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Abstract:  
 

Due to popularity of cloud computing approach, excessive cloud user can send their 

request to cloud server for accessing their requirements. Servers are handling these 

incoming requests and allocate required resources to fulfill user demands.  But in real 

scenario the numbers of servers are limited. Therefore, some servers are heavily loaded 

and some servers are in idle mode. This can result in a major fault tolerance issue that 

reduces system performance. To overcome this issue, this study presented an effective 

scheduling mechanism known as Modified Deep Q-Network (M-DQN). In this process 

the data centre controller performs appropriate actions on the environment in order to 

select a suitable virtual machine (VM) capable of optimizing different load balancing 

parameters. To get the desired outcome, a simulation is run using Google Colab with 

the TensorFlow environment, demonstrating the usefulness of the proposed scheduling 

technique. The experiment revealed that our suggested approach has a higher reward 

rate, reduces makespan but increases resource utilization and throughput when 

compared to the existing DQN algorithm. Simulation findings demonstrate that the M-

DQN method works better in decreasing around 16% execution time and 10% 

makespan time, while it increases 8% resource utilization and 4% throughput value. 

Overall, it increases 18% reward value as compare with I-DQN and DQN algorithm. 

 

1. Introduction 
 

Cloud computing is becoming an increasingly 

common and comprehensive form of computer 

operations. It delivers the services that the user 

requests. These services are accessible at a cheap 

cost and on demand. The amount of requests for 

cloud computing services is rising due to the 

numerous benefits it provides. These services are 

typically provided by data centre, which contain a 

large number of servers. The data centre has 

inadequate servers to handle user requests. Using 

the virtualization approach servers are virtually 

separated into several virtual machines (VMs), 

having identical or distinct configuration from that 

of its host computer or computers [1]. Along with 

various positives, there are certain disadvantages to 

cloud computing, one of which is failure tolerance 

in load balancing. 

Fault tolerance enables a system to continue to 

function even if one of its components fails. If a 

fault occurs then it reduces the system capacity 

rather than shutting down completely [2]. When a 

fault occurs in cloud computing, it should be 

identified first, followed by determining the nature 

of the fault and ultimately recovering the system 

without impacting the final output. In general, 

failures are occur in cloud computing to maintain 

load balancing in VMs. As a result, load balancing 

in cloud computing is a difficult topic [3]. The 

workload in the cloud may fluctuate on a regular 

basis due to user demand, making it difficult to 

assign these resources [4]. This difficulty occurs 

under a variety of settings. Examples include: (1) 
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task length and size fluctuations, (2) a lack of 

suitable VMs in the data centre, and (3) the status 

of available VMs. An effective scheduling 

technique may solve fault tolerance in load 

balancing by equitably distributing the whole job 

among available VMs, guaranteeing that all VMs 

are balanced while also minimizing processing 

time. Traditional scheduling techniques, such as 

Reinforcement Learning (RL) is not properly work 

well in this scenario. In RL algorithm, storage 

problem occur when number of state action value is 

generated. Also it takes more calculation time in 

high-dimensional scenarios [5]. Avoiding the 

drawbacks of RL approach, Deep Reinforcement 

Learning (DRL) techniques for example Deep Q-

Network (DQN) is used. In DQN, neural networks 

are used for solving the load balancing issues [6]. 

However, the typical DQN method chooses a 

random action [7]. It yields an inaccurate result 

since there is no exact action structure built in a 

dynamic environment to optimize reward. To solve 

the above issues, this paper introduces an effective 

scheduling method called as Modified Deep Q-

Network (M-DQN). The goal of this strategy is to 

apply an intelligent action that reduces execution 

and makespan time while improving resource 

utilization and throughput. The primary 

contribution of this study is mentioned as follows: 

 Developed an effective M-DQN method which 

allows an agent to select the optimal action to 

discover suitable VMs from the data centre to 

achieve the aim. 

 The suggested method optimizes outcomes by 

interacting with the environment to achieve high 

reward values. 

 Our suggested algorithm's efficiency is 

demonstrated by simulation using the Google 

Colab and TensorFlow. 

The rest of the paper is arranged as: Section 2 

presents the relevant work. Section 3 explains the 

goal function. Section 4 represents the proposed 

scheduling algorithm. Section 5 depicts the 

experiment analysis. Section 6 finishes with the 

conclusion. 

 

2. Related Work 

Several academics have devised methodologies that 

are presently being utilized to maximise various 

fault tolerance parameters in load balancing. Such 

strategies are based on various machine learning-

based scheduling approaches. 

