

Copyright © IJCESEN

International Journal of Computational and Experimental

Science and ENgineering

(IJCESEN)

Vol. 10-No.4 (2024) pp. 1007-1014
http://www.ijcesen.com

ISSN: 2149-9144

 Research Article

Reconfigurable Acceleration of Neural Networks: A Comprehensive Study of

FPGA-based Systems

Chandanapriya Machireddy1*, Santhosh Chella2

1Department of Electronics and Communication Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram

522302, Guntur, Andhra Pradesh, India;
* Corresponding Author Email: Chandana.priya52@gmail.com- ORCID: 0009-0007-4415-7236

2Department of Electronics and Communication Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram

522302, Guntur, Andhra Pradesh, India;
Email: csanthosh@kluniversity.in - ORCID: 0000-0002-5301-2000

Article Info:

DOI: 10.22399/ijcesen.559

Received : 24 October 2024

Accepted : 28 October 2024

Keywords

FPGA,

Neural Network,

Deep Learning,

Hardware Acceleration,

Reconfigurable Computing.

Abstract:

This paper explores the potential of Field-Programmable Gate Arrays (FPGAs) for

accelerating both neural network inference and training. We present a comprehensive

analysis of FPGA-based systems, encompassing architecture design, hardware

implementation strategies, and performance evaluation. Our study highlights the

advantages of FPGAs over traditional CPUs and GPUs for neural network workloads,

including their inherent parallelism, reconfigurability, and ability to tailor hardware to

specific network needs. We delve into various hardware implementation strategies, from

direct mapping to dataflow architectures and specialized hardware blocks, examining

their impact on performance. Furthermore, we benchmark FPGA-based systems against

traditional platforms, evaluating inference speed, energy efficiency, and memory

bandwidth. Finally, we explore emerging trends in FPGA-based neural network

acceleration, such as specialized architectures, efficient memory management techniques,

and hybrid CPU-FPGA systems. Our analysis underscores the significant potential of

FPGAs for accelerating deep learning applications, particularly those requiring high

performance, low latency, and energy efficiency.

1. Introduction

Main Deep learning has experienced rapid

advancements, revolutionizing various fields. This

progress has resulted in significant breakthroughs in

areas such as computer vision, natural language

processing, and speech recognition [1]. These

advancements demonstrate the power of deep

learning to solve complex problems in diverse

domains [2]. The training and deployment of large-

scale neural networks require immense

computational resources. This presents a significant

challenge, as traditional hardware struggles to keep

pace with the ever-increasing demands of these

complex models [3].

The limitations of traditional CPUs and GPUs in

handling the computational demands of large-scale

neural networks have become increasingly evident.

This has sparked a growing need for more efficient

and powerful hardware solutions. To overcome the

computational bottlenecks that hinder the

development and deployment of these complex

models, researchers and developers are actively

exploring alternative hardware architectures capable

of handling the massive computational workload

associated with modern deep learning applications

[4].

While conventional CPUs and GPUs offer significant

processing power, they often fall short when it comes

to meeting the ever-increasing computational

demands of large-scale neural networks. The sheer

volume of calculations required for training and

deploying these complex models surpasses the

capabilities of traditional hardware, creating a

bottleneck that hinders progress in the field of deep

learning. This challenge highlights the urgent need

for alternative hardware solutions that can effectively

handle the massive computational workload

associated with modern neural network applications

[5]. The limitations of traditional CPUs and GPUs in

handling the computational demands of large-scale

http://www.ijcesen.com/
http://dergipark.ulakbim.gov.tr/ijcesen

Chandanapriya MACHIREDDY, Santhosh CHELLA / IJCESEN 10-4(2024)1007-1014

1008

neural networks have spurred a search for more

efficient hardware solutions [6].

Field-Programmable Gate Arrays (FPGAs), with

their inherent parallelism and reconfigurability,

present a promising alternative for accelerating

neural network workloads. This unique combination

of features makes FPGAs particularly well-suited for

tackling the complex computations involved in deep

learning, offering the potential to significantly

improve performance and efficiency [7]. FPGAs

offer a distinct advantage over general-purpose

processors in their ability to be tailored to the specific

needs of a given neural network. This

reconfigurability allows developers to optimize the

hardware architecture to match the specific

computational demands of the network, maximizing

performance. By customizing the FPGA design to

align with the unique characteristics of the neural

network, developers can achieve significant

performance gains over generic processors that are

not optimized for these specific tasks. This flexibility

and customization capability of FPGAs holds great

potential for unlocking unprecedented performance

levels in deep learning applications. [8].

