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Abstract:  
 

The burgeoning importance of Internet of Things (IoT) and its diverse applications 

have sparked significant interest in study circles. The inherent diversity within IoT 

networks renders them suitable for a myriad of real-time applications, firmly 

embedding them into the fabric of daily life. While IoT devices streamline various 

activities, their susceptibility to security threats is a glaring concern. Current 

inadequacies in security measures render IoT networks vulnerable, presenting an 

enticing target for attackers. This study suggests a novel dealing to address this 

challenge through the execution of Intrusion Detection Systems (IDS) leveraging 

superior deep learning models. Inspired by the benefits of Long Short Term Memory 

(LSTM), we introduce the Genetic Bee LSTM(GBLSTM) networks for the 

development of intelligent IDS capable of detecting a wide range of cyber-attacks 

targeting IoT area. The methodology comprises four key execution: (i) collection of 

unit for profiling normal IoT device behavior, (ii) Identification of malicious devices 

during an attack, (iii) Prediction of attack types implemented in the network. Intensive 

experimentations of the suggested IDS are conducted using various validation 

methods and prominent metrics across different IoT threat scenarios. Moreover, 

comprehensive experiments are conducted to evaluate the suggested models alongside 

existing learning models. The results demonstrate that the GBLSTM-models 

outperform other intellectual models in terms of accuracy, precision, and recall, 

underscoring their efficacy in securing IoT networks. 

 

1. Introduction: 

In Moder era, the Internet of Things (IoT) is firmly 

entrenched itself across a spectrum of applications 

including healthcare, automation, manufacturing, 

commerce, and residential and commercial sectors. 

The burgeoning array of IoT applications undeniably 

offers enhanced comfort across various facets of 

individuals' paths [1]. IoT represents a fusion of 

interlinked gadgets or entities interlinked to the web, 

distinguished by distinct addresses for identification. 

These items can be remotely controlled and possess 

the capability to interact with one another, along 

with gathering ambient data and converting it into 

valuable insights. Nevertheless, the self-arranging 

nature and limitations in resources of IoT networks 

render them vulnerable to an array of risks [2]. 

The inadequate protocols and minimised of 

advanced intrusion identification systems in IoT 

networks expose to various forms of attacks 

including data breaches, impersonation, Distributed 

Denial of Service (DDoS), and insecure gateways 

[3-7]. Such vulnerabilities can result in catastrophic 

consequences, disrupting system availability and 

potentially triggering system outages. These issues 

hinder the widespread adoption of IoT on a global 

scale, consequently impeding its growth rate [8,9]. 

There exist certain simplistic approaches for 

addressing the aforementioned issues. Techniques 

such as Signature-based Intrusion Detection 

Systems (IDS) identify attacks and malicious nodes 

by storing data in databases. Nonetheless, these 

methods introduce processing overhead and are 

vulnerable to unidentified hazard. The emergence of 
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AI Models has enhanced the design of IDS, offering 

distinct advantages over conventional 

methodologies, effectively mitigating the challenge 

of detecting unknown attacks [10-13].  While 

machine and deep learning algorithm-driven 

Intrusion Detection Systems (IDS) present 

numerous advantages over traditional approaches, 

they encounter challenges with overfitting as the 

volume of attacks grows [14]. Therefore, it is 

imperative to carefully choose deep learning 

algorithms to develop an intelligent IDS capable of 

scaling with the expanding array of attacks. In 

summary, there's a necessity for an intelligent and 

adaptable IDS to anticipate various attack categories 

within IoT networks.  The primary aim of this study 

is to initiate an innovative IoT secure methodology 

that is smart, scalable, and reliable for predicting 

various types of attacks across different scenarios. 

To achieve this goal, a new DL framework called 

GBLSTM (Genetic Bee Long Short Term Memory) 

is introduced. By incorporating the whale 

optimization algorithm into the LSTM model, the 

framework presents enhanced scalability, making it 

well-suited for predicting a wide range of attacks. 

