

Copyright © IJCESEN

International Journal of Computational and Experimental

Science and ENgineering

(IJCESEN)

Vol. 10-No.4 (2024) pp. 1094-1100
http://www.ijcesen.com

ISSN: 2149-9144

 Research Article

Enhancing Fault Tolerance in Cloud Computing using Modified Deep Q-Network

(M-DQN) for Optimal Load Balancing

Bikash Chandra Pattanaik1*, Bidush Kumar Sahoo2, Bibudhendu Pati3, Arabinda Pradhan4

1Department of CSE, Biju Patnaik University of Technology, Rourkela, Odisha, India,

* Corresponding Author Email: bikashpatnaik73@gmail.com - ORCID: 0009-0000-6713-1492

2Department of CSE, GIET University, Gunupur, Odisha, India,
Email: bidush.sahoo@gmail.com-ORCID: 0000-0002-5044-0819

3Department of CS, Ramadevi Women’s University, Bhubaneswar, Odisha, India,
Email: patibibudhendu@gmail.com-ORCID: 0000-0002-2544-5343

4Department of CSE, Gandhi Institute for Education and Technology, Khurdha, Odisha, India,
Email: arabindapradhan@giet.edu.in-ORCID: 0000-0002-3299-8990

Article Info:

DOI: 10.22399/ijcesen.601

Received : 09 November 2024

Accepted : 19 November 2024

Keywords :

Cloud computing,

Load balancing,

Fault tolerance,

DQN.

Abstract:

Due to popularity of cloud computing approach, excessive cloud user can send their

request to cloud server for accessing their requirements. Servers are handling these

incoming requests and allocate required resources to fulfill user demands. But in real

scenario the numbers of servers are limited. Therefore, some servers are heavily loaded

and some servers are in idle mode. This can result in a major fault tolerance issue that

reduces system performance. To overcome this issue, this study presented an effective

scheduling mechanism known as Modified Deep Q-Network (M-DQN). In this process

the data centre controller performs appropriate actions on the environment in order to

select a suitable virtual machine (VM) capable of optimizing different load balancing

parameters. To get the desired outcome, a simulation is run using Google Colab with

the TensorFlow environment, demonstrating the usefulness of the proposed scheduling

technique. The experiment revealed that our suggested approach has a higher reward

rate, reduces makespan but increases resource utilization and throughput when

compared to the existing DQN algorithm. Simulation findings demonstrate that the M-

DQN method works better in decreasing around 16% execution time and 10%

makespan time, while it increases 8% resource utilization and 4% throughput value.

Overall, it increases 18% reward value as compare with I-DQN and DQN algorithm.

1. Introduction

Cloud computing is becoming an increasingly

common and comprehensive form of computer

operations. It delivers the services that the user

requests. These services are accessible at a cheap

cost and on demand. The amount of requests for

cloud computing services is rising due to the

numerous benefits it provides. These services are

typically provided by data centre, which contain a

large number of servers. The data centre has

inadequate servers to handle user requests. Using

the virtualization approach servers are virtually

separated into several virtual machines (VMs),

having identical or distinct configuration from that

of its host computer or computers [1]. Along with

various positives, there are certain disadvantages to

cloud computing, one of which is failure tolerance

in load balancing.

Fault tolerance enables a system to continue to

function even if one of its components fails. If a

fault occurs then it reduces the system capacity

rather than shutting down completely [2]. When a

fault occurs in cloud computing, it should be

identified first, followed by determining the nature

of the fault and ultimately recovering the system

without impacting the final output. In general,

failures are occur in cloud computing to maintain

load balancing in VMs. As a result, load balancing

in cloud computing is a difficult topic [3]. The

workload in the cloud may fluctuate on a regular

basis due to user demand, making it difficult to

assign these resources [4]. This difficulty occurs

under a variety of settings. Examples include: (1)

http://dergipark.org.tr/en/pub/ijcesen
http://www.ijcesen.com
mailto:bikashpatnaik73@gmail.com
https://orcid.org/0009-0000-6713-1492?lang=en

Bikash Chandra Pattanaik, Bidush Kumar Sahoo, Bibudhendu Pati, Arabinda Pradhan / IJCESEN 10-4(2024)1094-1100