2. FPGA Architecture and Design

This To fully understand the potential of FPGAs for

accelerating neural networks, we must delve into

their architecture. Examining the key components of

an FPGA and how they interact reveals the unique

capabilities that make them well-suited for handling

the complex computations involved in deep learning.

This section explores the fundamental architecture of

FPGAs and analyzes their suitability for optimizing

neural network operations [9].

Field-Programmable Gate Arrays (FPGAs) are

highly customizable hardware platforms that offer a

unique approach to accelerating neural network

workloads. Understanding their key components is

essential for appreciating their potential for deep

learning applications.At the heart of an FPGA lies the

configurable logic block (CLB), which acts as the

fundamental building block for implementing

custom circuits. Each CLB comprises logic gates and

memory elements, allowing for the creation of a wide

range of digital circuits tailored to specific tasks.

These CLBs are highly versatile, enabling the

implementation of complex logic functions and data

processing operations. Beyond the CLBs, FPGAs

also feature dedicated memory blocks. These blocks

provide high-bandwidth storage for data and

parameters used in neural network calculations. By

providing fast access to critical data, these memory

blocks significantly enhance the efficiency of neural

network operations, particularly those involving

large datasets. Finally, connecting these CLBs and

memory blocks is the interconnect fabric, a network

of wires and switches that allows for flexible routing

and communication between different components of

the FPGA. This fabric enables the dynamic

configuration of data paths and control signals,

allowing for efficient communication and data flow

within the hardware. This intricate network of CLBs,

memory blocks, and interconnect fabric provides the

foundation for the customization and adaptability

that make FPGAs so powerful for accelerating neural

networks.

The unique architecture of FPGAs, with its

configurable logic blocks (CLBs), dedicated memory

blocks, and flexible interconnect fabric, empowers

developers to tailor the hardware to the specific needs

of neural networks, achieving significant

performance gains. This adaptability allows for the

efficient implementation of fundamental neural

network operations, such as convolution, matrix

multiplication, and activation functions, which form

the backbone of deep learning models.

Convolutional operations, essential for image

recognition and processing, involve sliding a filter

across an input image, performing element-wise

multiplication and summation. By configuring CLBs

to perform these multiplications and summations in

parallel, FPGAs can dramatically accelerate

convolutional operations. The dedicated memory

blocks can efficiently store the input image and filter

data, while the interconnect fabric enables the

efficient movement of data between CLBs and

memory blocks, optimizing data flow for efficient

computation.

Matrix multiplication, another crucial operation in

neural networks, involves multiplying two matrices

to produce a resulting matrix. FPGAs can be

configured to perform matrix multiplication in a

highly parallel manner, taking advantage of the

CLBs' ability to perform multiple multiplications and

additions simultaneously. The interconnect fabric

allows for efficient data transfer between CLBs,

enabling the parallel computation of matrix elements,

significantly accelerating the overall process [10].

This section delves into the architecture of FPGAs

and their suitability for neural network acceleration.

We discuss the key components of an FPGA,

including configurable logic blocks, memory blocks,

and interconnect fabric. We explain how these

components can be configured to implement specific

neural network operations, such as convolution,

matrix multiplication, and activation functions.

Activation functions, applied to the output of

neurons, introduce non-linearity into the network,

enabling the learning of complex patterns. FPGAs

can efficiently implement various activation

functions, such as ReLU (Rectified Linear Unit),

sigmoid, and tanh, by configuring CLBs to perform

the necessary calculations. The memory blocks can

Chandanapriya MACHIREDDY, Santhosh CHELLA / IJCESEN 10-4(2024)1007-1014

1009

store the activation function parameters, and the

interconnect fabric enables efficient data movement

between CLBs and memory blocks, optimizing the

activation function application [11].

By leveraging the flexibility and parallelism of

FPGAs, developers can implement these critical

operations, convolution, matrix multiplication, and

activation functions, in a highly optimized manner.