Moreover, the GBLSTM not only forecasts attacks 

but also provides recommendations for trust-based 

countermeasures to safeguard networks against 

these threats. The research includes extensive 

experimentation with the suggested learning model 

using numerous benchmarks and gathering data in 

live time. Further analysis, experimentation various 

performance metrics and comparative studies has 

been briefly described in the forthcoming sections. 

Section-II discusses about other research works on 

different IoT attacks with malicious node detection. 

Section-III delineates the real-time data acquisition 

process, attack model descriptions, suggested 

machine learning methodologies, and system 

architecture. In Section-IV, the experimental 

configuration and additional benchmark information 

are expounded. Section-V showcases the outcomes 

of thorough analysis and juxtaposition with 

contemporary methodologies. Lastly, Section-V 

encapsulates the conclusions alongside prospective 

avenues for further exploration. 

 

2. Related works 
 

Abhishek et al. extensively discuss numerous ML 

[15]. They analyze and authenticate Gradient 

Boosting, ensemble classifiers, and random forest 

algorithms utilizing the Raspberry Pi 3 platform. 

Misra and others [16] introduced an IDS based on 

Learning Automata, focusing on specification-based 

intrusion detection to counter distributed Denial of 

Service (DoS) attacks targeting IoT. Instead of 

individual devices, they concentrate on securing the 

IoT middleware layer. Their envisioned security 

framework sets a predefined limit for the volume of 

requests a middleware layer can handle. Upon 

surpassing this threshold, the system identifies an 

ongoing attack. Lee et al. introduced a threshold-

oriented intrusion identification mechanism tailored 

for IoT area. Regular power consumption 

monitoring is employed to identify rogue nodes 

within the network. Default threshold values are 

assigned to each network and continuously 

monitored. If any aberration in energy consumption 

is detected, specific nodes are flagged as malicious 

and subsequently expelled [17,18]. Tama et 

al. introduced an intrusion detection system (IDS) 

based on anomaly detection, utilizing a gradient 

boosting machine (GBM) as its core detection 

mechanism [19]. They optimized the GBM's 

parameters through a grid search and evaluated the 

IDS's performance using both retention and cross-

folding techniques on 3 distinct datasets: UNSW-

NB15, NSL-KDD, and GPRS. Their study 

demonstrated that the suggested IDS outperformed 

fuzzy classifiers, GAR forests, and tree populations 

like precision, specificity, sensitivity, and area under 

the curve (AUC) of the sub-curve. Primartha et al. 

conducted an investigation into the efficacy of RF-

based Intrusion Detection Systems (IDS) in terms of 

both accuracy and false alarm rates [20]. They 

utilized NSL-KDD, UNSW-NB15, and GPRS 

datasets for both training and model testing 

purposes. The performance of the suggested IDS 

was evaluated across various tree configurations, 

revealing that a set comprising 800 trees yielded the 

most favourable outcomes, while a set of 20 trees 

resulted in the least desirable performance. 

Additionally, through statistical analysis employing 

the Freedman classification, it was determined that 

the superior results obtained by the RF-based IDS 

were comparable to those achieved by hybrid 

classifiers such as Random + Naive Bayes, as well 

as distinct classifiers like NBTree and multilayer 

perceptron. 

 

3. Proposed methodology    

This segment delves into the operational framework 

of the suggested Intrusion Detection System (IDS), 

comprising data gathering modules, feature 

abstraction, and the envisioned training algorithms. 

 

3.1 System overview 

An outline of the envisaged GBLSTM-NET based 

Intrusion Detection System (IDS) and 

Recommendation system is depicted in figure 1. The 

initial tier of the architecture will replicate the live 

time emulation of IoT networks utilizing MAC 

addresses. Subsequently, the second tier 
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Figure 1 Overall Architecture for the Proposed 

Framework 

 

incorporates a collection of data unit engineered to 

gather packets during both normal and hazard 

scenarios. Moving to the third tier, various features 

are extracted from the preprocessed data, which are 

then utilized to train the suggested deep learning 

model aimed at predicting hazards. Lastly, the 

architecture employs Whale Integrated Long Short-

Term Memory (LSTM) networks to forecast 

malicious nodes pertaining to five major attack 

types. Upon detecting an attack, the system 

determines: a) Determine whether the node exhibits 

malicious behavior or operates within normal 

parameters, b) the specific the form of assault, and c) 

The IP address (MAC) of the targeted device during 

the assault. Following a cybe assault, the suggested 

framework propagates warning notifications across 

all network endpoints via a forwarding mechanism. 