A Q-learning technique was introduced in [8] to 

spread the work burden across the VMs in order to 

improve QoS. To increase the system performance 

and handle load balance, [9] presented the adaptive 

fast reassignment approach. Cloud storage systems 

can be managed by Adaptive Resource 

Management technique which enhances cloud 

storage performance while preserving and 

balancing the load [10]. To reduce makespan time 

and increase incentive, [11] presented an efficient 

DRL scheduling. To handle task scheduling and 

resource allocation, [12] proposed a two-stage 

algorithm. A DRL algorithm was developed by 

both [13, 14] to optimize makespan and resource 

consumption. An Improved Deep Q-networking 

method was proposed in [15] that can increase the 

success rate while optimizing various parameters. 

Task completion time was reducing by [16] which 

is based on Deep Q-network algorithm. 

From the study, we noticed that majority of 

researchers try to balance the load, limit makespan, 

and increase resource usage. But a fundamental 

drawback of most existing researches is that they 

consider VM migration instead of task migration. 

The VM migration concept has a high cost that 

might influence all services. However, our 

suggested approach can identify which VM is 

overloaded or under loaded by monitoring its 

status. It then selects the optimal VM to assign the 

load to base on its server selection. This approach 

aids in avoiding faults that may occur when 

balancing the load in a VM. Furthermore, the 

proposed technology is allowing users to receive 

services in lower costs and shortest amount of time. 

 

3. Objective Function 

Fig. 1 depicts the basic paradigm of cloud 

computing, which includes task and data centre 

layer. Both layers play a significant role in cloud 

computing and enable us to achieve our goals. The 

task layer contains the task queue, which saves all 

of the relevant information about the incoming task 

and locates the best VM on the server. Similarly, 

data center layer contains all information for both 

servers and VMs which help the data center 

controller to reach an objective.  

 

 

Figure 1. Cloud computing model 
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Our aim is to improve work completion time, 

resource usage, and throughput by taking necessary 

action. Based on the aim, we utilized the DQN 

method to determine the reward function, allowing 

us to improve the system. 

To obtain the outcome, consider a scenario where a 

data centre includes 𝑣 number of heterogeneous 

VMs and 𝑡 numbers of tasks are entering into it. 

Initially, tasks are placed in a task queue and 

assigned to VMs on a first-come first-serve basis. 

VM selection is decided by the present load 

(𝑉𝑀𝑙𝑑), capacity (𝑉𝑀𝑐𝑎𝑝) and service rate (𝑉𝑀𝑠𝑟) 

as shown in Eq. (1), (2) and (3). According to [17] 

each VM has three phases. After evaluating the VM 

phases, the best VM is chosen to handle the task 

and reduce the overall makespan time. As a result, 

calculates the probable execution time 

(𝐸𝑇𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑒), task allocation time (𝑇𝑎𝑡) and 

complete execution time (𝐸𝑇𝑓𝑢𝑙𝑙) as shown in Eq. 

(4), (5) and (6). Finally, makespan time which is 

shown in Eq. (7). Where 𝑉𝑀𝑏 , 𝑉𝑀𝑚𝑖𝑝𝑠  and 𝑉𝑀𝑐𝑝𝑢 

is represent as bandwidth, MIPS, CPU of VM. 𝑇𝑡, 

Tleng and Tfs represent number of task, its length and 

file size. The resource usage(𝑅𝑒𝑠𝑢𝑡𝑖𝑙) is obtained in 

Eq. (8).  

𝑉𝑀𝑙𝑑 =
𝑇𝑡×𝑇𝑙𝑒𝑛𝑔

𝑉𝑀𝑠𝑟
   … (1) 

𝑉𝑀𝑐𝑎𝑝 = 𝑉𝑀𝑠𝑟 + 𝑉𝑀𝑏   … (2) 

𝑉𝑀𝑠𝑟 = 𝑉𝑀𝑚𝑖𝑝𝑠 × 𝑉𝑀𝑐𝑝𝑢  … (3) 

𝐸𝑇𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑒 =
𝑇𝑙𝑒𝑛𝑔

𝑉𝑀𝑠𝑟
   … (4) 

𝑇𝑎𝑡 = 𝑇𝑓𝑠/𝑉𝑀𝑏    … (5) 

𝐸𝑇𝑓𝑢𝑙𝑙 = 𝐸𝑇𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑒 + 𝑇𝑎𝑡  … (6) 

𝑀𝑆 = 𝑚𝑎𝑥{𝐸𝑇𝑓𝑢𝑙𝑙}    ... (7) 

𝑅𝑢𝑡𝑖𝑙 =
𝐸𝑇𝑓𝑢𝑙𝑙

𝑀𝑆
    ... (8) 

 

4. M-DQN Algorithm  

This section defines the core notion and reward 

function of M-DQN method. M-DQN follows DQN 

approach where an agent receives the reward by 

performing suitable actions on environment. In this 

procedure, the data centre controller functions as an 

agent, data centre serves as environment, VM is 

representing as state space and action is defined to 

allocate the task on a suitable VM for execution. 

