms incorporating chaos 

produce diverse outcomes owing to their extreme 

sensitivity to initial conditions. Chaotic optimization 

algorithms demonstrate proficiency in locating 

global optima due to their distinctive motion 

patterns. Their capacity to escape local optima 

enhances global optimization performance, 

effectively addressing the original PSO algorithm's 

tendency to become trapped in local extremes and 

exhibit slow convergence in later stages. Figure 2 

depicts the flow chart of the CPSO algorithm. The 

FCM concepts' values and the weights Wji
Kare 

updated utilizing (11) and (12). The algorithm has 

two distinct termination conditions that determine its 

completion. The initial condition focuses on 

minimizing the specified objective function: 
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Figure 2. Flow chart of CPSO 

 

𝐹1 = √∥
∥DOC𝑗

(𝐾)
− 𝑇𝑗

2
∥
∥   (12) 

The ultimate value of the decision output concept 

(DOC) is denoted by the symbol Tj, and the value of 

DOC is considered to be within the interval of 

[Tj
max ⋅ Tj

min]. The second termination condition is 

derived from the sequential changes of two values of 

DOCj, which are considered according to the 

following equation: 

𝐹2 = |DOC𝑗
(𝐾+1)

− DOC𝑗
(𝐾)

| < € (13) 

Here, € represents the tolerance level aimed at 

minimizing changes in the DOC values. The 

tolerance value is considered as 0.5%. The algorithm 

concludes when the specified termination conditions 

are satisfied. 

4. Defining a stroke and introducing the risk 

factors involved in establishing a FCM model 

Stroke is a neurological illness that happens to 

people of all ages all over the world and has a 

significant influence on their lives. It has an 

 
Figure 3. Flowchart of the proposed learning algorithm 

incidence rate that ranges from 0.2 to 2 instances per 

thousand persons, making it the third most 

widespread cause of morbidity in the United States 

of America, after cardiovascular disease and cancer. 

Both the mortality rate and the incidence of stroke-

related morbidity were reported to be 4.4 percent in 

Iran in 2003 [24]. The incidence of morbidity that 

was associated with stroke was reported to be eight 

percent. Stroke can be broken down into two primary 

categories: (i) hemorrhagic strokes and (ii) ischemic 

strokes. The latter form of stroke is the more 

common, accounting for between 85 and 90 percent 

of all strokes. Ischemic strokes are more likely to 

develop when the blood supply to a particular region 

of the brain is either greatly reduced or completely 

cut off, which results in a diminished supply of 

oxygen and nutrients to that particular region. The 

loss of function and eventual death of brain cells is 

the consequence of this interruption, which can last 

anywhere from a few minutes to several hours 

[25,26]. As a consequence of this, this condition is 

regarded as a medical emergency, highlighting the 

crucial requirement for immediate treatment in order 

to reduce damage and prevent neurological 

dysfunction in the future. As a result of the critical 

nature of every second in the management of stroke, 

the importance of rapid diagnosis and action is 

brought into sharper focus. As shown in Figure 4, the 

risk factors for ischemic stroke consist of twelve 

different factors, split into two categories: those that 

can be controlled and those that cannot be controlled. 

Each of these factors plays an important part in the 

diagnosis of the disease. After doing a physical 

examination and analyzing the findings of specific 

tests, neurologists incorporate these risk factors into 

the process of diagnosing strokes. In accordance 

with the information presented in Table 1, the values 

that are associated with these factors are conveyed 

through four, three, or two fuzzy values that 



Bhanu Sekhar OBBU, Zamrooda JABEEN/ IJCESEN 10-4(2024)867-878 

 

872 

 

represent high, and very high, low, medium 

linguistic variables individually. Based on the HDL 

cholesterol notion, for example, this study utilizes 

three linguistic variables: low, which is less than 35, 

medium, which is less than 60, and high, which is 

greater than 61. The aforementioned ideas were 

gathered from patients who were referred to Iran's 

Amiralmomenin Hospital. These concepts were 

identified by three neurologists: Dr. Mohammadzad, 

Dr. Hagigat, and Dr. Asgarpour. Furthermore, the 

FCM model that is described in this study is founded 

on the observations made by these neurologists, who 

were responsible for determining both the input and 

output concepts.An illustration of the membership 

functions that indicate the risk rate for a stroke can 

be found in Figure 5. 

