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Abstract:  

 
Heart failure remains a critical public health issue, prompting the need for effective 

predictive modeling. This study evaluates the performance of LightGBM, SVM, Random 

Forest, and Logistic Regression models on a heart failure dataset. Logistic Regression 

achieved the highest accuracy of 86.89%, demonstrating strong performance in 

classification with balanced precision and recall. LightGBM and Random Forest also 

performed competitively, with accuracies of 85.33% and 85.25%, respectively. Notably, 

Random Forest had the highest recall (96.97%) but lower precision (80%). SVM showed 

strong recall at 93.94% but had the lowest accuracy (83.61%). The findings underscore 

the importance of model interpretability, facilitated by SHAP, LIME, and ICE, which 

enhance understanding of model decisions in healthcare applications, ultimately 

supporting improved clinical outcomes. 

1. Introduction 

 
Heart failure (HF) represents a critical global health 

challenge, impacting millions of individuals and 

contributing significantly to morbidity and mortality 

rates worldwide [1]. As a progressive condition 

characterized by the heart's inability to pump 

adequate blood to meet the metabolic demands of the 

body, heart failure encompasses a diverse array of 

clinical presentations and underlying etiologies. The 

complexity of this condition necessitates robust 

diagnostic and management strategies, as traditional 

clinical assessments often fall short in accurately 

predicting patient outcomes [2]. 

In assessing heart health and the progression of heart 

failure, factors such as an individual's age, gender, 

blood pressure, fasting blood glucose, and 

cholesterol levels are of significant importance [3].  

The rising prevalence of heart failure, compounded 

by an aging population and increasing incidence of 

risk factors such as hypertension, diabetes, and 

coronary artery disease, underscores the urgent need 

for innovative approaches to enhance risk 

stratification and optimize patient care [4]. In this 

context, machine learning (ML) has emerged as a 

powerful tool capable of transforming healthcare 

practices, particularly in the realm of cardiovascular 

disease. By harnessing large and complex datasets, 

machine learning algorithms are adept at identifying 

intricate patterns and relationships that may be 

obscured by conventional statistical methods [5]. 

Recent studies have demonstrated the efficacy of 

various machine learning methodologies in 

predicting heart failure onset, progression, and 

clinical outcomes. These algorithms can analyze 

numerous variables simultaneously, offering a 

multifaceted understanding of factors influencing 

heart failure risk [6]. The use of predictive modeling 

techniques not only enables healthcare professionals 

to make informed clinical decisions but also supports 

the creation of personalized treatment strategies 

adapted to the specific needs of individual patients. 

The predictor variables in this analysis, including 

Age, Sex, ChestPainType, RestingBP, Cholesterol, 

FastingBS, RestingECG, MaxHR, ExerciseAngina, 

Oldpeak, and ST_Slope, are consistent with the 

clinical risk factors for heart failure as outlined in the 

American Heart Association guidelines [7]. 
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This study primarily aims to predict heart failure risk 

using various machine learning algorithms, 

including Gradient Boosting Machines (GBM), 

Support Vector Machine (SVM), Random Forest, 

and Logistic Regression. In addition, it will evaluate 

the interpretability of SHAP (SHapley Additive 

exPlanations), ICE (Individual Conditional 

Expectation), and LIME (Local Interpretable Model-

agnostic Explanations) to clarify the influence of 

different predictors on patient outcomes. By 

addressing the current literature’s reliance on similar 

visualization methods, this research introduces a 

more diverse range of graphical techniques. Through 

these advanced, interpretable approaches, the study 

seeks to advance the role of machine learning in 

clinical practice, ultimately aiming to improve heart 

failure management and support patient quality of 

life while reducing healthcare burdens. 

 

2. Material and Methods 

 
2.1 Data Source  

The heart failure dataset used in this study was 

obtained from the publicly available Kaggle 

database, containing the medical records of 918 

patients. Out of these patients, 410 were diagnosed 

without heart failure, while 508 were diagnosed with 

heart failure. 