This customized hardware implementation allows

FPGAs to outperform traditional processors in terms

of both speed and efficiency, making them ideal for

accelerating neural network workloads. The ability to

tailor the FPGA architecture to the specific needs of

the neural network, coupled with the efficient

implementation of these fundamental operations,

positions FPGAs as a powerful tool for driving

advancements in deep learning applications.

3. Hardware implementation strategies

Deploying neural networks on FPGAs requires

careful consideration of hardware implementation

strategies to maximize performance and efficiency.

This involves choosing the most suitable approach to

map the network's structure and operations onto the

FPGA's unique architecture. Various strategies have

been developed to leverage the FPGA's capabilities,

each with its own strengths and weaknesses [12].

One approach involves direct mapping, Direct

mapping is one approach to deploying neural

networks on FPGAs, where the individual layers of

the network are directly mapped onto the FPGA

fabric. This strategy leverages the inherent

parallelism of the hardware, enabling simultaneous

processing of multiple operations within the network.

The FPGA's configurable logic blocks (CLBs) are

utilized to implement the computational units of each

layer, while the dedicated memory blocks store the

weights and activations associated with the network.

The interconnect fabric facilitates efficient data

transfer between these components, allowing for

smooth data flow between layers. This direct

mapping approach allows for high-performance

execution of the neural network, as the operations

within each layer can be processed in parallel, taking

advantage of the FPGA's massively parallel

architecture. This strategy can be particularly

effective for smaller neural networks with simpler

architectures, where the mapping process is relatively

straightforward. However, direct mapping can

become complex and resource-intensive for larger

and more intricate networks, requiring careful

optimization and resource allocation [13].

Dataflow architectures offer an alternative approach

to deploying neural networks on FPGAs, where the

network is implemented as a series of interconnected

processing units, each specialized for a specific

operation. This modular design breaks down the

complex network into smaller, more manageable

units, simplifying implementation and increasing

flexibility. Each processing unit is responsible for

performing a particular operation, such as

convolution, matrix multiplication, or activation

function application. These units are then

interconnected via data paths, allowing for the

efficient flow of data through the network. This

modular structure enables easy adaptation and

scalability, as new units can be added or modified

without affecting the overall network architecture.

Dataflow architectures offer a more flexible

approach compared to direct mapping, particularly

for larger and more complex networks. This strategy

allows for the optimization of individual units,

maximizing performance for specific operations.

Additionally, the modular design makes it easier to

manage and debug the network, facilitating efficient

development and deployment.

A third approach to implementing neural networks on

FPGAs involves designing and incorporating

specialized hardware blocks tailored for specific

operations. This strategy offers the potential for

maximum performance optimization, but it demands

careful planning and potentially increased

development time. Instead of relying on general-

purpose CLBs, this approach utilizes custom

hardware blocks designed specifically for operations

like convolution kernels or activation functions.

These blocks are highly optimized for their specific

task, leveraging the FPGA's resources to achieve

maximum efficiency. For example, a convolution

kernel block could be designed to efficiently perform

the multiplications and summations involved in

convolutional operations, while an activation

function block could be optimized for a specific

activation function, like ReLU or sigmoid. This

approach allows for significant performance gains

for the specific operations handled by the specialized

blocks. However, designing and implementing these

custom blocks requires specialized knowledge and

engineering expertise, potentially increasing

development time. This strategy is often employed

when performance is paramount, justifying the

additional effort and complexity in design [14].

By exploring these diverse hardware implementation

strategies, researchers and developers can choose the

best approach for a particular neural network,

maximizing performance while balancing design

complexity and development time.

