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Abstract:  
 

This paper explores the potential of Field-Programmable Gate Arrays (FPGAs) for 

accelerating both neural network inference and training. We present a comprehensive 

analysis of FPGA-based systems, encompassing architecture design, hardware 

implementation strategies, and performance evaluation. Our study highlights the 

advantages of FPGAs over traditional CPUs and GPUs for neural network workloads, 

including their inherent parallelism, reconfigurability, and ability to tailor hardware to 

specific network needs. We delve into various hardware implementation strategies, from 

direct mapping to dataflow architectures and specialized hardware blocks, examining 

their impact on performance. Furthermore, we benchmark FPGA-based systems against 

traditional platforms, evaluating inference speed, energy efficiency, and memory 

bandwidth. Finally, we explore emerging trends in FPGA-based neural network 

acceleration, such as specialized architectures, efficient memory management techniques, 

and hybrid CPU-FPGA systems. Our analysis underscores the significant potential of 

FPGAs for accelerating deep learning applications, particularly those requiring high 

performance, low latency, and energy efficiency. 

 

1. Introduction 
 

Main Deep learning has experienced rapid 

advancements, revolutionizing various fields. This 

progress has resulted in significant breakthroughs in 

areas such as computer vision, natural language 

processing, and speech recognition [1]. These 

advancements demonstrate the power of deep 

learning to solve complex problems in diverse 

domains [2]. The training and deployment of large-

scale neural networks require immense 

computational resources. This presents a significant 

challenge, as traditional hardware struggles to keep 

pace with the ever-increasing demands of these 

complex models [3]. 

The limitations of traditional CPUs and GPUs in 

handling the computational demands of large-scale 

neural networks have become increasingly evident. 

This has sparked a growing need for more efficient 

and powerful hardware solutions. To overcome the 

computational bottlenecks that hinder the 

development and deployment of these complex 

models, researchers and developers are actively 

exploring alternative hardware architectures capable 

of handling the massive computational workload 

associated with modern deep learning applications 

[4]. 

While conventional CPUs and GPUs offer significant 

processing power, they often fall short when it comes 

to meeting the ever-increasing computational 

demands of large-scale neural networks. The sheer 

volume of calculations required for training and 

deploying these complex models surpasses the 

capabilities of traditional hardware, creating a 

bottleneck that hinders progress in the field of deep 

learning. This challenge highlights the urgent need 

for alternative hardware solutions that can effectively 

handle the massive computational workload 

associated with modern neural network applications 

[5]. The limitations of traditional CPUs and GPUs in 

handling the computational demands of large-scale 
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neural networks have spurred a search for more 

efficient hardware solutions [6]. 

Field-Programmable Gate Arrays (FPGAs), with 

their inherent parallelism and reconfigurability, 

present a promising alternative for accelerating 

neural network workloads. This unique combination 

of features makes FPGAs particularly well-suited for 

tackling the complex computations involved in deep 

learning, offering the potential to significantly 

improve performance and efficiency [7]. FPGAs 

offer a distinct advantage over general-purpose 

processors in their ability to be tailored to the specific 

needs of a given neural network. This 

reconfigurability allows developers to optimize the 

hardware architecture to match the specific 

computational demands of the network, maximizing 

performance. By customizing the FPGA design to 

align with the unique characteristics of the neural 

network, developers can achieve significant 

performance gains over generic processors that are 

not optimized for these specific tasks. This flexibility 

and customization capability of FPGAs holds great 

potential for unlocking unprecedented performance 

levels in deep learning applications. [8].  

2. FPGA Architecture and Design 

This To fully understand the potential of FPGAs for 

accelerating neural networks, we must delve into 

their architecture. Examining the key components of 

an FPGA and how they interact reveals the unique 

capabilities that make them well-suited for handling 

the complex computations involved in deep learning. 

This section explores the fundamental architecture of 

FPGAs and analyzes their suitability for optimizing 

neural network operations [9]. 