 

3.3 Feature extraction: 

It’s imperative to oversee the nature of 

characteristics within the amassed collection of data. 

Subsequently, the initial data undergo 

preprocessing, yielding computed subsets of 

features, which are then presented in Table 1. 

Table 2 depicts the diverse attributes computed for 

optimal prognostic maneuvers within network 

systems. Accordingly, it can be posited that said 

attributes manifest as numerical values, thereby 

enhancing the efficacy of classifiers. Consequently, 

the pivotal endeavor resides in the transformation of 

numerical attributes into vectors through diverse 

methodologies. Notably, label encoding and one-hot 

encoding methodologies emerge as predominant 

modalities for such conversion processes. In the 

present study, label encoding was favored owing to 

its superior simplicity. These encoding 

methodologies were employed for the anticipation 

and classification of malevolent nodes as well as 

discerning the nature of attacks. Additionally, the 

distribution frequency of hazards across the dataset 

and ramifications on attributes are illustrated in a 

corresponding figure. From the figure 2 it’s evident 

that factors like Data Packet Size, IP Address 

Conflicts, Throughput, and Bandwidth significantly 

influence various types of attacks. Consequently, 

these attributes, in addition to addressing features, 

are employed to train the model with precision. 

3.4 Proposed learning model: 

This segment provides an initial glimpse into Long 

Short-Term Memory (LSTM), the Whale 

Optimization Algorithm, and the suggested deep 

learning architectures of GBLSTM. 

Genetic bee: 

In this segment, the innovative Genetic Bee Colony 

(GBC) algorithm designed for identifying forward-

thinking attributes (figure 3). GBC combines two 

well-established algorithms, ABC and GA, in a 

novel hybrid meta-heuristic approachment. The 

primary mission of this algorithm is to pinpoint the 

most advantageous attributes to enhance accuracy. 

Metaheuristic algorithms strive to discover the best 
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Table 1. List of attributes retrieved from Datasets 

Sl.no Features Used Data Types Illustration 

01 Source ID Numerical Identifies the IoT nodes that function as the origin for transmitting data. 

02 
Source 

Address 

Numerical 

values 
Provides the location of the originating IoT nodes. 

03 Destination ID Numerical 
Signifies the identification of the IoT nodes functioning as recipients for 

data. 

04 
Destination 

Address 
Numerical Address of the receiver. 

05 No of Packets 

Numerical 

(100-1200 

bytes) 

Represents the count of packets sent/received. 

06 Time Stamps Numerical Documents the temporal spans for various data transmission instances. 

07 
TCP/IP Data 

Rates 
Numerical 

Highlights differences in protocol distributions between normal and attack 

data; under normal conditions, UDP packets have superior performance 

over TCP, whereas this is reversed during attacks, aiding in improved 

attack classification. 

08 
IP Address 

Conflict 

Nominal 

values 

Identifies potential terminal access points of an IoT device for analysis of 

exploitation risks. 

09 Throughput Numerical Detects assaults by analyzing variations in data flow attributes. 

10 Bandwidth Numerical 
Computes the network bandwidth utilized by various IoT devices across 

different scenarios, including typical and adversarial conditions. 

11 
No of Bytes 

Transmitted 
Numerical Quantity of bytes transmitted by individual nodes within the network. 