1095

task length and size fluctuations, (2) a lack of

suitable VMs in the data centre, and (3) the status

of available VMs. An effective scheduling

technique may solve fault tolerance in load

balancing by equitably distributing the whole job

among available VMs, guaranteeing that all VMs

are balanced while also minimizing processing

time. Traditional scheduling techniques, such as

Reinforcement Learning (RL) is not properly work

well in this scenario. In RL algorithm, storage

problem occur when number of state action value is

generated. Also it takes more calculation time in

high-dimensional scenarios [5]. Avoiding the

drawbacks of RL approach, Deep Reinforcement

Learning (DRL) techniques for example Deep Q-

Network (DQN) is used. In DQN, neural networks

are used for solving the load balancing issues [6].

However, the typical DQN method chooses a

random action [7]. It yields an inaccurate result

since there is no exact action structure built in a

dynamic environment to optimize reward. To solve

the above issues, this paper introduces an effective

scheduling method called as Modified Deep Q-

Network (M-DQN). The goal of this strategy is to

apply an intelligent action that reduces execution

and makespan time while improving resource

utilization and throughput. The primary

contribution of this study is mentioned as follows:

 Developed an effective M-DQN method which

allows an agent to select the optimal action to

discover suitable VMs from the data centre to

achieve the aim.

 The suggested method optimizes outcomes by

interacting with the environment to achieve high

reward values.

 Our suggested algorithm's efficiency is

demonstrated by simulation using the Google

Colab and TensorFlow.

The rest of the paper is arranged as: Section 2

presents the relevant work. Section 3 explains the

goal function. Section 4 represents the proposed

scheduling algorithm. Section 5 depicts the

experiment analysis. Section 6 finishes with the

conclusion.

2. Related Work

Several academics have devised methodologies that

are presently being utilized to maximise various

fault tolerance parameters in load balancing. Such

strategies are based on various machine learning-

based scheduling approaches.

A Q-learning technique was introduced in [8] to

spread the work burden across the VMs in order to

improve QoS. To increase the system performance

and handle load balance, [9] presented the adaptive

fast reassignment approach. Cloud storage systems

can be managed by Adaptive Resource

Management technique which enhances cloud

storage performance while preserving and

balancing the load [10]. To reduce makespan time

and increase incentive, [11] presented an efficient

DRL scheduling. To handle task scheduling and

resource allocation, [12] proposed a two-stage

algorithm. A DRL algorithm was developed by

both [13, 14] to optimize makespan and resource

consumption. An Improved Deep Q-networking

method was proposed in [15] that can increase the

success rate while optimizing various parameters.

Task completion time was reducing by [16] which

is based on Deep Q-network algorithm.

From the study, we noticed that majority of

researchers try to balance the load, limit makespan,

and increase resource usage. But a fundamental

drawback of most existing researches is that they

consider VM migration instead of task migration.

The VM migration concept has a high cost that

might influence all services. However, our

suggested approach can identify which VM is

overloaded or under loaded by monitoring its

status. It then selects the optimal VM to assign the

load to base on its server selection. This approach

aids in avoiding faults that may occur when

balancing the load in a VM. Furthermore, the

proposed technology is allowing users to receive

services in lower costs and shortest amount of time.

3. Objective Function

Fig. 1 depicts the basic paradigm of cloud

computing, which includes task and data centre

layer. Both layers play a significant role in cloud

computing and enable us to achieve our goals. The

task layer contains the task queue, which saves all

of the relevant information about the incoming task

and locates the best VM on the server. Similarly,

data center layer contains all information for both

servers and VMs which help the data center

controller to reach an objective.

Figure 1. Cloud computing model

Bikash Chandra Pattanaik, Bidush Kumar Sahoo, Bibudhendu Pati, Arabinda Pradhan / IJCESEN 10-4(2024)1094-1100

1096

Our aim is to improve work completion time,

resource usage, and throughput by taking necessary

action. Based on the aim, we utilized the DQN

method to determine the reward function, allowing

us to improve the system.

To obtain the outcome, consider a scenario where a

data centre includes 𝑣 number of heterogeneous

VMs and 𝑡 numbers of tasks are entering into it.

Initially, tasks are placed in a task queue and

assigned to VMs on a first-come first-serve basis.

