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Abstract:  
 

We examine the qualitative behaviour of solutions to a particular class of third-order 

nonlinear delay difference equations in this work. There are specified sufficient 

requirements for the solution to be oscillatory. An example is provided to highlight the 

main findings. 

 

1. Introduction 
 

In this research, we aim to explore the oscillatory 

characteristics exhibited by solution in nonlinear 

third order delay difference equation of the form 
Δ(𝑤(℘)(Δ2𝑧(℘))𝛾) = 𝑙(℘)𝑧𝛾                 (1)  

We make the following assumptions: 

(i) The sequences {𝑙(℘)} and {𝑤(℘)} are positive 

real sequences, 

(ii) 𝛾 is expressed as ratios of positive odd integers 

and 𝛾 ≥ 1, 

(iii) 𝜇(℘) ≤ ℘ and 𝜇(℘) → ∞ as ℘ → ∞. 

Additionally, we assume that: 

𝑄(℘, ℘0) = ∑  

℘−1

𝑠=℘0

 𝑤
−

1
𝛾(𝑠) → ∞ as ℘ → ∞             

                                  (2)

 

A nontrivial real valued sequence {𝑧(℘)} that 

fulfills (1) is considered a solution in the context of 

(1). Solutions that vanish identically in some region 

of infinity are excludedfrom consideration. If a 

solution z of (1) is neither finally positive nor 

negative, it is referred to as nonoscillatory; if it is, it 

is considered oscillatory. If every solution to an 

equation is oscillatory, then the equation itself is 

said to be oscillatory. 

An exciting field of study that has spanned several 

decades has been the investigation of oscillation 

criteria for different kinds of differential equations. 

Several articles and books, including [1-9], have 

been written about this topic and provide insightful 

information. This paper's main goal is to present 

new oscillation criteria for (1) by comparing it to 

either a first-order linear delay difference equation 

or a third-order linear difference equation. The 

oscillating nature of these linear equivalents has 

been widely addressed in the literature. 

 

2. Main Results 
 

We use the following lemma to establish our 

findings. Lemma 2.1. Let {𝑙(℘)} be a sequence of 

positive real numbers, 𝑝 is a positive real number 

and 𝑓: 𝑅 → 𝑅 is a continuous nondecreasing 

sequence and 𝑧𝑓(𝑧) > 0 for 𝑧 ≠ 0. If the first order 

delay difference inequality 

http://dergipark.org.tr/en/pub/ijcesen
http://www.ijcesen.com


S. Kaleeswari, M. Buvanasankari / IJCESEN 10-4(2024)946-951 

 

947 

 

 

Δ𝑥(℘) + 𝑙(℘)𝑓(𝑥(𝜇(℘)))) ≤ 0 

has an eventually positive solution, so does delay equation 

Δ𝑥(℘) + 𝑙(℘)𝑓(𝑥(𝜇(℘))) = 0 
(II)If the first order advanced difference inequality 

Δ𝑥(℘) − 𝑙(℘)𝑓(𝑥(𝜇(℘))) ≥ 0 
has an eventually positive solution, then so does the corresponding advanced difference equation. 

Δ𝑥(℘) − 𝑙(℘)𝑓(𝜇(℘))) = 0 
An extension of the discrete analogue of known outcomes is provided by this lemma. Refer to Lemma 6.2.2 

in both [2] and [4]. The evidence is available right away. 

Theorem 2.2. Assume 𝛾 ≥ 1 and satisfying conditions (i)-(iii) along with (2), assume that there exists a 

nondecreasing sequence 𝜂(℘) and 𝜎(℘) ∋ 

𝜇(℘) ≤ 𝜎(℘) for ℘ ≥ ℘1 ≥ ℘0                                                                 (3)

𝜂(℘) < ℘, 𝜂(𝜇(℘)) ≤ 𝜇(℘), 𝜁(℘): 𝜂 (𝜂(𝜇(℘))) > ℘ for ℘ ≥ ℘0   (4)
 

If the advanced equation 

Δ𝑅(℘) −
1

𝛾
𝑙(℘) [ ∑  

𝜇(℘)

𝑠=𝜂(𝜇(℘))

 𝑄(𝑠, 𝜂(𝑠))]

𝛾

𝑅(𝜁(℘)) = 0                                                  (5)  

is oscillatory and the first order delay difference eqauation 

Δ𝑉(℘) +
1

𝛾
(𝜃𝛾)𝑙(℘)(𝑤−1(℘))𝜇𝛾(℘)(𝜎(℘) − 𝜇(℘)) (𝑉(𝜎(℘))) = 0                        (6)  

is oscillatory for all large 𝜃 ∈ (0,1) and ℘ ≥ ℘1 ≥ ℘0, then (1) is oscillatory. 