5. Application of Fuzzy Cognitive Maps 

(FCM) for Assessing the Risk of Stroke. 

The neurologists were tasked with articulating the 

impact of each concept on others and establishing 

was done after the neurologists had identified the 

concepts of input and output. For the purpose of 

defining the relationships between concepts by 

means of linguistic variables such as high, low, and 

 

Figure 4. Risk factors of ischemic stroke 

 
Figure 5. Membership functions of output concept (C13) 

 
medium, these rules are a useful tool for 

professionals. Within the range of [0, 1], a value is 

assigned to each of the linguistic variables. As an 

illustration, the following is an outline of the 

relationship between blood pressure (C2) and the 

output concept (C13), which is based on the 

assessments of neurologists: One of the 

neurologist’s states that when the blood pressure is 

medium, the risk rate that corresponds to it is also 

considered to be medium. Based on the assertions of 

Neurologist Two, the linked risk rate is judged to be 

high when the blood pressure is medium. A 

statement made by Neurologist Three: A danger rate 

that is considered to be very high is the outcome of 

having a blood pressure that is medium. By utilizing 

the SUM approach, it was possible to combine the 

three linguistic variables, which are medium, high, 

and extremely high. Subsequently, the value from 

C2 to C13 was determined to be 0.54, as shown in 

Figure 6. This was accomplished by applying the 

centre of gravity method in the process of 

defuzzification. All of the initial weights for the 

Fuzzy Cognitive Map (FCM) were obtained in a 

similar manner, utilizing processes that were 

analogous to those described in Table 2. The weights 

that were derived for the proposed FCM model are 

displayed in Figure 7, which illustrates the 

relationship between the concepts and the weights 

that were derived for the model. With regard to the 

estimation of the risk of suffering an ischemic stroke, 

this correlation is demonstrated. 

6. Results and Discussion 
 

Neurologists recognized twelve features or concepts 

as inputs for addressing this issue; the output concept 

for decision-making was designated as C13.Within 

the fuzzy set, this output concept is characterized as 

a variable that encompasses low, medium, and high 

categories among its categories. These 

classifications are defined as follows, according to 

the neurologists' points of view: According to the 

risk rate of an ischemic stroke during the following 

five years, the range of values is as follows: 

0.32≤high<1,0 ≤ low≤0.15, and 0.16≤medium≤0.31. 

The values of concepts are changed in an iterative 

manner until a final state is reached during the 

process of developing the FCM model for stroke 

prevention. The starting values of these concepts are 

critical because they represent the fundamental 

characteristics of the FCM, which are necessary for 

its implementation and have a major impact on the 

occurrence of strokes. Two samples of test data, one 

pertaining to a male and the other to a female, are 

shown below in order to provide further clarification 

on this topic. Example 1: When it comes to this 

particular situation, the information reported in 

Table 3 belong to a male patient who has a history of 

stroke. Neurologists predicted that there was a 

moderate risk of the patient experiencing another 

stroke. From the beginning, the values are 

normalized inside the interval of [0, 1] by utilizing 

the equation that is presented as given equation 14: 
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Table 1: Diagnostic criteria for ischemic stroke using the FCM model 

Concepts Number of        

fuzzy values 

Type of values 

C1: Age 3 old >66, young <45, middle age 46-65. 

C2: blood pressure 4 high 151-170, very high>171, low<130, 

medium 131-150,  

C3: LDL cholesterol 4  high 161-190, very high >191, low<130, 

medium 131-160 

C4: HDL cholesterol 3 high >61, low<35, medium 36-60  

C5: diabetes 3 high>126, low<70, medium 71-125,  

C6: heart disease 2  absent, present 

C7: family history 2  yes, no 

C8: smoking 2 yes, no 

C9: BMI 3 high >26, low<19, medium 20-25 

C10: exercise 2 yes, no 

C11: sex 2 male, female. 

C12: stroke history 2  yes, no 

C13: risk of stroke 3 high, low, medium. 

Figure 6. Three linguistic factors are aggregated via the SUM method. 