4. Performance Evaluation and Comparison

Comparing hardware platforms like GPUs, ASICs,

and FPGAs can be tricky because performance often

hinges on the specific application. For instance, a

GPU optimized for server tasks is difficult to directly

Chandanapriya MACHIREDDY, Santhosh CHELLA / IJCESEN 10-4(2024)1007-1014

1010

compare to an ASIC or FPGA designed for

embedded systems, as their power requirements and

data processing volumes differ significantly. Despite

these challenges, researchers often rely on standard

metrics like area, power consumption, and

operations per second to define hardware

performance. These metrics offer a common ground

for comparing diverse platforms, even though

application-specific optimizations can still

significantly impact real-world performance [15-

18].Inference speed is a key performance metric that

measures how many inferences a system can

perform per second. It indicates the system's

efficiency in processing data and generating

predictions. Energy efficiency, measured as power

consumption per inference, is a critical factor,

especially for battery-powered devices. It

determines how long a system can operate on a

single charge while performing inferences. Memory

bandwidth signifies the speed at which a system can

transfer data between its memory and processing

units. This is crucial for efficient handling of large

datasets, as it directly impacts the time required to

load and process data.Beyond core performance

metrics, an accelerator's flexibility and scalability

are also crucial. This includes its adaptability to new

network models and its ability to handle variable

bitwidths for data processing. Since accelerators are

often tailored for specific applications, direct

comparisons can be complex. Evaluations are best

conducted using relevant datasets and common

models to understand their performance in practical

scenarios.

Table 1 provides a comparison of various hardware

platforms and accelerator models, highlighting key

metrics like area, power consumption, and inference

speed. As anticipated, general-purpose architectures

tend to have larger area and higher power

consumption compared to specialized architectures

due to their lack of application-specific

optimizations. This table summarizes the hardware

characteristics discussed earlier, providing insights

into the strengths and weaknesses of each

architecture. A comprehensive comparison of

various hardware platforms and accelerator models

is crucial for understanding the trade-offs involved

in choosing the best solution for a specific deep

learning application. A graph illustrating this

comparison would be invaluable, with key metrics

like area, power consumption, and inference speed

plotted against each other. The following Figure 1,

Figure 2 and Figure 3 represents the inference speed

v/s energy efficiency, Energy efficiency v/s Memory

bandwidth and Inference speed v/s Memory

bandwidth.

5. Emerging trends in fpga-based neural

network acceleration

This section highlights emerging trends in the field

of FPGA-based neural network acceleration.

Table 1. Comparison between accelerations implemented on different hardware platforms.

Name Platform Reference Technology(nm) Inference

speed (mm2)

Energy

efficiency

(mW)

Memory

bandwidth

(GB/s)

Cambricon-X ASIC [19] 65 6.38 954 256

SCNN ASIC [20] 16 7.9 - 200

EIE ASIC [21] 45 40 600 200

NullHop ASIC [22] 28 8.1 155 256

NullHop FPGA

Xilinx Zynq

7100

[22] 28 - 2300 256

SqueezeFlow ASIC [23] 65 4.80 536 200

UNPU ASIC [24] 65 16 297 -

FlexFlow ASIC [25] 65 3.89 1000 200

DNA ASIC [26] 65 16 479 -

SIGMA ASIC [27] 28 65.10 22,300 -

DNPU ASIC - 65 16 279 -

Nvidia V100 GPU - 12 815 250,000 900

Nvidia A100 GPU - 7 826 400,000 1500

Intel Xeon

Platinum 9282

CPU - 14 - 400,000 750

AMD Ryzen

Threadripper

3970x

CPU - 7 - 280,000 900

Chandanapriya MACHIREDDY, Santhosh CHELLA / IJCESEN 10-4(2024)1007-1014

1011

Figure 1. Inference speed v/s Energy efficiency

Figure 2. Energy efficiency v/s Memory bandwidth

Figure 3. Inference speed v/s Memory bandwidth

The development of specialized hardware

architectures for FPGA-based neural network

acceleration is a key driver in pushing the boundaries

of deep learning performance. Unlike general-

purpose computing platforms, these custom

architectures are meticulously designed to optimize

for the specific computational demands of neural

networks, resulting in substantial speedups.

Traditional CPUs and GPUs, while powerful, are

often hampered by their general-purpose design.

This means they are optimized for a wide range of

tasks, not specifically tailored to the highly parallel

nature of neural network operations like matrix

multiplications and convolutions. FPGAs, on the

other hand, offer a unique advantage: their

reconfigurable nature allows them to be custom-

designed for specific applications, essentially

creating dedicated hardware for neural network

acceleration. Efficient memory management is a

crucial aspect of FPGA-based neural network

acceleration, directly impacting performance and

energy consumption. Neural networks often require

massive amounts of data for training and inference,

and how this data is accessed and moved through the

system significantly affects performance.

Optimizing memory access patterns and minimizing

data movement overhead is a key challenge in

maximizing the potential of FPGA acceleration.