VM selection is decided by the present load

(𝑉𝑀𝑙𝑑), capacity (𝑉𝑀𝑐𝑎𝑝) and service rate (𝑉𝑀𝑠𝑟)

as shown in Eq. (1), (2) and (3). According to [17]

each VM has three phases. After evaluating the VM

phases, the best VM is chosen to handle the task

and reduce the overall makespan time. As a result,

calculates the probable execution time

(𝐸𝑇𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑒), task allocation time (𝑇𝑎𝑡) and

complete execution time (𝐸𝑇𝑓𝑢𝑙𝑙) as shown in Eq.

(4), (5) and (6). Finally, makespan time which is

shown in Eq. (7). Where 𝑉𝑀𝑏 , 𝑉𝑀𝑚𝑖𝑝𝑠 and 𝑉𝑀𝑐𝑝𝑢

is represent as bandwidth, MIPS, CPU of VM. 𝑇𝑡,

Tleng and Tfs represent number of task, its length and

file size. The resource usage(𝑅𝑒𝑠𝑢𝑡𝑖𝑙) is obtained in

Eq. (8).

𝑉𝑀𝑙𝑑 =
𝑇𝑡×𝑇𝑙𝑒𝑛𝑔

𝑉𝑀𝑠𝑟
 … (1)

𝑉𝑀𝑐𝑎𝑝 = 𝑉𝑀𝑠𝑟 + 𝑉𝑀𝑏 … (2)

𝑉𝑀𝑠𝑟 = 𝑉𝑀𝑚𝑖𝑝𝑠 × 𝑉𝑀𝑐𝑝𝑢 … (3)

𝐸𝑇𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑒 =
𝑇𝑙𝑒𝑛𝑔

𝑉𝑀𝑠𝑟
 … (4)

𝑇𝑎𝑡 = 𝑇𝑓𝑠/𝑉𝑀𝑏 … (5)

𝐸𝑇𝑓𝑢𝑙𝑙 = 𝐸𝑇𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑒 + 𝑇𝑎𝑡 … (6)

𝑀𝑆 = 𝑚𝑎𝑥{𝐸𝑇𝑓𝑢𝑙𝑙} ... (7)

𝑅𝑢𝑡𝑖𝑙 =
𝐸𝑇𝑓𝑢𝑙𝑙

𝑀𝑆
 ... (8)

4. M-DQN Algorithm

This section defines the core notion and reward

function of M-DQN method. M-DQN follows DQN

approach where an agent receives the reward by

performing suitable actions on environment. In this

procedure, the data centre controller functions as an

agent, data centre serves as environment, VM is

representing as state space and action is defined to

allocate the task on a suitable VM for execution.

Due to the dynamic nature of the cloud computing,

the load of each VM varies, causing some to be

overloaded and others to be under loaded. To

equalize the load among the VMs, the agent

allocates additional jobs from overloaded to under

loaded VMs. Hence, task allocation rate (𝑇𝑎𝑟) is

used to select best action which is shown in Eq. (9)

and the selected action 𝑎 at time 𝑡 denoted by

𝑎𝑡 can then be determined using equation (10).

Where, 𝐸𝐿𝑝,𝑞 represents the excess load between

VM 𝑝 to VM 𝑞. The needed bandwidth between

VM 𝑝 and VM 𝑞 is represented as𝐵𝑝,𝑞. Finally, the

reward function is represented in Eq. (11). Table 1

is representing the pseudo code for proposed

algorithm.

𝑇𝑎𝑟 =
𝐸𝐿𝑝,𝑞

𝐵𝑊𝑝,𝑞
 … (9)

𝑎𝑡 = max
𝑎

(𝑇𝑎𝑟) … (10)

𝑟𝑓 = min {𝑀𝑆𝑇/𝑅𝑢𝑡𝑖𝑙} … (11)

Table 1. Pseudo code of M-DQN
Input: Information about task, VM and server; Initialize all

DQN parameters.

Output: Reward of data centre.

