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Abstract:  
 

The first and second basic sequences in an m-BPFG are defined in this work along with 

an example of an adjacency sequence of a node. A few instances are created to 

demonstrate that, even if an m-BPFG 𝐺 is regular, the crisp underlying graph may or may 

not be regular or have a uniform adjacency sequence for all of the nodes. Additionally, it 

is demonstrated that not all of the nodes need to have the same adjacency sequence if an 

m-PPFG 𝐺 and its crisp underlying graph are regular. The notion of adjacency sequences 

is used to create a necessary and sufficient requirement for an m-BPFG to be regular if it 

has no more than four nodes. Along with, there are several definitions of what it means 

for a regular m-BPFG's complement, line graph, and other properties to be regular. 

 

1. Introduction 
 

Real-world applications of graph theory may be 

found in an extensive range of areas, such as 

artificial, quantum intelligence, operations research, 

indicator processing, system routing, electrical, 

electronic engineering, information technology, and 

more. Zadeh [1] substituted the general set with the 

fuzzy set in 1965, opening a door for study in a 

variety of domains. Each component in a fuzzy set 

has a relationship  value assigned to it that is chosen 

from the range [0, 1]. Bipolar fuzzy sets might be 

capable for used to more accurately express the 

vagueness of a set than fuzzy sets, which rely on 

certain relationship values. This is based on the 

notion that "bipolar information" is real [2, 3]. More 

graphical depiction of vague data is made possible 

by bipolar fuzzy sets, which greatly improves 

analysis of data interactions, incompleteness, and 

comparison metrics. Graph theory is a crucial tool 

for mathematical modeling in addition to being a 

well-developed area of mathematics. Rosenfeld [4], 

who initially developed the idea of fuzzy graphs, 

recognized its significance. While Craine [5] 

described fuzzy interval graphs and Mordeson and 

Peng [6] studied numerous activities on fuzzy 

graphs. Furthermore, Sunitha and Vijaya kumar [7] 

developed a technique to determine a fuzzy graph's 

complement, fuzzy hypergraphs are examined by 

Mordeson and Nair [8], Nair and Cheng [9] 

presented fuzzy cliques and cliques in fuzzy graphs 

and studied fuzzy hypergraphs. Nagoorgani and 

Radha [10] established regularity of a fuzzy graph in 

2008. As an extension of a fuzzy graph, Yang et al. 

[11] introduced general bipolar fuzzy graph in 2013. 

Bipolar fuzzy hypergraphs were developed by 

Samanta and Pal [12], complement and isomorphism 

on BFGs were examined by Talebi and Rashmanlou 

[13], and extended regular BFG was described by 

Ghorai and Pal [14-18]. On bipolar fuzzy graphs, 

Poulik and Ghorai [19-22] established a variety of 

indices. Numerous studies have been conducted 

using these BFG principles to far. You may find 

some of them in [23]. Numerous significant 

outcomes were examined by Borzooei and 

Rashmanlou [24-28, 29-31] on vague graphs and 

bipolar fuzzy graphs. 

Research in artificial intelligence and quantum 

computing makes it necessary to introduced 
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concepts related to logical causality and decision 

making integral to technical applications. This can 

be to some extent captured by the m-BPFG as this 

theory provides possibility for a ternary 

classification in the place at conventional binary 

classification. 

We know that we have positive (+) and negative (-) 

as well-established bipolar coordinates for 

traditional graph analysis. However, complex 

developments in the field of science tell us that there 

are categories which are both positive and negative 

at the given point of time [32-41]. 

This can be demonstrated with the example of 

opinion making behavior of a country like India. 

Though India has a democratically elected 

government at the center, each state has its own 

democratically elected state governments. While 

opinions regarding many central government 

policies are expressed as agreements or oppositions 

by state governments, there are some central policies 

where there is a degree of both agreement and 

opposition. Let us explain an example from latest 

farm law proposed by the government of India with 

all 29 states taken as an m-block. In principle, this 

law was directly accepted by 20 states while six 

states opposed it. There are three states which 

expressed modifications in the policy as it evolved a 

mixed response. This is important as it influences the 

political system and patterns of voting in India. 

However, in each of the states that have accepted the 

policy some sections of the farmers opposed the 

policy; and in the states which opposed the policy 

there was a call for agreement from  some sections 

of the farmers.  