 

2.2 Predictor Variable  

Age: Refers to the patient's age in years, a crucial 

demographic factor influencing health outcomes. 

Sex: Male (M) or Female (F). 

ChestPainType: Indicates the type of chest pain 

experienced, classified into Typical Angina (TA), 

Atypical Angina (ATA), Non-Anginal Pain (NAP), 

and Asymptomatic (ASY), relevant for diagnosing 

heart conditions. 

RestingBP: Measures resting blood pressure in mm 

Hg, a key indicator of cardiovascular health. 

Cholesterol: Reflects serum cholesterol levels in 

mg/dl. 

FastingBS: Denotes fasting blood sugar levels, 

where a value of 1 indicates levels greater than 120 

mg/dl and 0 indicates otherwise, important for 

evaluating metabolic health. 

RestingECG: Describes the results of a resting 

electrocardiogram, categorized as Normal, ST 

(indicating ST-T wave abnormalities), or LVH 

(suggestive of left ventricular hypertrophy), 

essential for cardiac assessment. 

MaxHR: Represents the maximum heart rate 

achieved during exercise, a numeric value between 

60 and 202, relevant for evaluating cardiac function. 

ExerciseAngina: Indicates the presence of exercise-

induced angina, marked as Yes (Y) or No (N), 

crucial for understanding angina-related symptoms. 

Oldpeak: Measures the ST segment depression 

during exercise, represented as a numeric value, 

important for assessing ischemic changes. 

ST_Slope: Describes the slope of the peak exercise 

ST segment, categorized as Up, Flat, or Down, 

providing insights into cardiac stress response. 

Heart Failure: The output class indicating the 

presence of heart failure, where 1 signifies heart 

failure and 0 signifies normal heart function. 

 

2.3 Data Splitting 

The dataset was divided into training and test sets 

with a ratio of 70% to 30%. 

 

2.4 Model Development 

In this study, four different machine learning 

models— Gradient Boosting Machines (GBM), 

Support Vector Machine (SVM), Random Forest, 

and Binary Logistic Regression—were applied to 

analyze the heart attacks data. These algorithms 

were developed using Python version 3.10.12 to 

ensure compatibility with the latest libraries and 

features.  

For hyperparameter tuning, the Grid Search 

technique was utilized. The primary objective of this 

approach was to improve the performance of each 

model by determining the optimal combinations of 

hyperparameters. To achieve this, a k-fold cross-

validation method with k=5 was implemented to 

identify the hyperparameters that would maximize 

model efficacy. 

 

LightGBM 
LightGBM is a gradient boosting algorithm 

developed by Microsoft, optimized for large datasets 

and high-dimensional problems. Its histogram-based 

learning approach significantly reduces training time 

while optimizing memory usage. By employing a 

leaf-wise growth strategy, LightGBM enhances the 

model's generalization performance, leading to 

better outcomes. Additionally, the Gradient-based 

One-Side Sampling technique retains samples with 

larger and more effective gradients during training, 

thereby improving model performance [8,9]. 

 

SVM 

Support Vector Machine (SVM) is a widely utilized 

supervised learning method for classification, 

introduced by Vapnik et al. in the mid-1990s. It 

identifies the hyperplane that maximizes the margin 

between classes, enhancing generalization and 

reducing overfitting [10]. SVM can transform non-

linearly separable data into higher dimensions, 

allowing for the classification of complex datasets 

[11]. Its robust performance in high-dimensional 

spaces makes SVM a powerful tool for various 

classification challenges. 
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Random Forest 

Random Forest is a supervised learning algorithm 

and a prominent ensemble method developed by Leo 

Breiman [12]. It combines multiple decision trees to 

create a robust classifier, enhancing generalization 

and minimizing overfitting. Each tree is built using 

a random subset of training data, and a random 

selection of features is used at each node to 

determine splits [13]. This approach increases model 

diversity, leading to more stable and accurate 

predictions. By aggregating the outputs of numerous 

trees, Random Forest reduces variance and enhances 

overall performance. 