12 
No of Bytes 

Received 
Numerical Volume of bytes received by each node within the network. 
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(b) 
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(d)

 
(e) 

Figure 2. The influence of various types of attacks. 

feasible solution, finding the right equilibrium 

between exploiting and exploring resources is 

crucial. While the original ABC algorithm excels in 

exploration by uncovering new solutions in the 

optimization search space, it lacks in exploitation, 

resulting in prolonged computational times required 

for convergence to the optimal solution. On the other 

hand, GA demonstrates proficient crossover and 

mutation operations but falters in effectively 

exploring the evolutionary search space, leading to 

premature convergence to local optima. Thus, to 

achieve a harmonious blend of exploitation and 

exploration, leveraging the strengths of nature-

inspired metaheuristic evolutionary algorithms, and 

mitigating their weaknesses like premature 

convergence and computational time, our proposed 

GBC algorithm integrates GA operators with the 

ABC algorithm. This fusion yields a modified ABC-

based algorithm tailored for constrained 

optimization. In our adapted approach, GA 

exploitation operations are embedded into the 

exploitation phase during the onlooker bee stage to 

facilitate information exchange among worker bees 

and onlooker bees for discovering optimal solutions. 

Similarly, GA exploitation operations are integrated 

into the scout bee stage to streamline the process of 

replacing exhausted solutions. The proposed 

algorithm comprises five stages: preprocessing, 

representation and initialization, employee bee, 

onlooker bee, and scout bee phases. 

Process mechanism: 

Step 1: Set the initial count of bee colonies gm , 

establish the pivotal constant Q determine the 

transfer intensity 𝜎,  specify the significance of the 

transfer factor 𝛼
𝛽 he minimum number of iterations Gmin , 

specify the maximum number of iterations maxG , 

designate the termination threshold for Genetic Bee 

algorithm iterations max Kmax. 

Step 2: Place the bees within the starting point, as 

 

Figure 3 The main phases of the Genetic Bee Colony 

(GBC) algorithm. 

per the given formula, to advance the progression of 

the primary factor and accomplish the selection of all 

nodes. 

𝑝𝑖𝑗
𝑘 = {

𝜌𝑖𝑗(𝑁𝐶)𝛼𝜂𝑖𝑗(𝑁𝐶)𝛽

∑ 𝜌𝑖𝑠(𝑁𝐶)𝛼𝜂𝑖𝑠(𝑁𝐶)𝛽.
𝑗∈tabu𝑘

1

                                     

j∈tabuk                                                     (1) 

                                                                                     

Otherwise                                                                    

In (1), ηij= 1/ T(j) T( j)( j ma) represents 

the processing time of j nodes. 

Step 3: Utilize the initial solution discovered by bees 

as the foundational population for the genetic 

algorithm. If the ongoing iteration K of the genetic 

bee algorithm is below the maximum iteration limit 

Kmax, commence by assessing the fitness of each 

individual, identifying the most adept one, and then 

initiating genetic maneuvers. 

Step 4 Determine the resemblance between the most 

adept member and other individuals within the 

population. If the resemblance proves significant, 

prioritize mutation prior to crossbreeding. 

Conversely, if the resemblance is low, initiate 

crossbreeding before mutation. 

Step 5: Adjust the primary determinant based on the 

equation mentioned above by the most adept 

member within the populace. Should the genetic 

algorithms' iteration count, Gmin, remain less than 

or equal to G, proceed with genetic operations. 
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Conversely, if Gmin surpasses G and fulfills the 

condition (1.1), transition to Step 2 to resume the 

execution of the colony algorithm. 

Step 6: Ensure that if the present count of iterations 

in genetic algorithms does not exceed the maximum 

value denoted as Gmax, the genetic operations persist. 

However, if the count reaches Gmax, proceed with the 

subsequent steps. 

Step 7: Revise the worldwide best resolution, and 

adapt the primary determinant in accordance with 

the principle outlined in section 1.3. 

Step 8: If the present iteration counts of the Genetic 

Bee algorithm, denoted as Kmax, is less than K, 

proceed to step 2. However, if Kmax equals K, the 

algorithm will output the computation results, 

subsequently concluding 

Reconcurrent neural networks: 

In Recurrent Neural Networks (RNNs), the hidden 

layers connect to unseen layers in additional nodes 

of alternate fresh network, enhancing their ability to 

remember sequential data. RNNs are particularly 

suited for time series and big data analysis because 

of their capacity to encode historical information 

rapidly. These networks exhibit dynamic behavior in 

graph shapes, showcasing sequence 

synchronization. By utilizing internal memory 

(state), RNNs process input sequences and leverage 

past data to predict upcoming values. However, in 

live scenarios with significant time gaps between 

past and future data points, RNNs struggle to retain 

meaningful information, resulting in the notorious 

vanishing gradient problem. To address this, the 

Long Short-Term Memory (LSTM) network was 

introduced, significantly enhancing RNN 

performance. 