1. Start

2. For each cycle t, 𝑠1to be initialized with capacity and load

 For every task in the task-queue,
 If the probability is ∊, a random action 𝑎𝑡 to be chosen

 Otherwise 𝑎𝑡 = max
𝑎

(𝑇𝑎𝑟)

 End if

 Using the action𝑎𝑡, calculate 𝑟𝑡 (the total reward)using

Eq. (11)

 Move to𝑠𝑡+1 (the new state)

 Save the transition(𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡, 𝑠𝑡+1) in memory 𝐸

 Use 𝑡𝑎𝑟𝑔𝑒𝑡𝑡 = 𝑟𝑡 + 𝛾 𝑄′
𝑎𝑡+1

𝑚𝑎𝑥 (𝑠𝑡+1, 𝑎𝑡+1; 𝛳′)

 Use gradient descent to evaluate error 𝐿(𝛳) =
𝐸[(𝑡𝑎𝑟𝑔𝑒𝑡𝑡 − 𝑄(𝑠𝑡, 𝑎𝑡; 𝛳))2]

 For every step 𝛳′ = ϴ

 End For

3. End For

4. Return reward

5. Stop

5. Experimental Analysis

Our experiment is done in Google Colab using

Python 3.9 and TensorFlow 1.4.0 on Windows 10

64-bit OS. In our simulation, we took 10,000 tasks

with varying lengths and file sizes, such as 250 to

300. These tasks were spread over 100 VMs. The

suggested M-DQN approach is tested and

compared to various current techniques, including

I-DQN and DQN. Fig. 2 to 9 displays all of the

simulation findings. Table 2 displays all the

features of the task, virtual machine and DQN

method.

5.1 Execution time

The execution time of M-DQN is depicted in Table

3, Table 4, Fig. 2 and Fig. 3. Furthermore, the M-

DQN method's performance is compared to that of

other machine learning methods, including I-DQN

Bikash Chandra Pattanaik, Bidush Kumar Sahoo, Bibudhendu Pati, Arabinda Pradhan / IJCESEN 10-4(2024)1094-1100

1097

Table 2. Features of tasks, VMs and DQN parameters.
Task Properties VM Properties DRL Properties

Task
range

2000-
10000

VM range 20-
100

Maximum

iteration

100

Length 500-
3000

Processing
speed

250-
300

Learning rate 0.1

File

Size

250 Memory 256-

512

Discount

factor

0.9

 CPU 1-5 Value of ∊ 0.5-

0.9

 Bandwidth 1000 Replay

memory

1000

 VMM XEN Neurons 15

and DQN. The data set utilized in Fig. 2 is Table 3,

which has multiple task sets ranging from 2000 to

10000 tasks and a fixed number of VMs of 100.

Similarly, Table 4 and Fig. 3 include 20 to 100

VMs and a set amount of tasks, i.e., 10,000. Fig. 2

and Fig. 3 indicate that, while both I-DQN and

DQN algorithms completed the tasks in longer

time, the newly constructed M-DQN algorithm

completed the entire job in the shortest amount of

time because it better balances exploration and

exploitation. The X- and Y-axes in Fig. 2 display

the task number and execution time in seconds,

whereas the X- and Y-axes in Fig. 3 indicate the

VM number and execution time in seconds.

Initially, in Fig. 3, we discovered that the suggested

M-DQN scheduling method lowers execution time

by around 3.13% to 7.1% when compared to the I-

DQN algorithm and 8.63% to 16.52% when

compared to the DQN algorithm when the number

of jobs rises from 2000 to 10,000. Similarly, Fig. 3

shows that the proposed technique saves around

2.8% to 4.9% of execution time when compared to

the I-DQN algorithm and 4.97% to 15.83% when

compared to the DQN algorithm.

5.2 Makespan time

The makespan time of our proposed technique M-

DQN is shown in Table 5, Table 6, Fig. 4 and Fig.

5. Table 5 contains the data for Fig. 4, in which

Table 3. Execution time of 100 numbers of VMs and

Task number is 2000 to 10000.

No. of

VM

No. of

Task

M-DQN I-DQN DQN

100 2000 7421.82 7658.35 8091.17

100 4000 9745.64 10174.47 10487.94

100 6000 13221.17 14415.55 15218.18

100 8000 18719.75 20243.99 21834.61

100 10000 23089.64 24786.28 27249.84

Figure 2. Execution time of different tasks

Table 4. Execution time of 20 to 100 numbers of VMs

and 10000 numbers of tasks.