 

Binary Logistic Regression  

Binary logistic regression is a statistical model 

utilized for binary classification tasks, where the 

dependent variable is categorized into two distinct 

classes. This model operates on the premise that 

independent variables exert an influence on the 

outcome and employs a logistic function to evaluate 

their effects. 

L2 regularization is incorporated to control model 

complexity by minimizing the sum of the squares of 

the regression coefficients, thereby mitigating the 

risk of overfitting. This technique enhances the 

model's generalizability, resulting in more reliable 

predictions [14]. 

 

2.5 Performance metrics comparison of machine 

learning algorithms 

Four machine learning algorithms were employed to 

assess and compare model performance based on 

accuracy, precision, recall, F1 scores, and the area 

under the curve (AUC) metrics. 

 

2.6 SHAP, LIME, ICE and Interpretability of 

Machine Learning Models 

SHAP: A Game-Theoretic Approach to Feature 

Attribution 

SHAP is grounded in cooperative game theory, 

employing Shapley values to quantitatively assess 

the contribution of each feature to model predictions. 

This method ensures a fair distribution of each 

feature's influence, allowing for a nuanced 

understanding of how individual variables drive the 

model's decision-making process. By providing 

insights into which features are most significant, 

SHAP enables researchers to gain a deeper 

understanding of the underlying factors influencing 

predictions, particularly in complex models. The 

SHAP values are often represented in color-coded 

plots, where the color intensity typically reflects the 

direction and magnitude of each feature's impact. 

For instance, red may indicate a positive 

contribution to the prediction (increasing the 

likelihood of a heart attack), while blue could signify 

a negative impact (decreasing that likelihood). This 

visual representation not only aids in comprehension 

but also facilitates quicker identification of critical 

features, enhancing transparency and fostering trust 

in model outputs [15]. 

 

LIME: Local Interpretability for Complex 

Models 

LIME offers an alternative approach by generating 

local, interpretable models—often linear 

approximations—that mimic the behavior of more 

complex models around specific predictions. 

Through modifications of input data, LIME 

examines how changes affect model predictions, 

thereby identifying the most influential features for 

particular outcomes. The results of LIME analyses 

can also be depicted using color-coding, where 

certain colors represent the degree to which features 

sway the prediction in either direction. This 

localized interpretability is crucial for understanding 

the intricacies of complex models, making LIME an 

essential tool for practitioners seeking to unravel the 

decision-making processes underlying individual 

predictions [16]. 

 

ICE: Visualizing Individual Feature Impacts 

ICE complements SHAP and LIME by focusing on 

the relationship between individual features and 

model predictions. By visualizing how alterations in 

a specific feature's value influence predictions, ICE 

facilitates a detailed analysis of individual 

observations. ICE plots often employ colors to 

indicate different individuals or groups, making it 

easier to discern trends and interactions. For 

example, a gradient color scheme might show how 

different patient groups respond to changes in a 

particular feature, enhancing the comprehension of 

how variations in specific features affect overall 

model performance [17]. 
 

3. Results and Discussions 

 
The classification metrics outlined in the table 

provide a comprehensive comparison of the 

LightGBM, SVM, Random Forest, and Logistic 

Regression models applied to the heart failure 

dataset. (Table 1). 

The performance metrics for predicting heart failure 

using various algorithms reveal valuable insights 

into their effectiveness. Among the models assessed, 

Logistic Regression achieved the highest accuracy 

of 86.89%, indicating its strong overall performance 

in correctly classifying instances. This model also 

exhibited a commendable balance between precision 

and recall, with a precision of 85.71% and a recall of 

90.91%. Such results suggest that while Logistic 
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Regression is effective in identifying positive cases, 

it also maintains a low rate of false positives. 