LSTM – Long short term memory: 

An extensively employed learning methodology 

known as the Long Short-Term Memory (LSTM) 

network is favoured for its adaptability in retaining 

information, making it well-suited for handling 

extensive datasets. Figure 4 illustrates the 

architecture of the LSTM network, showcasing its 

efficacy across various applications. The proposed 

amalgamated learning framework integrates LSTM, 

a recurrent neural network architecture renowned for 

its memory retention capabilities, with the Whale 

optimizer. LSTM is structured around distinct 

modules: the input gate (I.G), forget gate (F.G), cell 

input (C.I), and output gate (O.G). Fundamentally, 

LSTM functions as a memory-centric neural 

network, adept at retaining information across 

iterations. In this setup, let's denote the unseen layer 

output as 'ht', its preceding output as 'ht−1', the cell 

input state as 'Ct', the cell output state as 'Gt', and 

their respective former states as 'Gt-1'. The states of 

the three gates are represented as 'j_t', 'T_f', and 'T0'. 

The LSTM architecture facilitates the seamless 

communication of 'Gt' and 'ht' to subsequent layers 

within the RNN structure. 

 
Figure 4 LSTM Structure 

Central to LSTM's operation is the merging of the 

previous unit's output with the current input state, 

leveraging the output and forget gates to upgrade 

memory. The computation of 'Gt' and 'ht' is governed 

by the formulation. 

     𝐼. 𝐺:    𝑗𝑡 =  𝜃(𝐺𝑙
𝑖. 𝑂𝑡 +  𝐺ℎ

𝑖 . 𝑒𝑡−1 + 𝑠𝑖)                 (2) 

 

 𝐹. 𝐺:  𝑇𝑓  =  𝜃(𝐺𝑙
𝑓

. 𝑂𝑡 + 𝐺ℎ
𝑓

. 𝑒𝑡−1 + 𝑠𝑓)               (3) 

𝑂. 𝐺:   𝑇𝑜 =  𝜃 (𝐺𝑙
0. 𝑂𝑡 + 𝐺ℎ

𝑜. 𝑒𝑡−1 + 𝑠𝑜)                   (4) 

 

𝐶. 𝐼:  𝑇�̃� = tanh(𝐺𝑙
𝐶 . 𝑂𝑡 + 𝐺ℎ

𝐶 . 𝑒𝑡−1 + 𝑠𝐶)               (5)    

The weight matrices 𝐺𝑙
0, 𝐺𝑙

𝑓
, 𝐺𝑙

𝑖, 𝐺𝑙
𝐶 are associated 

with the connections between input gates and output 

layers, while 𝐺ℎ
𝑖 , 𝐺ℎ

𝑓
, 𝐺ℎ

𝑜, 𝐺ℎ
𝐶  pertain to the weight 

conditions established between hidden and input 

layers. The bias vectors “𝑠𝑖, 𝑠𝑓 ,  𝑠𝑜,   𝑠𝐶 are also 

incorporated, and the hyperbolic function tanh is 

employed. The computation of the cell output state 

is then formulated as pursues: 

   𝑇𝐶 = 𝑘𝑡 ∗  𝑇�̃� +  𝑇𝑓 ∗ 𝑇𝑡−1                           (6) 

                   𝑒𝑡 = 𝑇𝑜 ∗ tanh(𝑇𝐶)                        (7) 

The ultimate result score is acquired utilizing the 

aforementioned equation. 

Motivation behind the proposed model: 
The utilization of large datasets with LSTM poses 

several limitations [21-34], primarily due to the 

increased memory cell requirement, leading to 

heightened computational complexity. 