 
Figure 7. Initial values of weights allocated to the proposed FCM model for estimating the risk of Ischemic 

Stroke 



Bhanu Sekhar OBBU, Zamrooda JABEEN/ IJCESEN 10-4(2024)867-878 

 

874 

 

Table 2. Initial weights that were suggested by psychologists 

concepts C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 

C1 0 0.550 0 0 0.35 0.4 0 0 0 0 0 0.60 0.60 

C2 0 0 0 0 0.46 0.45 0 0 0 0 0 0.52 0.54 

C3 0 0 0 0 0 0.44 0 0 0 0 0 0.40 0.40 

C4 0 0 0 0 0 -

0.55 

0 0 0 0 0 -

0.54 

-

0.58 

C5 0 0.4 0 0 0 0.45 0 0 0 0 0 0.50 0.50 

C6 0 0 0 0 0 0 0 0 0 0 0 0.55 0.58 

C7 0 0.45 0 0 0.35 0.40 0 0 0 0 0 0.30 0.30 

C8 0 0.30 0 0 0.20 0.35 0 0 0 0 0 0.45 0.45 

C9 0 0.25 0 0 0.45 0.35 0 0 0 0 0 0.25 0.25 

C10 0 -0.20 0 0 -

0.35 

-

0.35 

0 0 -

0.30 

0 0 -

0.30 

-

0.30 

C11 0 0 0 0 0 0 0 0 0 0 0 0.10 0.10 

C12 0 0 0 0 0 0 0 0 0 0 0 0 0.68 

C13 0 0 0 0 0 0 0 0 0 0 0 0 0 

 

 

𝑥𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
  (14) 

   

The following is a determination of the initial input 

values after the aforementioned values have been 

normalized: The value of CInitial is equal to [0.68 

0.5 0.28 0 0 1 0.4 0 1 1 0].Up to the point that the 

FCM reaches equilibrium, these initial values, in 

addition to the weight matrices that are given in 

Table 2, are updated in an iterative manner in 

accordance with one equation. Table 4 shows that, 

following seven iteration steps, the concept values 

have not changed, suggesting that a balanced state 

has been reached. As a consequence, the output idea 

value becomes stable at 0.6798 after seven iterations 

have been completed. After performing the 

calculation outlined in (15), the risk rate comes out 

to be 36 percent, which the neurologists classify as 

high risk. The CPSO algorithm is utilized in order to 

establish the initial weights of the FCM, which 

roughly corresponds to the response of the system to 

actual data. The schematic of concept values 

illustrates the identified point of convergence, which 

is also referred to as the balance point, as illustrated 

in Figure 8. 

 

Risk(𝑥) = {
0, 𝑥 ≤ 0 ⋅ 5

𝑥−0⋅5

0⋅5
× 100%, 0 ⋅ 5 < 𝑥 ≤ 1

 (15)  

 

7. Applying the cpso algorithm to fcm for 

the assessment of stroke risk rate. 

The goal of this study is to create an FCM learning 

method based on CPSO. The fundamental goal is to 

find the values that indicate the cause-effect linkages 

between concepts; in essence, the weights of the 

FCM that result in the behavior that is intended for 

the system. The establishment of these weights is of 

great relevance and makes a significant contribution 

to the consolidation of  

FCMs as a reliable methodology. Values of the 

output concept that are within the limits established 

by the experts characterize the system's intended 

behavior. Essentially, these limits are dependent on 

the particular problem that is being addressed at the 

moment. The purpose of utilizing this algorithm is to 

improve the modeling of system behavior and to 

raise the efficiency of FCM. The ultimate goal is to 

produce satisfactory outcomes through the training 

of FCM. The learning procedure shares some 

similarities with the training of neural networks.  

Let us Consider C1……CN be the concepts of FCM 

and Cout1,…Coutm, be the output concepts. 

The user has the intention of limiting the values of 

these output concepts to a certain extent within 

defined boundaries. 

𝐴out 𝑖
𝑚𝑖𝑛 ≤ 𝐴out 𝑖

≤ 𝐴out 𝑖
𝑚𝑎𝑥,𝑖 = 1,… ,𝑚,              (16) 

   

the experts have predetermined, which are essential 

for the system that is being represented to function 

correctly. In light of this, the primary objective is to 

identify a size matrix. 

 

W= [Wij],   i,j = 1, . . . . .,N  (17) 

  

After a total of 25 iterations, the stroke risk rate 

reaches a value of 0.6273 as a consequence of the 

application of the training method in the first case. 