Due to the dynamic nature of the cloud computing, 

the load of each VM varies, causing some to be 

overloaded and others to be under loaded. To 

equalize the load among the VMs, the agent 

allocates additional jobs from overloaded to under 

loaded VMs. Hence, task allocation rate (𝑇𝑎𝑟) is 

used to select best action which is shown in Eq. (9) 

and the selected action 𝑎 at time 𝑡 denoted by 

𝑎𝑡 can then be determined using equation (10). 

Where, 𝐸𝐿𝑝,𝑞 represents the excess load between 

VM 𝑝 to VM 𝑞. The needed bandwidth between 

VM 𝑝 and VM 𝑞 is represented as𝐵𝑝,𝑞. Finally, the 

reward function is represented in Eq. (11). Table 1 

is representing the pseudo code for proposed 

algorithm. 

𝑇𝑎𝑟 =
𝐸𝐿𝑝,𝑞

𝐵𝑊𝑝,𝑞
    … (9) 

𝑎𝑡 = max
𝑎

(𝑇𝑎𝑟)   … (10) 

𝑟𝑓 = min {𝑀𝑆𝑇/𝑅𝑢𝑡𝑖𝑙}   … (11) 

Table 1. Pseudo code of M-DQN 
Input: Information about task, VM and server; Initialize all 

DQN parameters. 

Output: Reward of data centre. 

1. Start 

2. For each cycle t, 𝑠1to be initialized with capacity and load 

       For every task in the task-queue, 
       If the probability is ∊, a random action 𝑎𝑡 to be chosen  

       Otherwise 𝑎𝑡 = max
𝑎

(𝑇𝑎𝑟) 

 End if 

  Using the action𝑎𝑡, calculate 𝑟𝑡 (the total reward)using 

Eq. (11) 

        Move to𝑠𝑡+1 (the new state) 

        Save the transition(𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡, 𝑠𝑡+1) in memory 𝐸 

        Use 𝑡𝑎𝑟𝑔𝑒𝑡𝑡 = 𝑟𝑡 + 𝛾 𝑄′
𝑎𝑡+1

𝑚𝑎𝑥 (𝑠𝑡+1, 𝑎𝑡+1; 𝛳′) 

        Use gradient descent to evaluate error 𝐿(𝛳) =
𝐸[(𝑡𝑎𝑟𝑔𝑒𝑡𝑡 − 𝑄(𝑠𝑡, 𝑎𝑡; 𝛳))2] 

        For every step 𝛳′ = ϴ 

 End For 

3. End For 

4. Return reward 

5. Stop 

5. Experimental Analysis 

Our experiment is done in Google Colab using 

Python 3.9 and TensorFlow 1.4.0 on Windows 10 

64-bit OS. In our simulation, we took 10,000 tasks 

with varying lengths and file sizes, such as 250 to 

300. These tasks were spread over 100 VMs. The 

suggested M-DQN approach is tested and 

compared to various current techniques, including 

I-DQN and DQN. Fig. 2 to 9 displays all of the 

simulation findings. Table 2 displays all the 

features of the task, virtual machine and DQN 

method. 

5.1 Execution time 

The execution time of M-DQN is depicted in Table 

3, Table 4, Fig. 2 and Fig. 3. Furthermore, the M-

DQN method's performance is compared to that of 

other machine learning methods, including I-DQN  
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Table 2. Features of tasks, VMs and DQN parameters. 
Task Properties VM Properties DRL Properties 

Task 
range 

2000-
10000 

VM range 20-
100 

Maximum 

iteration 

100 

Length 500-
3000 

Processing 
speed  

250-
300 

Learning rate 0.1 

File 

Size 

250 Memory 256-

512 

Discount 

factor 

0.9 

  CPU 1-5 Value of ∊ 0.5-

0.9 

  Bandwidth 1000 Replay 

memory  

1000 

  VMM XEN Neurons  15 

 

and DQN. The data set utilized in Fig. 2 is Table 3, 

which has multiple task sets ranging from 2000 to 

10000 tasks and a fixed number of VMs of 100. 