No. of

VM

No. of

Task

M-DQN I-DQN DQN

20 10000 33437.61 34374.26 35143.62

40 10000 30671.40 31154.12 32274.35

60 10000 26891.12 27705.48 29354.61

80 10000 23716.93 25624.98 27876.25

100 10000 22394.32 23518.34 26246.51

Figure 3. Execution time of different VMs

2000 to 10000 tasks are taken along with a fixed

number of VMs. Table 6 contains the dataset for

Fig. 5, in which the number of tasks is fixed at

10000 and 20 to 100 VMs. The proposed

algorithm's simulation results are compared to those

of other cutting-edge algorithms currently in use,

such as I-DQN and DQN. The task number and

makespan time in seconds are shown by the X-axes

and Y-axes in Fig. 4, and the VM number and

makespan time in seconds are represented by the X-

axes and Y-axes in Fig. 5. Initially, in Fig. 4 we

have to found that proposed M-DQN scheduling

algorithm reduce approximately 3.35% to 6.66%

makespan time as compared to I-DQN algorithm

and 6.39% to 9.57% makespan time as compared

to DQN algorithm when number of tasks is

increases. Similarly, in Fig. 5 the proposed

algorithm is reduce approximate 2.34% to 4.71%of

Bikash Chandra Pattanaik, Bidush Kumar Sahoo, Bibudhendu Pati, Arabinda Pradhan / IJCESEN 10-4(2024)1094-1100

1098

makespan time as compare to I-DQN algorithm and

5.74% to 10.64% makespan time as compare to

DQN algorithm.

Table 5. Makespan time of 2000 to 10000 task and 100

numbers of VMs.

No. of

VM

No. of

Task

M-DQN I-DQN DQN

100 2000 2254.31 2331.31 2403.18

100 4000 2531.52 2633.25 2737.27

100 6000 2724.64 2862.24 2911.25

100 8000 2887.18 2987.24 3025.63

100 10000 2978.91 3184.10 3278.48

\

Figure 4. Makespan time of different tasks

Table 6. Makespan time of 10000 number of tasks and

VM is 20 to 100.

No. of

VM

No. of

Task

M-DQN I-DQN DQN

20 10000 3557.74 3642.25 3768.25

40 10000 3412.63 3561.47 3624.34

60 10000 3366.45 3405.79 3463.61

80 10000 3197.21 3288.93 3376.84

100 10000 2947.17 3089.62 3123.44

Figure 5. Makespan time of different VMs

5.3 Resource utilization

Fig. 6 and Fig. 7 shows the performance of average

resource utilization of M-DQN, I-DQN and DQN

algorithms where M-DQN algorithm shows the

improvement of resource utilization as compare to

other two algorithms. Fig. 6 depicts the average

resource use for 2000 to 10,000 task sets, with 100

VMs picked at each iteration. This figure shows

that the suggested M-DQN algorithm may boost

average resource usage by 2.78% to 4.76% when

compared to the I-DQN method and 4.19% to

8.48% when compared to the DQN algorithm.

Table 7 displays the data for Fig. 6. Fig. 7 depicts

the typical resource use of 20 to 100 virtual

machines (VMs) with 10,000 jobs each iteration.

According to this figure, the suggested M-DQN

algorithm may boost average resource usage by

around 4.31% to 5.29% when compared to the I-

DQN method and 5.79% to 7.48% when compared

to the DQN algorithm. Table 8 displays the data for

Fig. 7.

Table 7. Average resource utilization of 100 numbers of

VMs and different number of tasks.

No. of

VM

No. of

Task

M-DQN I-DQN DQN

100 2000 0.73 0.71 0.70

100 4000 0.79 0.76 0.75

100 6000 0.83 0.79 0.78

100 8000 0.85 0.81 0.79

100 10000 0.86 0.82 0.79

Figure 6. Average resource utilization obtained for 2000

to 10000 task sets

Table 8. Average resource utilization of 10000 number

of tasks and 20 to 100 number of VMs.