Field-Programmable Gate Arrays (FPGAs) are 

highly customizable hardware platforms that offer a 

unique approach to accelerating neural network 

workloads. Understanding their key components is 

essential for appreciating their potential for deep 

learning applications.At the heart of an FPGA lies the 

configurable logic block (CLB), which acts as the 

fundamental building block for implementing 

custom circuits. Each CLB comprises logic gates and 

memory elements, allowing for the creation of a wide 

range of digital circuits tailored to specific tasks. 

These CLBs are highly versatile, enabling the 

implementation of complex logic functions and data 

processing operations. Beyond the CLBs, FPGAs 

also feature dedicated memory blocks. These blocks 

provide high-bandwidth storage for data and 

parameters used in neural network calculations. By 

providing fast access to critical data, these memory 

blocks significantly enhance the efficiency of neural 

network operations, particularly those involving 

large datasets. Finally, connecting these CLBs and 

memory blocks is the interconnect fabric, a network 

of wires and switches that allows for flexible routing 

and communication between different components of 

the FPGA. This fabric enables the dynamic 

configuration of data paths and control signals, 

allowing for efficient communication and data flow 

within the hardware. This intricate network of CLBs, 

memory blocks, and interconnect fabric provides the 

foundation for the customization and adaptability 

that make FPGAs so powerful for accelerating neural 

networks. 

The unique architecture of FPGAs, with its 

configurable logic blocks (CLBs), dedicated memory 

blocks, and flexible interconnect fabric, empowers 

developers to tailor the hardware to the specific needs 

of neural networks, achieving significant 

performance gains. This adaptability allows for the 

efficient implementation of fundamental neural 

network operations, such as convolution, matrix 

multiplication, and activation functions, which form 

the backbone of deep learning models. 

Convolutional operations, essential for image 

recognition and processing, involve sliding a filter 

across an input image, performing element-wise 

multiplication and summation. By configuring CLBs 

to perform these multiplications and summations in 

parallel, FPGAs can dramatically accelerate 

convolutional operations. The dedicated memory 

blocks can efficiently store the input image and filter 

data, while the interconnect fabric enables the 

efficient movement of data between CLBs and 

memory blocks, optimizing data flow for efficient 

computation. 

Matrix multiplication, another crucial operation in 

neural networks, involves multiplying two matrices 

to produce a resulting matrix. FPGAs can be 

configured to perform matrix multiplication in a 

highly parallel manner, taking advantage of the 

CLBs' ability to perform multiple multiplications and 

additions simultaneously. The interconnect fabric 

allows for efficient data transfer between CLBs, 

enabling the parallel computation of matrix elements, 

significantly accelerating the overall process [10]. 

This section delves into the architecture of FPGAs 

and their suitability for neural network acceleration. 

We discuss the key components of an FPGA, 

including configurable logic blocks, memory blocks, 

and interconnect fabric. We explain how these 

components can be configured to implement specific 

neural network operations, such as convolution, 

matrix multiplication, and activation functions. 

Activation functions, applied to the output of 

neurons, introduce non-linearity into the network, 

enabling the learning of complex patterns. FPGAs 

can efficiently implement various activation 

functions, such as ReLU (Rectified Linear Unit), 

sigmoid, and tanh, by configuring CLBs to perform 

the necessary calculations. The memory blocks can 
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store the activation function parameters, and the 

interconnect fabric enables efficient data movement 

between CLBs and memory blocks, optimizing the 

activation function application [11]. 

By leveraging the flexibility and parallelism of 

FPGAs, developers can implement these critical 

operations, convolution, matrix multiplication, and 

activation functions, in a highly optimized manner. 

This customized hardware implementation allows 

FPGAs to outperform traditional processors in terms 

of both speed and efficiency, making them ideal for 

accelerating neural network workloads. The ability to 

tailor the FPGA architecture to the specific needs of 

the neural network, coupled with the efficient 

implementation of these fundamental operations, 

positions FPGAs as a powerful tool for driving 

advancements in deep learning applications. 

3. Hardware implementation strategies 
 

Deploying neural networks on FPGAs requires 

careful consideration of hardware implementation 

strategies to maximize performance and efficiency. 