LightGBM and Random Forest showed competitive 

results, with accuracies of 85.33% and 85.25%, 

respectively. LightGBM demonstrated a precision of 

87.74% and a recall of 86.92%, making it a robust 

choice for minimizing false negatives, although 

slightly less effective than Logistic Regression in 

overall accuracy. Meanwhile, Random Forest 

exhibited the highest recall of 96.97%, highlighting 

its capability in identifying true positive cases, 

though its precision of 80% indicates a higher 

occurrence of false positives compared to 

LightGBM. Both models also yielded strong AUC 

scores, with Random Forest achieving an AUC of 

0.9372, indicating excellent discriminative ability. 

Support Vector Machine (SVM) achieved an 

accuracy of 83.61% but excelled in recall with a 

score of 93.94%, highlighting its strength in 

capturing true cases of heart failure. However, it 

recorded a lower AUC of 0.9026 compared to 

Random Forest, which suggests that while SVM is 

effective at identifying true positives, its overall 

discriminative performance may be less robust. The 

F1 scores for all models were relatively close, with 

Logistic Regression leading at 0.8824, closely 

followed by Random Forest at 0.8767. 

Table 1: Evaluation Metrics for Machine Learning 

Algorithms 

 
SVM 

Light 

GBM 

Random 

Forest 

Logistic 

Regression 

Accuracy  0.8361 0.8533 0.8525 0.8689 

Recall 0.9394 0.8692 0.9697 0.9091 

Precision 0.7949 0.8774 0.8000 0.8571 

F1 0.8611 0.8732 0.8767 0.8824 

AUC 0.9026 0.8774 0.9372 0.9102 

 

This SHAP summary plot shows Figure 1 the impact 

of various features on the heart failure prediction 

model's output. Each point represents a SHAP value 

for a feature of an individual instance. Features are 

listed vertically, with the most influential at the top. 

Chest Pain Type: The "TA" chest pain type has a 

positive impact on predicting heart failure (SHAP 

values > 0), while the "ATA" type contributes 

negatively to the prediction. This suggests that 

patients with TA-type chest pain are more likely to 

be at risk, while those with ATA-type pain may be 

less likely. 

Resting ECG and Resting Blood Pressure: Higher 

values for the "RestingECG_ST" and lower blood 

pressure tend to contribute negatively (left side) to 

the model’s prediction. These features are 

significant, but their SHAP values are centered 

closer to zero, indicating moderate impact. 

 

 

 Figure 1. SHAP-Summary Plot 

 

The SHAP decision plot illustrates the cumulative 

effect of each feature on model predictions, showing 

how individual contributions combine to reach the 

final output. This visualization provides a clear, step-

by-step breakdown of feature impacts, enhancing 

interpretability, as shown in Figure 2. 

 
Figure 2. SHAP-Decision Plot 

 

The SHAP beeswarm plot in Figure 3 provides an 

interpretable analysis of the features used by the 

machine learning model for predicting heart failure. 

Each feature's SHAP values demonstrate its impact 

on the model’s output, indicating how the feature 

influences the likelihood of heart failure. Positive 

SHAP values suggest that a feature increases the risk 

of heart failure, while negative values suggest a 

protective effect. The color gradient indicates the 

feature values, with red representing high values and 

blue representing low values. 

Several key observations can be derived from the 

SHAP plot: 
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Chest Pain Type: "ChestPainType_TA" (typical 

angina) has a strong positive SHAP value for high 

values, indicating that its presence significantly 

increases the risk of heart failure. In contrast, 

"ChestPainType_ATA" (asymptomatic) is 

associated with lower risk, with negative SHAP 

values suggesting a protective effect. 

Resting ECG and Resting Blood Pressure: Features 

such as "RestingECG_ST" (ST-T wave abnormality 

in resting ECG) and "RestingBP" (resting blood 

pressure) play critical roles in risk assessment. 