The first and second basic sequences, as well as the 

adjacency sequence of a node, are defined in this 

study. A few instances are created to demonstrate 

that, even if 𝐺 is a regular m-BPFG, the crisp 

underlying graph may or may not be be regular or 

have a uniform adjacency sequence for all of the 

nodes. An m-BPFG is formed under some conditions 

that are both required and sufficient. 

 

2. Preliminaries 

 
The term "m-BPFG" is defined in this section. For 

the m-BPFG to be generalized, an equivalence 

criterion was established. Create a relationship of 

equivalence from the given set V,  ↔ on 𝑉 × 𝑉 −

{(𝜄, 𝜄): 𝜄 ∈ 𝑉} as follows: (𝜄1, 𝜅1) ↔ (𝜄2, 𝜅2) if and 

only if either (𝜄1, 𝜅1) = (𝜄2, 𝜅2  or 𝜄1 = 𝜅2 , 𝜅1 =
𝜄2 .  
The equivalence class containing the components 
(𝜄, 𝜅)  is represented by 𝜄𝜅 or 𝜅𝜄, while the quotient 

set is represented by 𝑉2 ⃡   . 

Definition 2.1: An m-BPFG of a graph 𝐺∗ = (𝑉, 𝐸) 

is a pair 𝐺 = (𝑉, 𝑄, 𝑅) where 𝑄 =

〈[𝑃ℎoΨQ
+, 𝑃ℎoΨQ

−]
h=1

m
〉 , 𝑃ℎoΨQ

+: V → [0, 1] and 

𝑃ℎoΨQ
−: V → [−1, 0] is an m-BPFS on  𝑉 and 𝑅 =

〈[𝑃ℎoΨR
+, 𝑃ℎoΨR

−]h=1
m 〉, 𝑃ℎoΨR

+: 𝑉2 ⃡   → [0, 1] and 

𝑃ℎoΨQ
−: 𝑉2 ⃡   → [−1, 0] in an m-BPFS in 𝑉2 ⃡    such that 

𝑃ℎoΨR
+(𝜄𝜅) ≤ min{𝑃ℎoΨQ

+(𝜄), 𝑃ℎoΨQ
+(𝜅)}, 

𝑃ℎoΨR
−(𝜄𝜅) ≥ max{𝑃ℎoΨQ

−(𝜄), 𝑃ℎoΨQ
−(𝜅)} 

for all 𝜄𝜅 ∈ 𝑉2 ⃡   , ℎ = 1, 2, ⋯ , 𝑚 and 𝑃ℎoΨR
+(𝜄𝜅) =

𝑃ℎoΨR
−(𝜄𝜅) = 0 for all 𝜄𝜅 ∈ 𝑉2 ⃡   − 𝐸.  

Definition 2.2: Let 𝐺 = (𝑉, 𝑄, 𝑅) be an m-BPFG of 

𝐺∗ = (𝑉, 𝐸).  The complement of 𝐺 is an m-BPFG 

𝐺̅ = (𝑉, 𝑄̅, 𝑅̅) of 𝐺∗̅̅ ̅ = (𝑉, 𝑉2) such that 𝑄̅ = 𝑄 and 

𝑅̅ = 〈[𝑃ℎoΨR̅
+, 𝑃ℎoΨR̅

−]
h=1

m
〉 is defined by 

𝑃ℎoΨR̅
+(𝜄𝜅) = min{𝑃ℎoΨQ

+(𝜄), 𝑃ℎoΨQ
+(𝜅)} −

𝑃ℎoΨR
+(𝜄𝜅),  

𝑃ℎoΨR̅
−(𝜄𝜅) = max{𝑃ℎoΨQ

−(𝜄), 𝑃ℎoΨQ
−(𝜅)} −

𝑃ℎoΨR
−(𝜄𝜅) for 𝜄𝜅 ∈ 𝑉2. 

Definition 2.3: Let 𝐺 = (𝑉, 𝑄, 𝑅) be an m-BPFG of 

𝐺∗ = (𝑉, 𝐸).  