This represents a risk rate of 25 percent, which, 

according to the neurologists' opinion, falls within 

the range of 0.16 to 0.31, and is, therefore, 

considered to be of medium risk. The sequence 

diagram of idea values and it illustrates the process 

that was followed until convergence by using the 

CPSO method. Second illustration: As shown in 



Bhanu Sekhar OBBU, Zamrooda JABEEN/ IJCESEN 10-4(2024)867-878 

 

875 

 

Table 5, the neurologists predicted that the patient 

would have a low risk of experiencing another stroke 

based on the information provided by the female 

patient. 

Following the normalizing of the values mentioned 

above in accordance with the formula (14), the first 

concept values that are obtained are as follows: [0.53 

0.2 0.19 0.5 0.13 1 1 1 0.26 0 0 0 0]. Following the 

completion of the FCM simulation, the initial values 

are provided as follows: CFCM = [0.51014 0.54601 

0.53014 0.51014 0.54195 0.57495 0.51114 0.53114 

0.52386 0.53014 0.51014 0.57043 0.58674]. After 

seven iterations, the output idea value reaches a 

stable point of 0.59674, which indicates a risk rate of 

18 percent. In order to ensure that decisions are made 

based on reliable information, the CPSO algorithm 

is utilized to approximate the system's response to a 

real value. Table 6 provides a full description of the 

weight matrix that is modified by the CPSO 

method.Table 7 provides the Proposed CPSO-FCM 

system evaluation results in the iteration. 

Consequently, following the implementation of the 

CPSO algorithm, the final concept values, which 

were obtained after 25 iterations, are as follows: 

 
Table 5. Ischemic stroke risk was calculated for a female 

without stroke history. 

Age 64 

Blood sugar 85 

Heart disease 1 

Blood pressure 120 

LDL 100 

HDL 45 

Family history 1 

Smoking  1 

Physical exercise 0 

BMI 26.8 

Sex 0 

Stroke history 0 

 

[0.5141 0.5370 0.5141 0.5141 0.5344 0.5428 0.5141 

0.5141 0.5104 0.5141 0.5141 0.5522 0.5621] is the 

formula for creating the final value of CFinal.As a 

result, the DOC value reaches 0.5621, which 

indicates a recurrent stroke risk of 12 percent. This 

risk is classed as low risk within the neurologist's 

opinion range of 0 ≤ low≤0.15. Proposed CPSO-

FCM system evaluation results in the iteration. Table 

8 and 9 shows the system evaluation results with the 

KNN classifier in ten iterations. The proposed 

system underwent evaluation using the 10-fold 

cross-validation method, employing 110 real 

datasets within the age range of 28–95 years. The 

approach involved using nine datasets for training 

and one dataset for testing in each iteration. 

Accuracy and recognition rates for the test dataset 

were computed in every implementation. Following 

ten iterations, the algorithm's overall accuracy, 

derived from the mean of accuracies, was 

determined to be (94.6± 3.1) %. 

 

8. Conclusion 
 

The timely identification and treatment of stroke is 

of the utmost importance. Not only does early 

diagnosis increase the likelihood of the patient 

recovering and surviving the stroke, but it also 

protects the patient from the severe repercussions 

that would otherwise be associated with the stroke. 

The purpose of this research was to present an 

efficient method that makes use of a soft computing 

technique, more precisely fuzzy cognitive mapping 

in conjunction with the CPSO evolutionary 

algorithm. This methodology, which attempts to 

create a forecast regarding the risk rate of ischemic 

stroke over the following five years, takes into 

consideration the core risk variables that are 

associated with the condition. In order to 

significantly enhance the functionality of the FCM, 

the implementation of the CPSO algorithm was of 

critical importance. A higher level of accuracy in 

disease diagnosis was achieved by the utilization of 

this technology, which combined the knowledge and 

experience of specialists with the fuzzy logic system. 

The objective of this study is not the implementation 

of a new system but rather to leverage an existing 

system and expand its application to a novel domain. 

This aims to derive new insights and knowledge in 

the realm of stroke disease. A comparison was made 

between the results that were obtained from the 

performance of the system and the average of the 

findings that were provided by the neurologists. 

 

 
Figure 8. All concepts wights related to concept 13. 
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Table 4. The values of FCM concepts at each of the seven iteration steps. 