This involves choosing the most suitable approach to 

map the network's structure and operations onto the 

FPGA's unique architecture. Various strategies have 

been developed to leverage the FPGA's capabilities, 

each with its own strengths and weaknesses [12]. 

One approach involves direct mapping, Direct 

mapping is one approach to deploying neural 

networks on FPGAs, where the individual layers of 

the network are directly mapped onto the FPGA 

fabric. This strategy leverages the inherent 

parallelism of the hardware, enabling simultaneous 

processing of multiple operations within the network. 

The FPGA's configurable logic blocks (CLBs) are 

utilized to implement the computational units of each 

layer, while the dedicated memory blocks store the 

weights and activations associated with the network. 

The interconnect fabric facilitates efficient data 

transfer between these components, allowing for 

smooth data flow between layers. This direct 

mapping approach allows for high-performance 

execution of the neural network, as the operations 

within each layer can be processed in parallel, taking 

advantage of the FPGA's massively parallel 

architecture. This strategy can be particularly 

effective for smaller neural networks with simpler 

architectures, where the mapping process is relatively 

straightforward. However, direct mapping can 

become complex and resource-intensive for larger 

and more intricate networks, requiring careful 

optimization and resource allocation [13]. 

Dataflow architectures offer an alternative approach 

to deploying neural networks on FPGAs, where the 

network is implemented as a series of interconnected 

processing units, each specialized for a specific 

operation. This modular design breaks down the 

complex network into smaller, more manageable 

units, simplifying implementation and increasing 

flexibility. Each processing unit is responsible for 

performing a particular operation, such as 

convolution, matrix multiplication, or activation 

function application. These units are then 

interconnected via data paths, allowing for the 

efficient flow of data through the network. This 

modular structure enables easy adaptation and 

scalability, as new units can be added or modified 

without affecting the overall network architecture. 

Dataflow architectures offer a more flexible 

approach compared to direct mapping, particularly 

for larger and more complex networks. This strategy 

allows for the optimization of individual units, 

maximizing performance for specific operations. 

Additionally, the modular design makes it easier to 

manage and debug the network, facilitating efficient 

development and deployment. 

A third approach to implementing neural networks on 

FPGAs involves designing and incorporating 

specialized hardware blocks tailored for specific 

operations. This strategy offers the potential for 

maximum performance optimization, but it demands 

careful planning and potentially increased 

development time. Instead of relying on general-

purpose CLBs, this approach utilizes custom 

hardware blocks designed specifically for operations 

like convolution kernels or activation functions. 

These blocks are highly optimized for their specific 

task, leveraging the FPGA's resources to achieve 

maximum efficiency. For example, a convolution 

kernel block could be designed to efficiently perform 

the multiplications and summations involved in 

convolutional operations, while an activation 

function block could be optimized for a specific 

activation function, like ReLU or sigmoid. This 

approach allows for significant performance gains 

for the specific operations handled by the specialized 

blocks. However, designing and implementing these 

custom blocks requires specialized knowledge and 

engineering expertise, potentially increasing 

development time. This strategy is often employed 

when performance is paramount, justifying the 

additional effort and complexity in design [14]. 

By exploring these diverse hardware implementation 

strategies, researchers and developers can choose the 

best approach for a particular neural network, 

maximizing performance while balancing design 

complexity and development time. 

4. Performance Evaluation and Comparison 

Comparing hardware platforms like GPUs, ASICs, 

and FPGAs can be tricky because performance often 

hinges on the specific application. For instance, a 

GPU optimized for server tasks is difficult to directly 
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compare to an ASIC or FPGA designed for 