(a) Then, 𝑑𝐺(𝜄)stands for the open 

neighborhood degree of a node 𝜄 ∈ 𝑉 and is 

defined as 𝑑𝐺(𝜄) =
〈[𝑃ℎodG

+(𝜄), 𝑃ℎodG
−(𝜄)]ℎ=1

𝑚 〉 =

〈[
∑ 𝑃ℎoΨR

+(𝜄𝜅)𝜄≠𝜅
𝜄𝜅∈𝐸

,

∑ 𝑃ℎoΨR
−(𝜄𝜅)𝜄≠𝜅

𝜄𝜅∈𝐸

]

ℎ=1

𝑚

〉.  

(b) When all of  𝐺's nodes have the same open 

neighborhood degree, 〈[𝛽ℎ
+, 𝛽ℎ

−]ℎ=1
𝑚 〉, 𝐺  is 

referred to as 〈[𝛽ℎ
+, 𝛽ℎ

−]ℎ=1
𝑚 〉 −regular. 

(c) Then, 𝑑𝐺[𝜄]stands for the closed 

neighborhood degree of a node 𝜄 ∈ 𝑉 and is 

defined as 𝑑𝐺[𝜄]  =

〈[𝑃ℎodG
+[𝜄] , 𝑃ℎodG

−[𝜄]]
ℎ=1

𝑚
〉 = 〈[𝑃ℎodG

+(𝜄) +

𝑃ℎoΨQ
+(𝜄), 𝑃ℎodG

−(𝜄) + 𝑃ℎoΨQ
−(𝜄)]

ℎ=1

𝑚
〉. 

When all of 𝐺 's nodes have the same closed 

neighborhood degree, 〈[𝛾ℎ
+, 𝛾ℎ

−]ℎ=1
𝑚 〉, 𝐺  is 

referred to as 〈[𝛾ℎ
+, 𝛾ℎ

−]ℎ=1
𝑚 〉 −totally 

regular. 
 

3. Adjacency sequences 
 

Below, we'll go through the idea of an adjacency 

sequence and several basic m-BPFG sequences. 

Definition 3.1: Let 𝐿(𝐺∗) = (𝑍, 𝑊) be a line 

graph of a (simple) graph  𝐺∗ = (𝑉, 𝐸). 
Let 𝐺 = (𝑉, 𝑄, 𝑅)be an m-BPFG of 𝐺∗. Then an 

m-BPFLG 𝐿(𝐺) = (𝑄1, 𝑅1) of G is defined as 

follows: 

(i) 𝑄1 and 𝑅1are m-BPF subsets  of 𝑍 and 𝑊 

respectively, 
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(ii) 𝑃ℎoΨQ1

+ (𝑆𝜄) = 𝑃ℎoΨR
+(𝜄) = 𝑃ℎoΨR

+(𝑞𝜄𝑟𝜄), 

             𝑃ℎoΨQ1

− (𝑆𝜄) = 𝑃ℎoΨR
−(𝜄) = 𝑃ℎoΨR

−(𝑞𝜄𝑟𝜄), 

(iii) 𝑃ℎoΨR1

+ (𝑆𝜄𝑆𝜅) =

min{𝑃ℎoΨR
+(𝜄), 𝑃ℎoΨR

+(𝜅)} =
min{𝑃ℎoΨR

+(𝑞𝜄𝑟𝜄), 𝑃ℎoΨR
+(𝑞𝜅𝑟𝜅)}, 

𝑃ℎoΨR1

− (𝑆𝜄𝑆𝜅) = max{𝑃ℎoΨR
−(𝜄), 𝑃ℎoΨR

−(𝜅)}

= max{𝑃ℎoΨR
−(𝑞𝜄𝑟𝜄), 𝑃ℎoΨR

−(𝑞𝜅𝑟𝜅)} 
for all 𝑆𝜄, 𝑆𝜅 ∈ 𝑍, 𝑆𝜄𝑆𝜅 ∈ 𝑊 and ℎ =
1, 2, ⋯ , 𝑚. 