No. of

VM

No. of

Task

M-DQN I-DQN DQN

20 10000 0.71 0.68 0.67

40 10000 0.85 0.81 0.77

60 10000 0.92 0.86 0.83

80 10000 0.96 0.91 0.89

100 10000 0.97 0.92 0.90

Bikash Chandra Pattanaik, Bidush Kumar Sahoo, Bibudhendu Pati, Arabinda Pradhan / IJCESEN 10-4(2024)1094-1100

1099

Figure 7. Average resource utilization obtained for 20 to

100 VMs

5.4 Throughput

The throughput measures the system's overall

performance. Throughput refers to the number of

tasks that may be accomplished in a particular

period of time. Throughput of M-DQN is improved

due to maintain of the balance between exploration-

exploitation through which the suggested algorithm

completes more jobs in a given amount of time,

whereas other baseline methods struggle with

overloading or under loading. Fig. 8 shows that the

constructed M-DQN outperforms earlier baseline

methods in terms of throughput. Fig. 8 shows the

number of jobs on the X-axis and the system's

throughput in seconds on the Y-axis. According to

Fig. 8, the suggested scheduling approach improves

by approximately 0.88% to 1.64% when compared

to the I-DQN algorithm and 1.65% to 4.27% when

compared with the DQN algorithm. Table 9

displays the data for Fig. 8.

5.5 Reward Value

Fig. 9 depicts the reward value of 100 number of

iteration with 2000 task. From iteration 10 to

iteration 25, the payout proportion rises from 55%

to 80%. After iteration 25, the payout proportion

remains constant, however it varies between

iterations. Finally, it displays an estimated 80.7% at

the conclusion of iteration. At the last iteration, the

I-DQN and DQN algorithms showed reward values

Table 9. Throughput value of different algorithms

Schedule

algorithm

2000 4000 6000 8000 10000

M-DQN 34.14 35.17 36.09 35.81 36.11

I-DQN 33.84 34.76 35.58 35.13 35.52

DQN 33.58 34.21 34.78 34.22 34.6

Figure 8. Throughput value

of 67.9% and 62.3%, respectively. The experiment

revealed that our suggested method outperforms the

I-DQN and DQN scheduling algorithms by 12.8%

and 18.4%, respectively.

Figure 9. Reward comparison of 2000 task set.

6. Conclusion

One of the hardest problems in cloud computing is

deciding which resources are best for end-user

applications. While service providers want to

maximize their profits by providing the best

resources, end users want their apps to run in a

certain amount of time and at the lowest possible

cost. In this paper, we created cloud resource

allocation architecture and all of its components to

address the constraints of the present method. The

resource monitoring node utilizes the M-DQN

algorithm to continually monitor the state of VMs

and fulfil the user demand. The performance of the

M-DQN method is compared with I-DQN and

DQN algorithms. The key findings of the

experimental investigation, in contrast to I-DQN

and DQN, are as follows:

Bikash Chandra Pattanaik, Bidush Kumar Sahoo, Bibudhendu Pati, Arabinda Pradhan / IJCESEN 10-4(2024)1094-1100

1100

● M-DQN technique reduces execution time by

roughly 16%.

● The suggested approach decreases makespan

time by approximately 10%.

● The suggested method improves resource

consumption by around 8% on average.

● The suggested technique enhances throughput

by around 4%.

The suggested approach boosts reward value by

approximately 18%.

Author Statements:

 Ethical approval: The conducted research is

not related to either human or animal use.

 Conflict of interest: The authors declare that

they have no known competing financial

interests or personal relationships that could

have appeared to influence the work reported in

this paper

 Acknowledgement: The authors declare that

they have nobody or no-company to

acknowledge.

 Author contributions: The authors declare that

they have equal right on this paper.

 Funding information: The authors declare that

there is no funding to be acknowledged.

 Data availability statement: The data that

support the findings of this study are available

on request from the corresponding author. The

data are not publicly available due to privacy or

ethical restrictions.

References

[1] Pradhan, A., Bisoy, S. K., and Mallick, P. K. (2020).

Load balancing in cloud computing: survey. In book:

Innovation in Electrical Power Engineering,

Communication, and Computing Technology,

Lecture Notes in Electrical Engineering, springer, pp

99-111.

[2] Rehman, A. U., Aguiar, R. L., Barraca, J. P. (2022).

Fault-Tolerance in the Scope of Cloud Computing.

IEEE Access, 10;63422-63441.