Proof. Let 𝑧(℘) be a nonoscillatory solution of (1) say 𝑧(℘) > 0 and 𝑧(𝜇(℘)) > 0 for ℘ ≥ ℘1, for some 

℘1 ≥ ℘0. It follows from (1) that 

Δ(𝑤(℘)(Δ2𝑧(℘))𝛾) = 𝑙(℘)𝑧𝛾(𝜇(℘)) ≥ 0 
We have two cases: 

(i) 𝑧(℘) > 0; Δ𝑧(℘) ≥ 0 and Δ2𝑧(℘) ≥ 0 

(ii) 𝑧(℘) > 0; Δ𝑧(℘) ≥ 0 and Δ2𝑧(℘) ≤ 0 

From (1), we see that 

Δ(𝑤(℘)(Δ2𝑧(℘))𝛾) = Δ (𝑤
1
𝛾(℘)Δ2𝑧(℘))

𝛾

 

Δ - Derivative yields 

Δ(𝑤(℘)(Δ2𝑧(℘))𝛾) = Δ (𝑤
1
𝛾(℘)Δ2𝑧(℘))

 = 𝛾 (𝑤
1
𝛾(℘)Δ2𝑧(℘))

𝛾−1

Δ (𝑤
1
𝛾(℘)Δ2𝑧(℘))

 = 𝑙(℘)𝑧𝛾(𝜇(℘))

 

and so, we get 

Δ (𝑤
1
𝛾(℘)(Δ2𝑧(℘))) =

1

𝛾
(𝑤

1
𝛾(℘)(Δ2𝑧(℘))1−𝛾𝑙(℘)𝑧𝛾(𝜇(℘))                                         (7)  

We start by thinking about Case (i) and the inequality. 

Δ (𝑤
1
𝛾(℘)(Δ2𝑧(℘))) =

1

𝛾
(𝑤

1
𝛾(℘)(Δ2𝑧(℘))1−𝛾𝑙(℘)𝑧𝛾(𝜇(℘))                                         (8)  

Consequently, 

Δ𝑧(℘) ≥ Δ𝑧(℘) − Δ𝑧(𝜂(℘)) = ∑  

℘−1

(𝑠=𝜂(℘))

 𝑤
−1
𝛾 (𝑠) (𝑤

1
𝛾(𝑠)Δ𝑧(𝑠))

 ≥ 𝑄(𝑛, 𝜂(℘))𝑤
1
𝛾(𝜂(℘))Δ2𝑧(𝜂(℘)).

 

Again we get, 
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𝑧(℘) ≥ ∑  

℘−1

𝑠=𝜂(℘)

 𝑄(𝑠, 𝜂(𝑠))𝑤
1
𝛾𝜂(℘)Δ2𝑧(𝜂(𝑠))

                                                         ≥ 𝑤
1
𝛾 (𝜂(𝜂(℘))) Δ2𝑧 (𝜂(𝜂(℘))) ∑  

℘−1

𝑠=𝜂(℘)

 𝑄(𝑠, 𝜂(𝑠)).                         (9)

 

Using (9) in (8), we get 

Δ (𝑤
1
𝛾(℘)Δ2𝑧(℘)) ≥

1

𝛾
(𝑤

1
𝛾(℘)Δ2𝑧(℘))

1−𝛾

𝑙(℘) [𝑤
1
𝛾(𝜁(℘))Δ2𝑧(𝜁(℘))] [ ∑  

𝜇(℘)−1

𝑠=𝜂(𝜇(℘))

 𝑄(𝑠, 𝜂(𝑠))]

𝛾

≥
1

𝛾
[𝑤

1
𝛾(𝜁(℘))Δ2𝑧(𝜁(℘))]

1−𝛾

[𝑤
1
𝛾(𝜁(℘))Δ2𝑧(𝜁(℘))]

𝛾

𝑙(℘)

[ ∑  

𝜇(℘)−1

𝑠=𝜂(𝜇(℘))

 𝑄(𝑠, 𝜂(𝑠))]

𝛾

≥
1

𝛾
𝑙(℘) [ ∑  

𝜇(℘)−1

𝑠=𝜂(𝜇(℘))

 𝑄(𝑠, 𝜂(𝑠))]

𝛾

𝑤
1
𝛾(𝜁(℘))Δ2𝑧(𝜁(℘))

 

Since 𝑤(℘) is a nondecreasing sequence and 𝛾 > 1, we have 

Δ𝑅(℘) = Δ (𝑤
1
𝛾(℘)Δ2𝑧(℘)) ≥

1

𝛾
𝑙(℘) [ ∑  

𝜇(℘)−1

𝑠=𝜂(𝜇(℘))

 𝑄(𝑠, 𝜂(𝑠))]

𝛾

𝑅(𝜁(℘)) 

The related difference (5) likewise has a positive solution, which is a contradiction, as follows from Lemma 

2.1(II). 