Higher values in "RestingBP" are associated with an 

increased risk of heart failure, while 

"RestingECG_ST" high values contribute to a 

decreased risk. 

Age: Age is a significant risk factor, with higher 

values correlating positively with heart failure risk, 

as indicated by positive SHAP values for older ages. 

Oldpeak: The "Oldpeak" feature, representing ST 

depression induced by exercise, is another important 

predictor.  

Cholesterol: Cholesterol levels are similarly 

influential, with high values increasing the risk 

of heart failure. The importance bar graph 

illustrating the contribution of each feature is 

presented in Figure 4. The SHAP force plot 

visually represents the contribution of each feature 

toward a specific prediction, highlighting positive 

and negative influences on the output (Figure 5).  
 

 
Figure 3. SHAP Beeswarm Plot 

 
Figure 4. SHAP-Importance graph 

  

 
Figure 5. SHAP Force Plot 

 
The visualization in Figure 6 displays the model's 

prediction for heart failure probability, along with 

the feature contributions that influenced this 

prediction. The bar chart on the left shows the 

predicted probabilities, with a high likelihood of 

heart failure (0.98) compared to no heart failure 

(0.02). 

The right details each feature's contribution to the 

final prediction. Features with positive contributions 

(orange) increase the probability of heart failure, 

while features with negative contributions (blue) 

decrease it. Notable factors include: 

ST_Slope_Flat and ChestPainType_ATA: Both 

strongly contribute to increasing the heart failure 

probability, suggesting that a flat ST slope and 

certain types of chest pain are significant risk 

indicators. 

RestingBP and RestingECG_Normal: These 

features also contribute to the increased likelihood of 

heart failure. 

Other Features: Features like ST_Slope_Up and 

ExerciseAngina_Y contribute negatively, slightly 

reducing the predicted probability of heart failure. 

 

 
Figure 6. Lime graph 
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The ICE plot in Figure 7 illustrates the relationship 

between cholesterol levels and the model’s predicted 

probability of heart failure. The blue line represents 

the model's prediction as cholesterol levels vary, 

while red points show the distribution of original 

data points. This plot, demonstrated here for 

cholesterol, can be similarly generated for all other 

numerical features to assess their impact on model 

predictions. 

High Cholesterol Levels: For cholesterol levels 

above 300, the model’s predicted probability 

stabilizes, indicating no further increase in heart 

failure risk. 

Intermediate Cholesterol Levels (100-300): In this 

range, predictions fluctuate, with a sharp drop 

around 200. This suggests a non-linear relationship 

with heart failure risk. 

Low Cholesterol Levels: Surprisingly, very low 

cholesterol levels (below 100) are associated with 

higher predicted probabilities, possibly due to 

limited data or interactions with other features. 

 

 
Figure 7: Sample Partial Dependence Ice Graph 

 
3.1 Discussion 

 

In this study, the classification metrics reveal 

nuanced performance differences across the machine 

learning models applied to heart failure prediction. 

Logistic Regression, with the highest accuracy, 

demonstrates a well-balanced approach to precision 

and recall, effectively minimizing both false 

positives and false negatives. LightGBM and 

Random Forest also achieved competitive results, 

with Random Forest excelling in recall, indicating its 

strength in identifying true positive cases. SVM 

showed strong recall performance as well, though its 

lower AUC suggests limitations in overall 

discriminative ability. These findings underscore the 

importance of selecting algorithms based on the 

specific requirements of heart failure prediction, 

such as the need to balance precision with recall or 

prioritize high sensitivity to positive cases. 

For the benefits of the graphs; Beeswarm Plot 

analysis highlights the features that most strongly 

influence the model’s predictions of heart failure 

risk, providing insights into the model’s decision-

making process. Key features such as age, blood 

pressure, and specific chest pain types significantly 

affect the risk assessment, with certain feature values 

(e.g., high blood pressure or specific types of chest 

pain) being associated with increased risk. This 

interpretability analysis thus enhances our 

understanding of the model’s predictive behavior 

and aids in identifying critical factors in heart failure 

risk assessment.  