Consequently, this scenario often results in 
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overfitting issues. To address these challenges, there 

arises a necessity for a meticulously structured 

model capable of predicting various categories of 

both familiar and unfamiliar attacks within IoT 

networks. In meeting these criteria, an exploration 

into a low-complexity learning model has been 

conducted. The primary objective of this hybrid 

model is to devise a novel algorithm by 

amalgamating whale algorithms into LSTM 

networks. 

Proposed GBLSTM models: 
The utilization of the simple whale algorithms to 

optimize LSTM network weights is discussed. Here, 

the various criteria used by whales for searching and 

capturing prey serve as the primary means to 

optimize LSTM network weights. The complete 

mechanism of GBLSTM learning models is depicted 

in the figure 4. Initially, a random set of weights and 

biases is assigned to LSTM cells. The accuracy of 

the proposed model is defined as the fitness function. 

Each iteration involves the calculation of input 

biases and weights using mathematical equations 

(7), (9), and (13). These computed weights are then 

applied to the LSTM network, where the fitness 

function is evaluated. If the fitness function reaches 

the predefined threshold, the iteration halts; 

otherwise, it continues. This method indicates that 

while whale optimization may result in slower 

convergence compared to other meta-heuristic 

algorithms, it can enhance optimization time and 

detection efficiency.                                                                                            

In response to the expected onslaught of diverse 

attacks, GBLSTM-TRS introduces an innovative 

method to prevent these intrusions within network 

structures. The proposed system promotes an 

alternative pathway for data transmission, 

prioritizing Quality of Service (QoS) awareness, 

while also blocking paths where malicious activities 

have occurred. These incidents are then logged in 

separate repositories of countermeasures, facilitating 

the prevention of network attacks. Presented below 

is the detailed pseudocode outlining the operational 

principles of GBLSTM-TRS. 

4. Experimentation setup 

The investigation was conducted utilizing Lenovo 

Thinkpad laptops equipped with Windows 10 

operating system, powered by Intel Core i7 

processors (8th generation) clocked at 3.6 GHz, 

16GB of RAM, and NVIDIA GeForce GTX 

graphics cards. As delineated previously, a practical 

environment was simulated through the utilization of 

the OMNET++-IOT API, while Python 

programming facilitated the creation of threat 

models. The envisioned deep learning framework 

was implemented utilizing TensorFlow version 

1.3.5. Data analysis and feature engineering tasks 

were performed using the pandas and numpy 

libraries. 

Table 2. The diverse attributes computed for optimal 

prognostic maneuvers. 
Sl.no Pseudo code for  the GBLSTM -TRS  IDS 

Systems 

01 Input F= Characteristics derived from the 

networks. 

02 Output = Forecasting the occurrences of 

assaults along with suggestions for 

mitigation. 

03   Dcountermeasure =  MongoDb (QoS-Aware  

Paths) 

04  While True: 

05 Train the networks utilizing the equations (18) 

and (19) with the features. 

 06 Compute the resulting output employing 

Equations (18) and (19). 

07 If (Tc < Tt1)  //                 Tt1  

08                   Attack No 1 is predicted 

09 Else if  (Tc < Tt21)   

10                             Anticipate a second assault. 

11                  Advise for the alternative route and obstruct 

the passage. 

12 Else if (Tc < Tt3)   

13 Anticipate a third assault. 

14                            Suggests an alternative route and obstructs the 

original pathway. 

15 Else if (Tc < Ttn)   

16                                                Attack  N is 

predicted  

17                                  Suggests an alternative route while 

obstructing the original course. 

18 Else  

19 If there is no anticipated assault, proceed to 

Step 07. 

20           End  

21 End 

22 End 

23 End 

24 Go to Step 7 

25 End  

 

4.1 Benchmark datasets: 

In addition to real-time data collection, this research 

incorporates three distinct benchmarks to assess the 

proposed model. These benchmarks, namely 

CIDDS-001, UNSW-NB15, and NSLKDD, are 

employed to evaluate the model's performance with 

expanded datasets. CIDDS-001 and UNSW-NB15 

datasets, containing real-time traffic, offer 

substantial advantages in developing an intelligent 

IDS for monitoring and predicting various categories 

of attacks in IoT networks. The combined datasets 

encompass 3.2 million records, including both 

malicious and normal traffic. CIDDS-001 comprises 

12 features with 2 labeling attributes, comprising 
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80,000 normal and 20,000 attack (DoS) records. 