Definition 3.2: The adjacency sequence of a node  𝜏 

in an m-BPFG𝐺is represented as𝒜𝐽𝐶𝑆(𝜏) =

〈[𝑃ℎ𝑜𝒜𝐽𝐶𝑆(𝜏)+ , 𝑃ℎ𝑜𝒜𝐽𝐶𝑆(𝜏)−]
ℎ=1

𝑚
〉, where 

𝑃ℎ𝑜𝒜𝐽𝐶𝑆(𝜏)+ = [𝔭1, 𝔭2, ⋯ , 𝔭𝑛] and 

𝑃ℎ𝑜𝒜𝐽𝐶𝑆(𝜏)− = [𝔫1, 𝔫2, ⋯ , 𝔫𝑛], ℎ = 1, 2, ⋯ , 𝑚 

indicate that the edges that are adjacent to 𝜏 are 

sorted in increasing order of their respective positive 

and negative relationship values. 

Example 3.3:  Consider an m-BPFG 𝐺 =
(𝑉, 𝑄, 𝑅) as shown in the Figure. 1., here 

 

 

 

Figure 1: m-Bipolar Fuzzy Graph and its Adjacency 

Sequences 

 

Then the adjacency sequences of the nodes are  

𝒜𝐽𝐶𝑆(𝛼) = 〈[𝑃ℎ𝑜𝒜𝐽𝐶𝑆(𝛼)+, 𝑃ℎ𝑜𝒜𝐽𝐶𝑆(𝛼)−]
ℎ=1

𝑚
〉

=  〈
[0.2, 0.3], [−0.1, −0.1], [0.5, 0.5],

[−0.6, −0.3]
〉, 

𝒜𝐽𝐶𝑆(𝛽) = 〈[𝑃ℎ𝑜𝒜𝐽𝐶𝑆(𝛽)+, 𝑃ℎ𝑜𝒜𝐽𝐶𝑆(𝛽)−]
ℎ=1

𝑚
〉

=  〈
[0.3, 0.3], [−0.2, −0.1], [0.4, 0.5],

[−0.5, −0.3]
〉, 

𝒜𝐽𝐶𝑆(𝛾) = [𝑃ℎ𝑜𝒜𝐽𝐶𝑆(𝛾)+, 𝑃ℎ𝑜𝒜𝐽𝐶𝑆(𝛾)−] 

= 〈
[0.2, 0.2, 0.3], [−0.3, −0.2, −0.1],
[0.1, 0.4, 0.5], [−0.6, −0.5, −0.5] 

〉, 

𝒜𝐽𝐶𝑆(𝜄) = 〈[𝑃ℎ𝑜𝒜𝐽𝐶𝑆(𝜄)+, 𝑃ℎ𝑜𝒜𝐽𝐶𝑆(𝜄)−]
ℎ=1

𝑚
〉 

= 〈
[0.1, 0.2, 0.3], [−0.3, −0.2, −0.2],
[0.1, 0.2, 0.3], [−0.6, −0.5, −0.4] 

〉, 

𝒜𝐽𝐶𝑆(𝜏) = 〈[𝑃ℎ𝑜𝒜𝐽𝐶𝑆(𝜏)+, 𝑃ℎ𝑜𝒜𝐽𝐶𝑆(𝜏)−]
ℎ=1

𝑚
〉

=  〈
[0.1, 0.1], [−0.2, −0.2], [0.1, 0.3],

 [−0.6, −0.4]
〉, 

𝒜𝐽𝐶𝑆(𝜅) = 〈[𝑃ℎ𝑜𝒜𝐽𝐶𝑆(𝜅)+, 𝑃ℎ𝑜𝒜𝐽𝐶𝑆(𝜅)−]
ℎ=1

𝑚
〉

=  〈
[0.1, 0.3], [−0.2, −0.2], [0.1, 0.2],

[−0.4, −0.4]
〉. 

Remark 3.4: We now have result in drastic findings. 

(i) The number of points in 

𝑃ℎ𝑜𝒜𝐽𝐶𝑆(𝜏)+or 𝑃ℎ𝑜𝒜𝐽𝐶𝑆(𝜏)− is the 

degree of 𝜏 in 𝐺∗ for any ℎ. 
(ii) The sum of all points in 

[𝑃ℎ𝑜𝒜𝐽𝐶𝑆(𝜏)+]
ℎ=1

𝑚
and sum of all points 

in [𝑃ℎ𝑜𝒜𝐽𝐶𝑆(𝜏)−]
ℎ=1

𝑚
is a degree of 𝜏 in 

an m-BPFG 𝐺 ,  

i.e. 𝑑𝐺(𝜏) = 〈[∑ 𝑘𝑗𝑘𝑗∈[𝑃ℎ𝑜𝒜𝐽𝐶𝑆(𝜏)+] ,

∑ 𝑘𝑗𝑘𝑗∈[𝑃ℎ𝑜𝒜𝐽𝐶𝑆(𝜏)−] ]
ℎ=1

𝑚
〉. 