Traditional memory architectures, often designed for

general-purpose computing, may not be ideal for the

unique demands of neural networks. These demands

include High Bandwidth, data locality, and data re-

use. Neural networks require constant access to large

amounts of data, demanding high-bandwidth

memory interfaces. Optimal performance requires

data to be readily available in close proximity to the

processing units, minimizing data movement across

the system. Neural networks often reuse data

multiple times, necessitating efficient caching

mechanisms to avoid redundant data fetching.

Techniques for optimizing memory management in

FPGA-based neural network acceleration include

Data Prefetching, On-Chip Data Buffering,

Specialized Memory Hierarchies, Data Compression

and Optimized Data Layouts. Anticipating future

data requirements and prefetching data into local

memory buffers allows for faster access and reduces

latency. Implementing on-chip buffers within the

FPGA architecture allows for storing frequently

accessed data close to processing units, reducing off-

chip memory access and latency. Designing custom

memory hierarchies tailored to the specific needs of

neural networks, such as multiple levels of caches

and specialized memory blocks for different data

types. Compressing the data before transferring it

across the system reduces memory bandwidth

requirements and speeds up data movement.

Arranging data in memory in a way that minimizes

memory access conflicts and maximizes data

locality, further reducing access times. The quest for

optimal performance in neural network acceleration

often necessitates a balance between specialized

hardware and general-purpose computing

capabilities. Hybrid CPU-FPGA systems offer a

compelling solution by combining the strengths of

both worlds, creating a synergistic platform for

efficient and flexible deep learning deployment.

While FPGAs excel at accelerating computationally

intensive tasks like neural network inference, CPUs

offer versatility in handling control logic, data

preprocessing, and general-purpose operations. This

inherent complementary nature makes hybrid

systems particularly well-suited for diverse deep

0

500000

Energy efficiency v/s Memory
bandwidth

0
1000
2000
3000

Inference speed v/s Memory
bandwidth

Chandanapriya MACHIREDDY, Santhosh CHELLA / IJCESEN 10-4(2024)1007-1014

1012

learning applications. Hybrid systems effectively

leverage these strengths are Computationally

intensive tasks, like neural network inference, are

offloaded to the FPGA for acceleration, while the

CPU handles tasks that require flexibility and

general-purpose capabilities. The modular nature of

hybrid systems allows for scalability by adding more

FPGAs or CPUs as needed, depending on the

specific application requirements. By combining the

specialized capabilities of FPGAs with the cost-

effectiveness of CPUs, hybrid systems offer a

balance between performance and affordability.

Examples of hybrid CPU-FPGA systems include

Embedded Systems, Edge Computing and High-

Performance Computing. For real-time applications

like autonomous vehicles or robotics, hybrid systems

combine the high performance of FPGAs for image

processing with the control and versatility of CPUs

for decision-making and system management.

Hybrid systems can be deployed at the edge of the

network to enable on-device inference, reducing

latency and data transmission costs for applications

like facial recognition or speech recognition. Hybrid

systems are becoming increasingly popular in high-

performance computing clusters for tasks like

scientific simulations and large-scale data analysis.

The development of hybrid CPU-FPGA systems is a

testament to the ongoing pursuit of efficient and

flexible deep learning solutions. These systems offer

a promising path forward, balancing the advantages

of both specialized hardware and general-purpose

computing, enabling a wider range of deep learning

applications across diverse industries.

6. Conclusion

This paper provides a comprehensive overview of the

potential of FPGAs for accelerating neural networks.

We have demonstrated that FPGAs offer a

compelling alternative to traditional hardware

solutions, particularly for applications requiring high

performance, low latency, and energy efficiency. We

believe that the ongoing research and development in

this area will lead to even more powerful and

efficient FPGA-based systems for neural network

processing in the future as previous works have done

[28-37].

Author Statements:

 Ethical approval: The conducted research is not

related to either human or animal use.

 Conflict of interest: The authors declare that

they have no known competing financial interests

or personal relationships that could have

appeared to influence the work reported in this

paper

 Acknowledgement: The authors declare that

they have nobody or no-company to

acknowledge.

 Author contributions: The authors declare that

they have equal right on this paper.

 Funding information: The authors declare that

there is no funding to be acknowledged.