[3] Pradhan, A., Bisoy, S. K., Das, A. (2022). A survey

on PSO based meta-heuristic scheduling mechanism

in cloud computing environment. Journal of King

Saud University –Computer and Information

Sciences, 34(8);4888-4901

https://doi.org/10.1016/j.jksuci.2021.01.003

[4] Pattnaik, B. C., Sahoo, B. K., Pradhan, A., Mishra, S.

R., Tripathy, H. S., Agasti, P. (2024). Fault

Tolerance Enhancement Through Load Balancing

Optimization in Cloud Computing. International

Journal of Intelligent Systems and Applications in

Engineering, 12(4), 172–180.

https://doi.org/10.1016/j.jksuci.2018.01.003

[5] Pradhan, A., Bisoy, S. K., Kautish, S., Jasser, M. B.,

Mohamed, A. W. (2022). Intelligent Decision-

Making of Load Balancing Using Deep

Reinforcement Learning and Parallel PSO in Cloud

Environment. IEEE Access, 10;76939-76952.

[6] Pradhan, A., Bisoy, S. K., and Sain, M. (2022).

Action-Based Load Balancing Technique in Cloud

Network Using Actor-Critic-Swarm Optimization,

Wireless Communications and Mobile Computing,

Wiley, Hindawi, 2022;6456242, pp 1-17.

[7] Hatem, M. E., Rabie, A. R. (2019). Resource

Scheduling for Offline Cloud Computing Using Deep

Reinforcement Learning. International Journal of

Computer Science and Network Security (IJCSNS),

19(4);54-60.

[8] Tennakoon, D., Chowdhury, M., Luan, T. H. (2018).

Cloud-based load balancing using double Q-learning

for improved Quality of Service. Wireless Networks,

https://doi.org/10.1007/s11276-018-1888-8.

[9] Li, M., Zhang, J., Wan, J., Ren, Y., Zhou, L., Wu, B.,

Yang, R., Wang, j. (2019). Distributed machine

learning load balancing strategy in cloud computing

services. Wireless Networks.

https://doi.org/10.1007/s11276-019-02042-2.

[10] Noel, R. R., Mehra, R., Lama, P. (2019). Towards

Self-Managing Cloud Storage with Reinforcement

Learning. IEEE International Conference on Cloud

Engineering (IC2E), pp 34-44.

[11] Tassel, P.,Gebser, M.,Schekotihin, K. (2021). A

Reinforcement Learning Environment for Job-Shop

Scheduling.arXiv:2104.03760[cs. LG].

[12] Lin, J., Cui, D., Peng, Z., Li, Q., He, J. (2020). A

Two-Stage Framework for the Multi-User Multi-Data

Center Job Scheduling and Resource Allocation.

IEEE Access, 8;197863-74.

[13] Che, H., Bai, Z., Zuo, R., Li, H. (2020). A Deep

Reinforcement Learning Approach to the

Optimization of Data Center Task Scheduling.

Hindawi Complexity, Wiley, 2020;3046769, pp 1-12.

https://doi.org/10.1155/2020/3046769

[14] Dong, T., Xue, f., Xiao, C., Li, J. (2020). Task

scheduling based on deep reinforcement learning in a

cloud manufacturing environment. Concurrency and

Computation: Practice and Experience. Wiley, pp 1-

12.

[15] Pradhan, A., and Bisoy, S. K. (2022). Intelligent

Action Performed Load Balancing Decision Made in

Cloud Data center Based on Improved DQN

Algorithm. 2022 International Conference on

Emerging Smart Computing and Informatics (ESCI),

pp. 1-6.

[16] Peng, Z., Lin, J., Cui, D., Li, Q., He, J. (2020). A

multi-objective trade-off framework for cloud

resource scheduling based on the Deep Q-network

algorithm. Cluster Computing.

https://doi.org/10.1007/s10586-019-03042-9.

[17] Pradhan A., Bisoy, S. K. (2022). A novel load

balancing technique for cloud computing platform

based on PSO. Journal of King Saud University –

Computer and Information Sciences, 34(7);3988-

3995. https://doi.org/10.1016/j.jksuci.2020.10.016

https://doi.org/10.1007/s11276-018-1888-8
https://doi.org/10.1007/s11276-019-02042-2
https://arxiv.org/abs/2104.03760
https://doi.org/10.1007/s10586-019-03042-9