embedded systems, as their power requirements and 

data processing volumes differ significantly. Despite 

these challenges, researchers often rely on standard 

metrics like area, power consumption, and 

operations per second to define hardware 

performance. These metrics offer a common ground 

for comparing diverse platforms, even though 

application-specific optimizations can still 

significantly impact real-world performance [15-

18].Inference speed is a key performance metric that 

measures how many inferences a system can 

perform per second. It indicates the system's 

efficiency in processing data and generating 

predictions. Energy efficiency, measured as power 

consumption per inference, is a critical factor, 

especially for battery-powered devices. It 

determines how long a system can operate on a 

single charge while performing inferences. Memory 

bandwidth signifies the speed at which a system can 

transfer data between its memory and processing 

units. This is crucial for efficient handling of large 

datasets, as it directly impacts the time required to 

load and process data.Beyond core performance 

metrics, an accelerator's flexibility and scalability 

are also crucial. This includes its adaptability to new 

network models and its ability to handle variable 

bitwidths for data processing. Since accelerators are 

often tailored for specific applications, direct 

comparisons can be complex. Evaluations are best 

conducted using relevant datasets and common 

models to understand their performance in practical 

scenarios. 

Table 1 provides a comparison of various hardware 

platforms and accelerator models, highlighting key 

metrics like area, power consumption, and inference 

speed. As anticipated, general-purpose architectures 

tend to have larger area and higher power 

consumption compared to specialized architectures 

due to their lack of application-specific 

optimizations. This table summarizes the hardware 

characteristics discussed earlier, providing insights 

into the strengths and weaknesses of each 

architecture. A comprehensive comparison of 

various hardware platforms and accelerator models 

is crucial for understanding the trade-offs involved 

in choosing the best solution for a specific deep 

learning application. A graph illustrating this 

comparison would be invaluable, with key metrics 

like area, power consumption, and inference speed 

plotted against each other. The following Figure 1, 

Figure 2 and Figure 3 represents the inference speed 

v/s energy efficiency, Energy efficiency v/s Memory 

bandwidth and Inference speed v/s Memory 

bandwidth. 

5. Emerging trends in fpga-based neural 

network acceleration 

This section highlights emerging trends in the field 

of FPGA-based neural network acceleration. 

 

Table 1. Comparison between accelerations implemented on different hardware platforms. 

Name Platform Reference Technology(nm) Inference 

speed (mm2) 

Energy 

efficiency  

(mW) 

Memory 

bandwidth 

(GB/s) 

Cambricon-X ASIC [19] 65 6.38 954 256 

SCNN ASIC [20] 16 7.9 - 200 

EIE ASIC [21] 45 40 600 200 

NullHop ASIC [22] 28 8.1 155 256 

NullHop FPGA 

Xilinx Zynq 

7100 

[22] 28 - 2300 256 

SqueezeFlow ASIC [23] 65 4.80 536 200 

UNPU ASIC [24] 65 16 297 - 

FlexFlow ASIC [25] 65 3.89 1000 200 

DNA ASIC [26] 65 16 479 - 

SIGMA ASIC [27] 28 65.10 22,300 - 

DNPU ASIC - 65 16 279 - 

Nvidia V100 GPU - 12 815 250,000 900 

Nvidia A100 GPU - 7 826 400,000 1500 

Intel Xeon 

Platinum 9282 

CPU - 14 - 400,000 750 

AMD Ryzen 

Threadripper 

3970x 

CPU - 7 - 280,000 900 
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Figure 1. Inference speed v/s Energy efficiency 

 

Figure 2. Energy efficiency v/s Memory bandwidth 

 

Figure 3. Inference speed v/s Memory bandwidth 

The development of specialized hardware 

architectures for FPGA-based neural network 

acceleration is a key driver in pushing the boundaries 

of deep learning performance. Unlike general-

purpose computing platforms, these custom 

architectures are meticulously designed to optimize 

for the specific computational demands of neural 

networks, resulting in substantial speedups. 

Traditional CPUs and GPUs, while powerful, are 

often hampered by their general-purpose design. 

This means they are optimized for a wide range of 

tasks, not specifically tailored to the highly parallel 

nature of neural network operations like matrix 

multiplications and convolutions. FPGAs, on the 

other hand, offer a unique advantage: their 

reconfigurable nature allows them to be custom-

designed for specific applications, essentially 

creating dedicated hardware for neural network 

acceleration. Efficient memory management is a 

crucial aspect of FPGA-based neural network 

acceleration, directly impacting performance and 

energy consumption. Neural networks often require 

massive amounts of data for training and inference, 

and how this data is accessed and moved through the 

system significantly affects performance. 