 Data availability statement: The data that

support the findings of this study are available on

request from the corresponding author. The data

are not publicly available due to privacy or

ethical restrictions.

References

[1] Junyi Chai, Hao Zeng, Anming Li, Eric W.T. Ngai,

(2021). Deep learning in computer vision: A critical

review of emerging techniques and application

scenarios, Machine Learning with Applications,

6;100134

https://doi.org/10.1016/j.mlwa.2021.100134.

[2] Sarker, I.H. (2021). Deep Learning: A

Comprehensive Overview on Techniques,

Taxonomy, Applications and Research Directions.

SN COMPUT. SCI. 2;420.

https://doi.org/10.1007/s42979-021-00815-1

[3] Yuan, X., Wang, Y., Xu, Z. et al. (2023). Training

large-scale optoelectronic neural networks with dual-

neuron optical-artificial learning. Nat Commun 14;

7110. https://doi.org/10.1038/s41467-023-42984-y

[4] Tufail S, Riggs H, Tariq M, Sarwat (2023). AI.

Advancements and Challenges in Machine Learning:

A Comprehensive Review of Models, Libraries,

Applications, and Algorithms. Electronics.

12(8):1789.

https://doi.org/10.3390/electronics12081789

[5] Alzubaidi, L., Zhang, J., Humaidi, A.J. et al. (2021)

Review of deep learning: concepts, CNN

architectures, challenges, applications, future

directions. J Big Data 8;53.

https://doi.org/10.1186/s40537-021-00444-8

[6] Martin Wisniewski L, Bec J-M, Boguszewski G,

Gamatié A. (2022). Hardware Solutions for Low-

Power Smart Edge Computing. Journal of Low

Power Electronics and Applications. 12(4):61.

https://doi.org/10.3390/jlpea12040061

[7] Wu R, Guo X, Du J, Li J. (2021). Accelerating Neural

Network Inference on FPGA-Based Platforms—A

Survey. Electronics. 10(9):1025.

https://doi.org/10.3390/electronics10091025

[8] Martín-Martín, A., Padial-Allué, R., Castillo, E.,

Parrilla, L., Parellada-Serrano, I., Morán, A., &

García, A. (2024). Hardware Implementations of a

Deep Learning Approach to Optimal Configuration

of Reconfigurable Intelligence Surfaces. Sensors

(Basel, Switzerland), 24(3).

https://doi.org/10.3390/s24030899

[9] A. Shawahna, S. M. Sait and A. El-Maleh, (2019).

FPGA-Based Accelerators of Deep Learning

Networks for Learning and Classification: A Review,

Chandanapriya MACHIREDDY, Santhosh CHELLA / IJCESEN 10-4(2024)1007-1014

1013

in IEEE Access, 7;7823-7859, doi:

10.1109/ACCESS.2018.2890150.

[10] Boutros, A., Arora, A., & Betz, V. (2024). Field-

Programmable Gate Array Architecture for Deep

Learning: Survey & Future Directions. ArXiv.

/abs/2404.10076

[11] Li, Zhengjie & Zhang, Yufan & Wang, Jian & Lai,

Jinmei. (2020). A survey of FPGA design for AI era.

Journal of Semiconductors. 41; 021402.

10.1088/1674-4926/41/2/021402.

[12] Zhiqiang Que, Hongxiang Fan, Marcus Loo, He Li,

Michaela Blott, Maurizio Pierini, Alexander Tapper,

and Wayne Luk. (2024). LL-GNN: Low Latency

Graph Neural Networks on FPGAs for High Energy

Physics. ACM Trans. Embed. Comput. Syst.

23(2);17-28 pages. https://doi.org/10.1145/3640464

[13] Neu, M., Becker, J., Dorwarth, P. et al. (2024). Real-

Time Graph Building on FPGAs for Machine

Learning Trigger Applications in Particle Physics.

Comput Softw Big Sci 8;8.

https://doi.org/10.1007/s41781-024-00117-0

[14] Morteza Babaee Altman, Wenbin Wan, Amineh

Sadat Hosseini, Saber Arabi Nowdeh, Masoumeh

Alizadeh, Machine learning algorithms for FPGA

Implementation in biomedical engineering

applications: A review, Heliyon, 10(4);e26652,

https://doi.org/10.1016/j.heliyon.2024.e26652

[15] Joo-Young Kim, (2021). Chapter Five - FPGA based

neural network accelerators, Editor(s): Shiho Kim,

Ganesh Chandra Deka, Advances in Computers,

Elsevier,122;35-165, ISBN 9780128231234,

https://doi.org/10.1016/bs.adcom.2020.11.002

[16] Mittal, S. (2020). A survey of FPGA-based

accelerators for convolutional neural networks.