Remark 3.5: If 𝐺 is a regular m-BPFG, the crisp 

underlying graph 𝐺∗may not be regular and every 

node may not contain the equal adjacency 

sequence. 

For instance, Take an m-BPFG 𝐺 of  𝐺∗ in Figure. 

2., here 

 

 

Figure 2: 𝐺 is an m-BPFG and Regular. Where the 

Nodes in 𝐺 should not contain the same Adjacency 

Sequence and 𝐺∗is not Regular 

 

 

 

 𝑄 =  

𝛼

  0.5,−0.1 , 0.8,−0.9  
,

𝛽

  0.4,−0.5 , 0.6,−0.8  
,

𝛾

  0.5,−0.6 , 0.6,−0.7  
,

𝜄

  0.4,−0.5 , 0.4,−0.7  
,

𝜅

  0.5,−0.4 , 0.3,−0.5  
,

𝜏

  0.1,−0.3 , 0.5,−0.7  

  , 

𝑅 =  

 
 
 

 
 

𝛼𝛽

  0.3,−0.1 , 0.5,−0.3  
,

𝛼𝛾

  0.2,−0.1 , 0.5,−0.6  
,

𝛽𝛾

  0.3,−0.2 , 0.4,−0.5  
,

𝛾𝜄

  0.2,−0.3 , 0.1,−0.5  
,

𝜄𝜏

  0.1,−0.2 , 0.3,−0.6  
,

𝜏𝜅

  0.1,−0.2 , 0.1,−0.4  
,

𝜄𝜅

  0.3,−0.2 , 0.2,−0.4   
 
 

 
 

. 

𝑄 =

 
 
 

 
 

𝜄1
  0.7, −0.4 ,  0.6, −0.7  

,
𝜄2

  0.8, −0.5 ,  0.5, −0.8  
,

𝜄3
  0.9, −0.6 ,  0.5, −0.7  

,

𝜄4
  0.7, −0.6 ,  0.5, −0.5  

,
𝜄5

  0.9, −0.5 ,  0.7, −0.5  
,

𝜄6
  0.9, −0.7 ,  0.7, −0.8  

,

𝜄7
  0.9, −0.5 ,  0.6, −0.7   

 
 

 
 

 

𝑅 =  

 
 
 

 
 

𝜄1𝜄2
  0.6, −0.2 ,  0.3, −0.5  

,
𝜄2𝜄3

  0.6, −0.2 ,  0.3, −0.5  
,

𝜄3𝜄4
  0.3, −0.1 ,  0.1, −0.4  

,

𝜄4𝜄1
  0.3, −0.1 ,  0.1, −0.4  

,
𝜄1𝜄3

  0.3, −0.1 ,  0.2, −0.1  
,

𝜄4𝜄5
  0.6, −0.2 ,  0.4, −0.2  

,

𝜄5𝜄6
  0.3, −0.1 ,  0.1, −0.4  

,
𝜄6𝜄7

  0.9, −0.3 ,  0.5, −0.6  
,

𝜄5𝜄7
  0.3, −0.1 ,  0.1, −0.4   

 
 

 
 

. 



RamaKishore K., Ramprasad C.H., Varma P.L.N/ IJCESEN 10-4(2024)1271-1281 

 

1274 

 

We see that 𝐺 is  〈[1.2, −0.4], [0.6, −1]〉-regular m-

BPFG whose crisp underlying graph 𝐺∗ is not 

regular.  

Furthermore, 

𝒜𝐽𝐶𝑆(𝜄1) =  〈
[0.3, 0.3,0.6], [−0.2, −0.1, −0.1], ,
[0.1, 0.2, 0.3], [−0.5, −0.4, −0.1]

〉, 

≠ 𝒜𝐽𝐶𝑆(𝜄2) = 〈
[0.6,0.6], [−0.2, −0.2, ], [0.3, 0.3],

[−0.5, −0.5]
〉. 