This ICE plot highlights the complex impact of 

cholesterol on heart failure predictions, particularly 

in intermediate ranges. The variability observed 

across cholesterol levels suggests that cholesterol 

may interact with other features in determining heart 

failure risk. This individualized interpretation aids in 

understanding how the model's predictions vary as 

cholesterol levels change for a particular instance. 

This LIME breakdown provides a clear view of 

which features most strongly influenced the model's 

decision, allowing for better interpretability of the 

heart failure risk prediction. 

The SHAP plot visually identifies the importance of 

each feature, showing how high or low values of 

these features influence the model's output towards 

or away from a prediction of heart failure. 

El-Sofany and colleagues explored machine learning 

algorithms for predicting heart failure, achieving 

notable results. They evaluated ten algorithms, 

including XGBoost, SVM, and random forests. The 

XGBoost algorithm demonstrated the best 

performance, with an accuracy of 97.57%, 

sensitivity of 96.61%, specificity of 90.48%, 

precision of 95.00%, F1 score of 92.68%, and AUC 

of 98% when applied to a combined dataset using the 

SF-2 feature subset [18]. In our study, we also found 

that the Random Forest algorithm yielded the best 

results, underscoring the effectiveness of these 

machine learning approaches in enhancing early 

detection of heart failure. 

Ahmed and colleagues investigated the role of 

explainable artificial intelligence (XAI) in 

enhancing transparency in machine learning models 

for diabetes prediction. They utilized a logistic 

regression architecture trained on 253,680 survey 

responses from diabetes patients. Employing model-

agnostic techniques such as LIME and SHAP, the 

study generated local and global explanations for 

predictions made by both the logistic regression and 

Random Forest models on validation and test sets. 

Their findings revealed a high accuracy of 86% on 

the test set, highlighting the potential of integrating 

machine learning with XAI to improve diabetes 

prediction, diagnosis, and treatment. The 

comparative analysis of LIME and SHAP 

underscored their respective strengths and 
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weaknesses in interpretation, while also addressing 

future applications and challenges in the field [19]. 

Additionally, our study includes a detailed 

explanation of SHAP graph types, LIME, and 

internal graphics with illustrative examples. 

Dave and colleagues explore the role of Explainable 

Artificial Intelligence (XAI) in enhancing the 

reliability of AI applications in healthcare. They 

address concerns related to transparency and model 

bias, highlighting various interpretability techniques 

that can improve the understandability of AI 

systems. Using examples from heart failure datasets, 

the study emphasizes the importance of XAI in 

fostering trust in medical diagnostic processes, 

ultimately supporting broader adoption of AI in 

healthcare settings and also other publications [20-

27]. 

 

4. Conclusions 
 

In conclusion, SHAP, LIME, and ICE collectively 

enhance the interpretability of machine learning 

models, each offering distinct benefits. SHAP 

provides comprehensive explanations, LIME 

delivers localized insights, and ICE visualizes 

individual feature impacts. This integration is crucial 

in healthcare applications, where understanding 

model decision-making is vital for reliable 

outcomes. By utilizing these tools, practitioners can 

improve the trustworthiness of machine learning, 

leading to better clinical decisions and patient care. 

The performance metrics from the heart failure 

dataset highlight the importance of interpretability in 

model selection. Logistic Regression's highest 

accuracy of 86.89% and balanced precision and 

recall demonstrate its effectiveness, while 

LightGBM and Random Forest also offer strong 

results. Random Forest's high recall and AUC 

further emphasize the need for interpretability tools 

to understand model strengths. This holistic 

approach is essential for fostering trust in machine 

learning applications in healthcare. 
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