Conversely, the UNSW-NB15 benchmark features 

49 attributes with a single class attribute. For 

training, 56,000 instances of normal traffic and 

119,341 instances of attacked traffic were utilized, 

while the testing phase involved 37,000 normal 

traffic instances and 45,332 attack instances. 

Similarly, the NSL-KDD benchmark comprises 41 

features with a single label attribute. 

4.2 Performance evaluation: 

To assess and authenticate the proposed intrusion 

detection system utilizing the Proposed BEL 

framework, various metrics have been employed 

including Accuracy, Sensitivity, Selectivity, 

Specificity, and compared against alternative 

classifiers such as BLSTM[35-38], 

CNN+LSTM[39] Ensemble, CART, and Multi-layer 

Perceptron (MLP15]. The validation criteria have 

been calculated according to the equations specified 

below. 

Accuracy =
DR

TNI
 x100    (8) 

Sensitivity =
TP

TP+TN
 x100  (9) 

  

Specificity =
TN

TP+TN
x100              (10) 

       

In this context, TP and TN denote the values 

signifying correct identifications and accurate 

exclusions, while DR and TNI stand for the count of 

identified outcomes and the total number of trials, 

respectively. 

 

5. Results and discussion 

The evaluation of the proposed deep learning 

framework alongside alternative learning 

methodologies tailored to real-time simulated 

scenarios has been conducted, complemented by 

rigorous testing against various benchmarks such as 

CIDDS-001, UNSWNB15, and NSL-KDD. A 

comparative analysis has been performed, followed 

by rigorous statistical scrutiny. The employed deep 

learning architectures have been deemed suitable for 

intrusion detection within IoT networks. The 

methodology involved partitioning the complete 

datasets into training and testing sets, with a 

distribution of 70% for training and 30% for testing. 

In the initial phase, a preliminary set of broad values 

for the hyperparameters of the model underwent 

refinement through the utilization of optimized 

whale algorithms during the training procedure to 

ascertain optimal outcomes. It was determined that 

the most favorable outcomes in the tuning phase 

were achieved with 50 epochs, a learning rate of 

0.0001, and a batch size of 80 for output. The figure 

4 depicts the precision of detection and the rate of 

error during training across various scenarios of 

testing data employed for validation. Additionally, 

the performance metrics of accuracy and loss were 

computed for diverse datasets. 

The training and testing accuracy of the proposed 

model across various benchmarks ranges between 

98.5% and 99%, with the RMSE error spanning from 

0.001 to 0.004. This demonstrates consistent 

performance characteristics of the model when 

evaluated against real-time benchmarks, indicating 

its capability to forecast diverse attack categories 

beyond those specified. Additionally, sensitivity and 

specificity metrics have been computed for both 

benchmark and real-time datasets. Comparison of 

specificity and sensitivity across various Intrusion 

Detection System (IDS) datasets is shown in table 3. 

 
Table 3 Comparison of specificity and sensitivity across 

various Intrusion Detection System (IDS) datasets. 

Data Sets 

Description 

Attack 

Types 

Performance Metrics(%) 

Sensitivity Specifici

ty 

 

Real time 

datasets 

DoS 98.6% 98% 

Botnets 98.7% 98.5% 

MIM 99% 99.4% 

Data 

Probing 

98% 98.5% 

Spying 98.5% 98.0% 

CIDDS-001,  98% 98.5% 

UNSWNB15 98% 99% 

NSL-KDD 98.45% 98.5% 

 

The performance of the deep learning model 

consistently falls within the 98% to 99% range, 

demonstrating its adaptability to a wide array of 

datasets. Furthermore, the effectiveness of the 

hybrid learning intrusion detection system is 

contingent upon its integration with established 

algorithms, which play a significant role in IDS 

implementation. 