Therefore, it is not necessary for every node in a 

regular m-BPFG to have the identical adjacency 

sequence. 

Remark 3.6:  It is possible that certain nodes do 

not have the same adjacency sequence if 𝐺 and 𝐺∗ 

are both regular.   

Definition 3.7: The basic sequence of an m-BPFG 

𝐺 is characterized as the structured set 

𝜉𝑏𝑠(𝐺) = 〈[𝑃ℎ𝑜𝜉𝑏𝑠
+ (𝐺) , 𝑃ℎ𝑜𝜉𝑏𝑠

− (𝐺)]ℎ=1
𝑚 〉 where 

𝑃ℎ𝑜𝜉𝑏𝑠
+ (𝐺) = {𝑃ℎoΨQ

+(𝜄) > 0: 𝜄 ∈ 𝑉} ∪

{𝑃ℎoΨR
+(𝜄𝜅) > 0: 𝜄, 𝜅 ∈ 𝑉},  

𝑃ℎ𝑜𝜉𝑏𝑠
− (𝐺) = {𝑃ℎoΨQ

−(𝜄) < 0: 𝜄 ∈ 𝑉} ∪

{𝑃ℎoΨR
−(𝜄𝜅) < 0: 𝜄, 𝜅 ∈ 𝑉}, for ℎ = 1, 2, ⋯ , 𝑚.  

𝑃ℎ𝑜𝜉𝑏𝑠
+ (𝐺) and 𝑃ℎ𝑜𝜉𝑏𝑠

− (𝐺) have elements that are 

arranged in decreasing or increasing order, 

respectively. 

The first basic sequence is known as the node portion 

of the basic sequence, while the second basic 

sequence is known as the edge part of the basic 

sequence. These parts are indicated by the letters 

𝑓𝜉𝑏𝑠(𝐺) and 𝑠𝜉𝑏𝑠(𝐺) respectively. 

 

4. Description of regular m-BPFGs 

The regular m-BPFGs which have four nodes or less 

are outlined by the theorem. 

Theorem 4.1: Let 𝑘 be the number of nodes in 𝐺 and 

let 𝐺 = (𝑉, 𝑄, 𝑅) be an m-BPFG of 𝐺∗ = (𝑉, 𝐸). 𝐺 

is a regular m-BPFG iff 𝐺∗ is regular and every node 

has the equal adjacency sequence, which holds true 

if 𝑘 ≤ 4. 

Proof: Suppose that  𝐺∗ is regular and every node 

has the equal adjacency sequence. Thus 𝐺 is a 

regular m-BPFG. 

On the other hand, let 𝐺 be a 𝛽 =
〈[𝛽ℎ

+, 𝛽ℎ
−]ℎ=1

𝑚 〉 −regular m-BPFG. 

There is nothing to prove if there is only one node or 

if there is no edge connecting the nodes. Thus, we 

presume that 𝐸 ≠ ∅. Then 𝑘 > 1and 𝛽 ≠ 0.Think of 

the three scenarios when 𝑘 = 2, 3 and 4. 

 

Case 1: If 𝑘 = 2, 𝐺 contains two nodes 𝜄1 and 𝜄2. 

Hence 𝐺∗ is one regular and 𝜄1 and 𝜄2have the equal 

adjacency sequences 𝒜𝐽𝐶𝑆(𝜄1) =

〈[𝑃ℎoΨR
+(𝜄1𝜄2)𝑃ℎoΨR

−(𝜄1𝜄2)]h=1
m 〉. 

 

 
Figure 3.:𝐺 is a 〈[𝛽ℎ

+, 𝛽ℎ
−]ℎ=1

𝑚 〉 −Regular m-BPFG with 

𝐺∗ cyclic and 2-Regular 

 

Case 2: When 𝑘 = 3, 𝐺 have three nodes 𝜄1, 𝜄2, 𝜄3 

with the edges 𝜄1𝜄2, 𝜄2𝜄3, 𝜄1𝜄3 in 𝐺 (see Figure. 3.). Let 

the edge’s relationship values be 

〈[𝑃ℎoΨR
+(𝜄1𝜄2)𝑃ℎoΨR

−(𝜄1𝜄2)]h=1
m 〉, 

〈[𝑃ℎoΨR
+(𝜄2𝜄3)𝑃ℎoΨR

−(𝜄2𝜄3)]h=1
m 〉 and 

〈[𝑃ℎoΨR
+(𝜄1𝜄3)𝑃ℎoΨR

−(𝜄1𝜄3)]h=1
m 〉 respectively. 