Subsequently, we examine Case (ii). It is evident that a constant 0 ∈ (0,1) exists such that, 

𝑧(𝜇(℘)) ≥ 𝜃𝜇(℘)Δ𝑧(𝜇(℘)) for ℘ ≥ ℘1                                                                          (10)  

Using this inequality in (7), we have 

Δ (𝑤
1
𝛾(℘)Δ2𝑧(℘)) =

1

𝛾
(𝑤

1
𝛾(℘)Δ2𝑧(℘))

1−𝛾

𝑙(℘)𝑧𝛾(𝜇(℘))                                     (11)  

and using (10) in (11), we obtain 

Δ (𝑤
1
𝛾(℘)Δ2𝑧(℘)) ≥

1

𝛾
(𝑤

1
𝛾(℘)Δ2𝑧(℘))

1−𝛾

𝑙(℘)[𝜃𝜇(℘)𝑧(𝜇(℘))]𝛾                         (12)  

Set 𝑌(℘) = Δ𝑥(℘), we see that 

Δ (𝑤
1
𝛾(℘)Δ𝑌(℘)) ≥

1

𝛾
(𝑤

1
𝛾(℘)𝑌(℘))

1−𝛾

𝑙(℘)[𝜃𝜇(℘)𝑦(𝜇(℘))]𝛾 

or 

Δ (𝑤
1
𝛾(℘)Δ𝑌(℘)) ≥

1

𝛾
𝜃𝛾𝑙(℘) (𝑤

1
𝛾(℘))

1−𝛾

𝜇𝛾(℘)𝑌(𝜇(℘))                                          (13)  

Now, for 𝑚 ≥ 𝑝 ≥ ℘1 and see that 

𝑌(𝑝) − 𝑌(𝑚) ≥ (𝑚 − 𝑝)(−Δ𝑌(𝑚)) 

Setting 𝑝 = 𝜇(℘) and 𝑚 = 𝜎(℘), we have 

𝑌(𝜇(℘)) ≥ (𝜎(℘) − 𝜇(℘)) (−Δ𝑌(𝜎(℘)))                                                                        (14)  

Using this inequalites in (12), we have 

Δ (𝑤
1
𝛾(℘)Δ𝑌(℘)) ≥

1

𝛾
𝜃𝛾𝑙(℘) (𝑤

1
𝛾(℘))

1−𝛾

𝜇𝛾(℘)(𝜎(℘) − 𝜇(℘))(−Δ𝑌(𝜎(℘)))

−Δ𝑉(℘) ≥
1

𝛾
𝜃𝛾𝑙(℘)𝑤−1(℘)𝜇𝛾(℘)(𝜎(℘) − 𝜇(℘))(𝑉(𝜎(℘)))
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where 𝑉(℘) = −𝑤
1

𝛾(℘)Δ𝑌(℘). Lemma 2.1(I) implies that there is a contradiction in that the comparable 

difference (6) likewise has a positive solution. The evidence is now complete. 

Corollary 2.3. Assume 𝛾 ≥ 1 and satisfying conditions (i)-(iii) along with (2), assume that ∃𝑎 

nondecreasing sequence 𝜂(℘) and 𝜎(℘) such that (3) and (4) hold. If 

 

lim inf
℘→∞

  ∑  

𝜇(℘)−1

𝑠=𝜂(𝜇(℘))

 𝑙(𝑠)𝑤−1(𝑠)𝜇𝛾(𝑠)(𝜎(𝑠) − 𝜇(𝑠)) = ∞                                                       (15)  

 

then it follows that (1) is oscillatory. 

The comparison findings using third order linear difference inequalities are as follows. 

 

Theorem 2.4. Assuming that there is a nondecreasing sequence 𝜂(℘) and 𝜎(℘) such that (3) and (4) hold, 

let conditions (i)-(iii) and (2) hold. If the inequality 

 

Δ (𝑤
1
𝛾(℘)Δ2𝑧(℘)) −

1

𝛾
[ ∑  

𝜇(℘)−1

𝑠=𝜂(𝜇(℘))

 𝑄(𝑠, 𝜂(𝑠))]

𝛾−1

𝑙(℘)𝑧(𝜇(℘)) ≥ 0                                      (16)  

 

has no eventually positive nondecreasing solution for ℘ ≥ ℘1 ≥ ℘0 and the inequality 

 

Δ (𝑤
1
𝛾(℘)Δ2𝑧(℘)) −

1

𝛾
(𝜃𝜇(℘)(𝜎(℘) − 𝜇(℘)) (𝑤𝛾‾ (𝜎(℘))))

𝛾−1

𝑙(℘)𝑧(𝜇(℘)) ≥ 0        (17)  

 

has no eventually positive nonincreasing solution, then (1) is oscillatory. 