Similarly, Table 4 and Fig. 3 include 20 to 100 

VMs and a set amount of tasks, i.e., 10,000. Fig. 2 

and Fig. 3 indicate that, while both I-DQN and 

DQN algorithms completed the tasks in longer 

time, the newly constructed M-DQN algorithm 

completed the entire job in the shortest amount of 

time because it better balances exploration and 

exploitation. The X- and Y-axes in Fig. 2 display 

the task number and execution time in seconds, 

whereas the X- and Y-axes in Fig. 3 indicate the 

VM number and execution time in seconds. 

Initially, in Fig. 3, we discovered that the suggested 

M-DQN scheduling method lowers execution time 

by around 3.13% to 7.1% when compared to the I-

DQN algorithm and 8.63% to 16.52% when 

compared to the DQN algorithm when the number 

of jobs rises from 2000 to 10,000. Similarly, Fig. 3 

shows that the proposed technique saves around 

2.8% to 4.9% of execution time when compared to 

the I-DQN algorithm and 4.97% to 15.83% when 

compared to the DQN algorithm. 

 

5.2 Makespan time 

The makespan time of our proposed technique M-

DQN is shown in Table 5, Table 6, Fig. 4 and Fig. 

5. Table 5 contains the data for Fig. 4, in which  

 
Table 3. Execution time of 100 numbers of VMs and 

Task number is 2000 to 10000. 

No. of 

VM 

No. of 

Task 

M-DQN I-DQN DQN 

100 2000 7421.82 7658.35 8091.17 

100 4000 9745.64 10174.47 10487.94  

100 6000 13221.17 14415.55 15218.18 

100 8000 18719.75 20243.99 21834.61 

100 10000 23089.64 24786.28 27249.84 

 
Figure 2. Execution time of different tasks 

Table 4. Execution time of 20 to 100 numbers of VMs 

and 10000 numbers of tasks. 

No. of 

VM 

No. of 

Task 

M-DQN I-DQN DQN 

20 10000 33437.61  34374.26 35143.62 

40 10000 30671.40  31154.12 32274.35 

60 10000 26891.12  27705.48  29354.61 

80 10000 23716.93  25624.98  27876.25 

100 10000 22394.32 23518.34 26246.51 

 

 
Figure 3. Execution time of different VMs 

2000 to 10000 tasks are taken along with a fixed 

number of VMs. Table 6 contains the dataset for 

Fig. 5, in which the number of tasks is fixed at 

10000 and 20 to 100 VMs. The proposed 

algorithm's simulation results are compared to those 

of other cutting-edge algorithms currently in use, 

such as I-DQN and DQN. The task number and 

makespan time in seconds are shown by the X-axes 

and Y-axes in Fig. 4, and the VM number and 

makespan time in seconds are represented by the X-

axes and Y-axes in Fig. 5. Initially, in Fig. 4 we 

have to found that proposed M-DQN scheduling 

algorithm reduce approximately 3.35% to 6.66% 

makespan time  as compared to I-DQN algorithm 

and 6.39% to 9.57% makespan time  as compared 

to DQN algorithm when number of tasks is 

increases. Similarly, in Fig. 5 the proposed 

algorithm is reduce approximate 2.34% to 4.71%of 
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makespan time as compare to I-DQN algorithm and 

5.74% to 10.64%  makespan time  as compare to 

DQN algorithm. 

Table 5. Makespan time of 2000 to 10000 task and 100 

numbers of VMs. 

No. of 

VM 

No. of 

Task 

M-DQN I-DQN DQN 

100 2000 2254.31 2331.31 2403.18 

100 4000 2531.52 2633.25 2737.27 

100 6000 2724.64 2862.24 2911.25 

100 8000 2887.18 2987.24 3025.63 

100 10000 2978.91 3184.10 3278.48 

\ 

 
Figure 4. Makespan time of different tasks 

Table 6. Makespan time of 10000 number of tasks and 

VM is 20 to 100. 

No. of 

VM 

No. of 

Task 

M-DQN I-DQN DQN 

20 10000 3557.74 3642.25 3768.25 

40 10000 3412.63 3561.47 3624.34 

60 10000 3366.45 3405.79 3463.61 

80 10000 3197.21 3288.93 3376.84 

100 10000 2947.17 3089.62 3123.44 

 

Figure 5. Makespan time of different VMs 

5.3 Resource utilization 

Fig. 6 and Fig. 7 shows the performance of average 

resource utilization of M-DQN, I-DQN and DQN 

algorithms where M-DQN algorithm shows the 

improvement of resource utilization as compare to 

other two algorithms. Fig. 6 depicts the average 

resource use for 2000 to 10,000 task sets, with 100 

VMs picked at each iteration. This figure shows 

that the suggested M-DQN algorithm may boost 

average resource usage by 2.78% to 4.76% when 

compared to the I-DQN method and 4.19% to 

8.48% when compared to the DQN algorithm. 