C1 C2 C3 C4 C5 C6 C7 

0.67 0.51 0.38 0.28 0.27 0 0 

0.54532 0.5820 0.5352 0.4321 0.5774 0.3265 0.52 

0.5235 0.5932 0.5345 0.4912 0.5846 0.5623 0.5321 

0.53718 0.6021 0.5346 0.5123 0.5963 0.6170 0.5421 

0.5318 0.6032 0.5612 0.5412 0.5975 0.6185 0.5468 

0.5318 0.6032 0.5612 0.5412 0.5975 0.6185 0.5468 

0.5318 0.6032 0.5612 0.5412 0.5975 0.6185 0.5468 

 

C8 C9 C10 C11 C12 C13 

0.98 0.39 0 1 1 0 

0.5623 0.5320 0.52 0.5798 0.6235 0.632 

0.5235 0.5332 0.5312 0.5542 0.6496 0.6723 

0.53718 0.5421 0.5346 0.5425 0.6482 0.6778 

0.5372 0.5421 0.5348 0.5310 0.6472 0.6798 

0.5372 0.5421 0.5348 0.5310 0.6472 0.6798 

0.5372 0.5421 0.5348 0.5310 0.6472 0.6798 

 

 

Table 6. Updated weight matrix with CPSO algorithm for the first example 

concepts C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 

C1 0 0.42 0 0 0.34 0.48 0 0 0 0 0 0.55 0.56 

C2 0 0 0 0 0.41 0.46 0 0 0 0 0 0.55 0.49 

C3 0 0 0 0 0 0.43 0 0 0 0 0 0.42 0.39 

C4 0 0 0 0 0 -

0.42 

0 0 0 0 0 -

0.51 

-

0.51 

C5 0 0.38 0 0 0 0.39 0 0 0 0 0 0.45 0.52 

C6 0 0 0 0 0 0 0 0 0 0 0 0.46 0.51 

C7 0 0.42 0 0 0.32 0.36 0 0 0 0 0 0.24 0.33 

C8 0 0.25 0 0 0.18 0.36 0 0 0 0 0 0.36 0.36 

C9 0 0.28 0 0 0.39 0.31 0 0 0 0 0 0.21 0.25 

C10 0 -0.19 0 0 -

0.31 

-

0.31 

0 0 -

0.28 

0 0 -

0.26 

-

0.27 

C11 0 0 0 0 0 0 0 0 0 0 0 0.08 0.11 

C12 0 0 0 0 0 0 0 0 0 0 0 0 0.62 

C13 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Table 7. Proposed CPSO-FCM system evaluation results in the iteration 

Fold

s 

Accurac

y 

Low-rate recognition Medium rate 

recognition 

High-rate recognition 

1 92% 1 0.78 1 

2 80% 0.68 1 0.77 

3 90% 1 0.82 1 

4 99% 1 1 1 

5 92% 0 0.78 1 

6 100% 1 1 1 

7 100% 1 1 1 

8 99% 1 1 1 

9 93% 1 0.86 1 

10 92% 0 1 1 

 
 

Table 8. System evaluation results with the SVM 

classifier in ten iterations 

Fold

s 

Accurac

y 

Low-rate 

recogniti

on 

Medium 

rate 

recogniti

on 

High-

rate 

recogniti

on 

1 80% 1 0.61 1 

2 81% 0.67 1 0.74 

3 83% 1 0.81 0.82 

4 90% 1 1 0.84 

5 82% 0 0.76 0.88 

6 93% 1 0.80 1 

7 92% 1 1 0.86 

8 93% 0.56 1 1 

9 93% 1 0.86 1 

10 82% 0 1 0.89 

 

Table 9. After 10 iterations, the system's performance 

was assessed using the KNN classifier. 

Fold

s 

Accurac

y 

Low-rate 

recogniti

on 

Medium 

rate 

recogniti

on 

High-rate 

recogniti

on 

1 71% 1 0.61 1 

2 73% 0.67 1 0.74 

3 80% 1 0.81 0.82 

4 82% 1 1 0.84 

5 90% 0 0.76 0.88 

6 83% 1 0.80 1 

7 80% 1 1 0.86 

8 82% 0.56 1 1 

9 82% 1 0.86 1 

10 82% 0 1 0.89 
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