Optimizing memory access patterns and minimizing 

data movement overhead is a key challenge in 

maximizing the potential of FPGA acceleration. 

Traditional memory architectures, often designed for 

general-purpose computing, may not be ideal for the 

unique demands of neural networks. These demands 

include High Bandwidth, data locality, and data re-

use. Neural networks require constant access to large 

amounts of data, demanding high-bandwidth 

memory interfaces. Optimal performance requires 

data to be readily available in close proximity to the 

processing units, minimizing data movement across 

the system. Neural networks often reuse data 

multiple times, necessitating efficient caching 

mechanisms to avoid redundant data fetching. 

Techniques for optimizing memory management in 

FPGA-based neural network acceleration include 

Data Prefetching, On-Chip Data Buffering, 

Specialized Memory Hierarchies, Data Compression 

and Optimized Data Layouts. Anticipating future 

data requirements and prefetching data into local 

memory buffers allows for faster access and reduces 

latency. Implementing on-chip buffers within the 

FPGA architecture allows for storing frequently 

accessed data close to processing units, reducing off-

chip memory access and latency. Designing custom 

memory hierarchies tailored to the specific needs of 

neural networks, such as multiple levels of caches 

and specialized memory blocks for different data 

types. Compressing the data before transferring it 

across the system reduces memory bandwidth 

requirements and speeds up data movement. 

Arranging data in memory in a way that minimizes 

memory access conflicts and maximizes data 

locality, further reducing access times. The quest for 

optimal performance in neural network acceleration 

often necessitates a balance between specialized 

hardware and general-purpose computing 

capabilities. Hybrid CPU-FPGA systems offer a 

compelling solution by combining the strengths of 

both worlds, creating a synergistic platform for 

efficient and flexible deep learning deployment. 

While FPGAs excel at accelerating computationally 

intensive tasks like neural network inference, CPUs 

offer versatility in handling control logic, data 

preprocessing, and general-purpose operations. This 

inherent complementary nature makes hybrid 

systems particularly well-suited for diverse deep 

0

500000

Energy efficiency  v/s Memory 
bandwidth

0
1000
2000
3000

Inference speed v/s Memory 
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learning applications. Hybrid systems effectively 

leverage these strengths are Computationally 

intensive tasks, like neural network inference, are 

offloaded to the FPGA for acceleration, while the 

CPU handles tasks that require flexibility and 

general-purpose capabilities. The modular nature of 

hybrid systems allows for scalability by adding more 

FPGAs or CPUs as needed, depending on the 

specific application requirements. By combining the 

specialized capabilities of FPGAs with the cost-

effectiveness of CPUs, hybrid systems offer a 

balance between performance and affordability. 

Examples of hybrid CPU-FPGA systems include 

Embedded Systems, Edge Computing and High-

Performance Computing. For real-time applications 

like autonomous vehicles or robotics, hybrid systems 

combine the high performance of FPGAs for image 

processing with the control and versatility of CPUs 

for decision-making and system management. 

Hybrid systems can be deployed at the edge of the 

network to enable on-device inference, reducing 

latency and data transmission costs for applications 

like facial recognition or speech recognition. Hybrid 

systems are becoming increasingly popular in high-

performance computing clusters for tasks like 

scientific simulations and large-scale data analysis. 

The development of hybrid CPU-FPGA systems is a 

testament to the ongoing pursuit of efficient and 

flexible deep learning solutions. These systems offer 

a promising path forward, balancing the advantages 

of both specialized hardware and general-purpose 

computing, enabling a wider range of deep learning 

applications across diverse industries. 

6. Conclusion 

This paper provides a comprehensive overview of the 

potential of FPGAs for accelerating neural networks. 

We have demonstrated that FPGAs offer a 

compelling alternative to traditional hardware 

solutions, particularly for applications requiring high 

performance, low latency, and energy efficiency. We 

believe that the ongoing research and development in 

this area will lead to even more powerful and 

efficient FPGA-based systems for neural network 

processing in the future as previous works have done 

[28-37]. 
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