Table 7 displays the data for Fig. 6.  Fig. 7 depicts 

the typical resource use of 20 to 100 virtual 

machines (VMs) with 10,000 jobs each iteration. 

According to this figure, the suggested M-DQN 

algorithm may boost average resource usage by 

around 4.31% to 5.29% when compared to the I-

DQN method and 5.79% to 7.48% when compared 

to the DQN algorithm. Table 8 displays the data for 

Fig. 7. 

Table 7. Average resource utilization of 100 numbers of 

VMs and different number of tasks. 

No. of 

VM 

No. of 

Task 

M-DQN I-DQN DQN 

100 2000 0.73 0.71 0.70 

100 4000 0.79 0.76 0.75 

100 6000 0.83 0.79 0.78 

100 8000 0.85 0.81 0.79 

100 10000 0.86 0.82 0.79 

 

 
Figure 6. Average resource utilization obtained for 2000 

to 10000 task sets 

 
Table 8. Average resource utilization of 10000 number 

of tasks and 20 to 100 number of VMs. 

No. of 

VM 

No. of 

Task 

M-DQN I-DQN DQN 

20 10000 0.71 0.68 0.67 

40 10000 0.85 0.81 0.77 

60 10000 0.92 0.86 0.83 

80 10000 0.96 0.91 0.89 

100 10000 0.97 0.92 0.90 
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Figure 7. Average resource utilization obtained for 20 to 

100 VMs 

5.4 Throughput 

The throughput measures the system's overall 

performance. Throughput refers to the number of 

tasks that may be accomplished in a particular 

period of time. Throughput of M-DQN is improved 

due to maintain of the balance between exploration-

exploitation through which the suggested algorithm 

completes more jobs in a given amount of time, 

whereas other baseline methods struggle with 

overloading or under loading. Fig. 8 shows that the 

constructed M-DQN outperforms earlier baseline 

methods in terms of throughput. Fig. 8 shows the 

number of jobs on the X-axis and the system's 

throughput in seconds on the Y-axis. According to 

Fig. 8, the suggested scheduling approach improves 

by approximately 0.88% to 1.64% when compared 

to the I-DQN algorithm and 1.65% to 4.27% when 

compared with the DQN algorithm. Table 9 

displays the data for Fig. 8. 

5.5 Reward Value 

Fig. 9 depicts the reward value of 100 number of 

iteration with 2000 task. From iteration 10 to 

iteration 25, the payout proportion rises from 55% 

to 80%. After iteration 25, the payout proportion 

remains constant, however it varies between 

iterations. Finally, it displays an estimated 80.7% at 

the conclusion of iteration. At the last iteration, the 

I-DQN and DQN algorithms showed reward values 

Table 9. Throughput value of different algorithms 

Schedule 

algorithm 

2000 4000 6000 8000 10000 

M-DQN 34.14 35.17 36.09 35.81 36.11 

I-DQN 33.84 34.76 35.58 35.13 35.52 

DQN 33.58  34.21 34.78 34.22 34.6 

 

Figure 8. Throughput value 

of 67.9% and 62.3%, respectively. The experiment 

revealed that our suggested method outperforms the 

I-DQN and DQN scheduling algorithms by 12.8% 

and 18.4%, respectively. 

 

 
Figure 9. Reward comparison of 2000 task set. 

 

6. Conclusion 

One of the hardest problems in cloud computing is 

deciding which resources are best for end-user 

applications. While service providers want to 

maximize their profits by providing the best 

resources, end users want their apps to run in a 

certain amount of time and at the lowest possible 

cost. In this paper, we created cloud resource 

allocation architecture and all of its components to 

address the constraints of the present method. The 

resource monitoring node utilizes the M-DQN 

algorithm to continually monitor the state of VMs 

and fulfil the user demand. The performance of the 

M-DQN method is compared with I-DQN and 

DQN algorithms. The key findings of the 

experimental investigation, in contrast to I-DQN 

and DQN, are as follows:  
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● M-DQN technique reduces execution time by 

roughly 16%. 

● The suggested approach decreases makespan 

time by approximately 10%. 

● The suggested method improves resource 

consumption by around 8% on average. 

● The suggested technique enhances throughput 

by around 4%.   

The suggested approach boosts reward value by 

approximately 18%. 
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