Neural Comput & Applic 32; 1109–1139.

https://doi.org/10.1007/s00521-018-3761-1

[17] Wang C, Luo Z. (2022). A Review of the Optimal

Design of Neural Networks Based on FPGA. Applied

Sciences. 12(21):10771.

https://doi.org/10.3390/app122110771

[18] Capra M, Bussolino B, Marchisio A, Shafique M,

Masera G, Martina M. (2020). An Updated Survey of

Efficient Hardware Architectures for Accelerating

Deep Convolutional Neural Networks. Future

Internet. 12(7):113.

https://doi.org/10.3390/fi12070113

[19] Zhang, S.; Du, Z.; Zhang, L.; Lan, H.; Liu, S.; Li, L.;

Guo, Q.; Chen, T.; Chen, Y. Cambricon-X (2016) An

accelerator for sparse neural networks. In

Proceedings of the 2016 49th Annual IEEE/ACM

International Symposium on Microarchitecture

(MICRO), Taipei, Taiwan, 15–19 October 2016; pp.

1–12

[20] Parashar, A.; Rhu, M.; Mukkara, A.; Puglielli, A.;

Venkatesan, R.; Khailany, B.; Emer, J.; Keckler,

S.W.; Dally, W.J. (2017). SCNN: An accelerator for

compressed-sparse convolutional neural networks. In

Proceedings of the 2017 ACM/IEEE 44th Annual

International Symposium on Computer Architecture

(ISCA), Toronto, ON, Canada, 24–28 June 2017; pp.

27–40.

[21] Han, S.; Liu, X.; Mao, H.; Pu, J.; Pedram, A.;

Horowitz, M.A.; Dally, W.J. EIE: Effcient Inference

Engine on Compressed Deep Neural Network. In

Proceedings of the 43rd ACM/IEEE Annual

International Symposium on Computer Architecture,

ISCA 2016, Seoul, Korea, 18–22 June 2016; IEEE

Computer Society: Washington, DC, USA, 2016; pp.

243–254.

[22] Aimar, A.; Mostafa, H.; Calabrese, E.; Rios-Navarro,

A.; Tapiador-Morales, R.; Lungu, I.; Milde, M.B.;

Corradi, F.; Linares-Barranco, A.; Liu, S.; et al.

(2019). NullHop: A Flexible Convolutional Neural

Network Accelerator Based on Sparse

Representations of Feature Maps. IEEE Trans.

Neural Netw. Learn. Syst. 30;644–656.

[23] Li, J.; Jiang, S.; Gong, S.; Wu, J.; Yan, J.; Yan, G.;

Li, X. (2019). SqueezeFlow: A Sparse CNN

Accelerator Exploiting Concise Convolution Rules.

IEEE Trans. Comput. 68;1663–1677

[24] Lee, J.; Kim, C.; Kang, S.; Shin, D.; Kim, S.; Yoo, H.

(2019). UNPU: An Energy-Effcient Deep Neural

Network Accelerator With Fully Variable Weight Bit

Precision. IEEE J. Solid-State Circuits 54;173–185.

[25] Lu, W.; Yan, G.; Li, J.; Gong, S.; Han, Y.; Li,

X.(2017). FlexFlow: A Flexible Datafow

Accelerator Architecture for Convolutional Neural

Networks. In Proceedings of the 2017 IEEE

International Symposium on High Performance

Computer Architecture (HPCA), Austin, TX, USA,

4–8 February 2017; pp. 553–564.

[26] Tu, F.; Yin, S.; Ouyang, P.; Tang, S.; Liu, L.; Wei, S.

(2017). Deep Convolutional Neural Network

Architecture With Reconfgurable Computation

Patterns. IEEE Trans. Very Large Scale Integr.

(VLSI) Syst. 25;2220–2233.

[27] Qin, E.; Samajdar, A.; Kwon, H.; Nadella, V.;

Srinivasan, S.; Das, D.; Kaul, B.; Krishna, T. (2020).