Through rigorous evaluation against benchmarks, 

our proposed deep learning model consistently 

outshines others. In the realm of IoT security, the 

efficacy of an Intrusion Detection System (IDS) 

hinges on its ability to promptly predict attacks. 

Consequently, we've conducted an analysis of the 

response time exhibited by our proposed model in 

anticipating such incursions, juxtaposed with 

alternative learning models. Figure 4 indicates that 

the anticipated duration of prediction using the 

innovative GBLSTM model is under 2 seconds 

across various attack categories, contrasting with 

competing algorithms which require between 2 to 3 
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Table 4. An assessment comparing various learning 

frameworks through benchmarking analyses. 
Sl.

No 

Algorith

m 

details 

Benchm

ark 

Used 

Performance Metrics 

Accur

acy 

Sensiti

vity 

Specif

icity 

01 MLP CIDDS-

001 

94.5 93.5 94 

  UNSW

NB15 

95 95 96 

  NSL-

KDD 

90 91 93 

02 CART CIDDS-

001 

95.3 96 94 

  UNSW

NB15 

94 96.4 94.7 

  NSL-

KDD 

95.0 95 96 

03 ENSEM

BLE 

CIDDS-

001 

96.8 96.3 95 

  UNSW

NB15 

96 95 96 

  NSL-

KDD 

96.4 96.2 95 

04 CNN-

LSTM 

CIDDS-

001 

96.5 96 97 

  UNSW

NB15 

97.2 95.6 95 

  NSL-

KDD 

96 95.8 96.2 

05 BLSTM CIDDS-

001 

96 96.5 96.7 

  UNSW

NB15 

97.2 97 96 

  NSL-

KDD 

97 96.3 96.4 

06 PROPO

SED  

MODE

L 

CIDDS-

001 

99.3 98.3 99 

  UNSW

NB15 

99.1 98 98.89 

  NSL-

KDD 

99.5 98.7 98.45 

  

seconds for the same task. This showcases the Whale 

Optimizer's efficiency in terms of convergence time, 

consequently reducing testing and prediction 

durations when juxtaposed with alternative learning 

frameworks. Based on the data presented in Table 4, 

it is evident that the newly proposed WISL-TRS 

framework surpasses other established architectures 

in predicting attacks and implementing 

countermeasures within IoT networks. Table 5 

elucidates this, showcasing how our optimized 

LSTM model surpasses alternative learning models 

across diverse benchmarks. This underscores the 

efficacy of our approach in crafting a robust, 

intelligent, dependable, and secure Intrusion 

Detection System (IDS). Several works done on IoT 

and reported in literature [48-55]. 

6. Conclusion 

  
This paper introduces a novel optimized deep 

learning framework called GBLSTM. Extensive 

datasets were gathered from real-time scenarios and 

a Python API was developed to simulate various 

malicious attacks on networks. The performance of 

the proposed model was evaluated and compared 

against other learning models using different 

datasets, including real-time datasets, CIDDC-001, 

UMSN15, and KDD datasets. The results 

demonstrate that the proposed Whale Optimized 

LSTM outperforms other algorithms in terms of 

accuracy, sensitivity, and specificity in detecting 

malicious nodes and predicting network attacks. 

Furthermore, the paper discusses countermeasures to 

be implemented upon attack prediction. 

Experimental results indicate that the proposed 

model maintains consistent performance, while 

others experience slight degradation. Additionally, 

the average prediction time is calculated and 

compared with other algorithms. The simulation 

findings suggest that the proposed model achieves a 

better balance between prediction accuracy and 

response time, making it well-suited for developing 

secure, intelligent, and scalable IDS for IoT 

networks. This study highlights the importance of 

employing lightweight, optimized deep learning 

architectures to yield enhanced accuracy while 

minimizing prediction time. Moving forward, the 

integration of hybrid learning methodologies 

alongside feature optimization techniques will be 

imperative for crafting more proficient Intrusion 

Detection Systems within IoT networks. 
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