Proof. Let 𝑧(℘) be a nonoscillatory solution of (1) say 𝑧(℘) > 0 and 𝑧(𝜇(℘)) > 0 for some ℘1 ≥ ℘0. 

Following the steps outlined in the Theorem 2.1 proof, we arrive at the situations (I) and (II). We examine 

case (I). It is clear from (9) that 

𝑤
1
𝛾(℘)Δ2𝑧(℘) ≤ 𝑤

1
𝛾(𝜁(℘))Δ2𝑧(𝜁(℘)) ≤ [ ∑  

𝜇(℘)−1

𝑠=𝜂(𝜇(℘))

 𝑄(𝑠, 𝜂(𝑠))]

−1

𝑧(𝜇(℘)) 

and, so 

(𝑤
1
𝛾(℘)Δ2𝑧(℘)) ≥ [ ∑  

𝜇(℘)−1

𝑠=𝜂(𝜇𝜇(℘))

 𝑄(𝑠, 𝜂(℘))]

−1

(𝑧(𝜇(℘)))1−𝛾 

 

Using this inequality in (9), we have 

 

Δ (𝑤
1
𝛾(℘)Δ2𝑧(℘)) ≥

1

𝛾
[ ∑  

𝜇(℘)−1

𝑠=𝜂(𝜇(℘))

 𝑄(𝑠, 𝜂(℘))]

𝛾−1

[𝑧(𝜇(℘))]1−𝛾𝑙(℘)𝑧𝛾(𝜇(℘)) ≥ 0 

or 

Δ (𝑤
1
𝛾(℘)Δ2𝑧(℘)) −

1

𝛾
[ ∑  

𝜇(℘)−1

𝑠=𝜂(𝜇(℘))

 𝑄(𝑠, 𝜂(𝑠))]

𝛾−1

[𝑧(𝜇(℘))]1−𝛾𝑙(℘)𝑧(𝜇(℘)) ≥ 0 

 

By condition (16), we arrive desired contraction. 

We then examine Case (II). Similar to the theorem 2.1 Case (II) proof, we get (10) and (14), with the last one 

having the following form: 

Δ𝑧(𝜇(℘)) ≥ (𝜎(℘) − 𝜇(℘))(−Δ2𝑧(𝜎(℘))) 
Thus, we have 
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𝑧(𝜇(℘)) ≥ 𝜃𝜇(℘)(𝜎(℘) − 𝜇(℘))𝑤
1
𝛾(𝜎(℘)) (−𝑤

1
𝛾(℘)Δ2𝑧(𝜎(℘))) 

or 

[[𝜃𝜇(℘)(𝜎(℘) − 𝜇(℘))𝑤
−1
𝛾 (𝜎(℘))]

−1

𝑧(𝜇(℘))] ≥ (−𝑎
1
𝛾(𝜎(℘)Δ2𝑧(𝜎(℘)))

[𝜃𝜇(℘)(𝜎(℘) − 𝜇(℘))𝑤
−1
𝛾 (𝜎(℘))−1𝑧(𝜇(℘))]

1−𝛾

 ≤ (−𝑤
1
𝛾(𝜎(℘)Δ2𝑧(𝜎(℘)))1−𝛾

 ≤ (−𝑤
−1
𝛾 (℘)Δ2𝑧(℘))

1−𝛾

.

 

Using this inequality in (11) we have 

Δ (𝑤
1
𝛾(℘)Δ2𝑧(℘)) ≥ [(𝜃𝜇(℘)(𝜎(℘) − 𝜇(℘))𝑤

−1
𝛾 (𝜎(℘)))

−1

𝑧(𝜇(℘))]

1−𝛾

𝑙(℘)(𝑧(𝜇(℘)))𝛾 

(or) 

Δ (𝑤
1
𝛾(℘)Δ2𝑧(℘)) ≥ [(𝜃𝜇(℘)(𝜎(℘) − 𝜇(℘))𝑤

−1
𝛾 (𝜎(℘)))

−1

𝑧(𝜇(℘))]

1−𝛾

𝑙(℘)𝑧(𝜇(℘)) 

We reached the intended contradiction via (16). The evidence is now complete. 

 

 

Example 2.5. Consider the third order delay difference equation 

Δ (
1

℘3
(Δ2𝑧(℘))3) =

1

℘5
𝑧3 (

℘

4
)                                             (18)  

Here 𝛾 = 3, 𝑤(℘) =
1

℘3 , 𝜇(℘) =
℘

4
, 𝑙(℘) =

1

℘5. We let 𝜎(℘) =
℘

2
. 

For condition (17) we find 

∑  

℘−1

𝑠=
℘
2

1

𝑠5

𝑠6

43
(

𝑠

4
) → ∞ 

 

as ℘ → ∞. At this point, Corollary 2.3's requirements are completely met. Eq.(18) is oscillatory in 

that case. 
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