SIGMA: A Sparse and Irregular GEMM Accelerator

with Flexible Interconnects for DNN Training. In

Proceedings of the 2020 IEEE International

Symposium on High Performance Computer

Architecture (HPCA), San Diego, CA, USA, 22–26

February 2020; pp. 58–70.
[28] Agnihotri, A., & Kohli, N. (2024). A novel

lightweight deep learning model based on
SqueezeNet architecture for viral lung disease
classification in X-ray and CT images. International
Journal of Computational and Experimental Science
and Engineering, 10(4);592-613.
https://doi.org/10.22399/ijcesen.425

[29] Priti Parag Gaikwad, & Mithra Venkatesan. (2024).
KWHO-CNN: A Hybrid Metaheuristic Algorithm
Based Optimzed Attention-Driven CNN for
Automatic Clinical Depression Recognition .
International Journal of Computational and
Experimental Science and Engineering, 10(3)491-
506. https://doi.org/10.22399/ijcesen.359

[30] Polatoglu, A. (2024). Observation of the Long-Term
Relationship Between Cosmic Rays and Solar
Activity Parameters and Analysis of Cosmic Ray
Data with Machine Learning. International Journal
of Computational and Experimental Science and
Engineering, 10(2);189-199.
https://doi.org/10.22399/ijcesen.324

[31] Rama Lakshmi BOYAPATI, & Radhika
YALAVARTHI. (2024). RESNET-53 for Extraction
of Alzheimer’s Features Using Enhanced Learning
Models. International Journal of Computational and
Experimental Science and Engineering, 10(4)879-
889. https://doi.org/10.22399/ijcesen.519

https://doi.org/10.3390/app122110771
https://doi.org/10.22399/ijcesen.425
https://doi.org/10.22399/ijcesen.359
https://doi.org/10.22399/ijcesen.324
https://doi.org/10.22399/ijcesen.519

Chandanapriya MACHIREDDY, Santhosh CHELLA / IJCESEN 10-4(2024)1007-1014

1014

[32] ÇOŞGUN, A. (2024). Estimation Of Turkey’s
Carbon Dioxide Emission with Machine Learning.
International Journal of Computational and
Experimental Science and Engineering, 10(1)95-101.
https://doi.org/10.22399/ijcesen.302

[33] Nagalapuram, J., & S. Samundeeswari. (2024).
Genetic-Based Neural Network for Enhanced Soil
Texture Analysis: Integrating Soil Sensor Data for
Optimized Agricultural Management. International
Journal of Computational and Experimental Science
and Engineering, 10(4);962-970.
https://doi.org/10.22399/ijcesen.572

[34] S.D.Govardhan, Pushpavalli, R., Tatiraju.V.Rajani
Kanth, & Ponmurugan Panneer Selvam. (2024).
Advanced Computational Intelligence Techniques
for Real-Time Decision-Making in Autonomous
Systems. International Journal of Computational
and Experimental Science and Engineering,
10(4);928-937. https://doi.org/10.22399/ijcesen.591

[35] Paç, A. B., & Yakut, B. (2024). Assessing the Profit
Impact of ARIMA and Neural Network Demand
Forecasts in Retail Inventory Replenishment.
International Journal of Computational and
Experimental Science and Engineering, 10(4);811-
826. https://doi.org/10.22399/ijcesen.439

[36] PATHAPATI, S., N. J. NALINI, & Mahesh
GADIRAJU. (2024). Comparative Evaluation of
EEG signals for Mild Cognitive Impairment using
Scalograms and Spectrograms with Deep Learning
Models. International Journal of Computational and
Experimental Science and Engineering, 10(4)859-
866. https://doi.org/10.22399/ijcesen.534

[37] Radhi, M., & Tahseen, I. (2024). An Enhancement
for Wireless Body Area Network Using Adaptive
Algorithms. International Journal of Computational
and Experimental Science and Engineering,
10(3)388-396. https://doi.org/10.22399/ijcesen.409

https://doi.org/10.22399/ijcesen.302
https://doi.org/10.22399/ijcesen.572
https://doi.org/10.22399/ijcesen.591
https://doi.org/10.22399/ijcesen.439
https://doi.org/10.22399/ijcesen.534