As 𝐺 is 𝛽 = 〈[𝛽ℎ
+, 𝛽ℎ

−]ℎ=1
𝑚 〉 −regular m-BPFG, 

𝛽(𝜄𝑗) = 〈[𝛽ℎ
+, 𝛽ℎ

−]ℎ=1
𝑚 〉 for 𝑗 = 1, 2, 3. 

So we get, 

𝑃ℎoΨR
+(𝜄1𝜄2) + 𝑃ℎoΨR

+(𝜄2𝜄3) = 𝛽ℎ
+   (1) 

𝑃ℎoΨR
+(𝜄2𝜄3) + 𝑃ℎoΨR

+(𝜄1𝜄3) = 𝛽ℎ
+   (2) 

𝑃ℎoΨR
+(𝜄1𝜄2) + 𝑃ℎoΨR

+(𝜄1𝜄3) = 𝛽ℎ
+   (3) 

𝑃ℎoΨR
−(𝜄1𝜄2) + 𝑃ℎoΨR

−(𝜄2𝜄3) = 𝛽ℎ
−   (4) 

𝑃ℎoΨR
−(𝜄2𝜄3) + 𝑃ℎoΨR

−(𝜄1𝜄3) = 𝛽ℎ
−   (5) 

𝑃ℎoΨR
−(𝜄1𝜄2) + 𝑃ℎoΨR

−(𝜄1𝜄3) = 𝛽ℎ
−   (6) 

By condensing the equations above, we obtain  

𝑃ℎoΨR
+(𝜄1𝜄2) = 𝑃ℎoΨR

+(𝜄2𝜄3) = 𝑃ℎoΨR
+(𝜄1𝜄3) =

𝛽ℎ
+

2
   

and 𝑃ℎoΨR
−(𝜄1𝜄2) = 𝑃ℎoΨR

−(𝜄2𝜄3) =

𝑃ℎoΨR
−(𝜄1𝜄3) =

𝛽ℎ
−

2
 for ℎ = 1, 2, ⋯ , 𝑚. 

So every node has equal adjacency sequence, i.e. 

𝒜𝐽𝐶𝑆(𝜄𝑗) = 〈[[
𝛽ℎ

+

2
,
𝛽ℎ

+

2
] , [

𝛽ℎ
−

2
,
𝛽ℎ

−

2
]]

ℎ=1

𝑚

〉, for 𝑗 = 1, 2, 3 

and 𝐺∗ is two regular. Now 𝐺∗ is a cycle and every 

edge contains the relationship value 〈[
𝛽ℎ

+

2
,
𝛽ℎ

−

2
]
ℎ=1

𝑚

〉. 

Case 3: When 𝑘 = 4, 𝐺 have four nodes 𝜄1, 𝜄2, 𝜄3 , 𝜄4 

with the edges 𝜄1𝜄2, 𝜄1𝜄4, 𝜄1𝜄3, 𝜄2𝜄3, 𝜄2𝜄4 and 𝜄3𝜄4 in 𝐺 

(see Figure  4.). Let the edge’s relationship values be 

〈[𝑃ℎoΨR
+(𝜄1𝜄2)𝑃ℎoΨR

−(𝜄1𝜄2)]h=1
m 〉,  

〈[𝑃ℎoΨR
+(𝜄1𝜄4)𝑃ℎoΨR

−(𝜄1𝜄4)]h=1
m 〉, 

〈[𝑃ℎoΨR
+(𝜄1𝜄3)𝑃ℎoΨR

−(𝜄1𝜄3)]h=1
m 〉, 

〈[𝑃ℎoΨR
+(𝜄2𝜄3)𝑃ℎoΨR

−(𝜄2𝜄3)]h=1
m 〉, 

〈[𝑃ℎoΨR
+(𝜄2𝜄4)𝑃ℎoΨR

−(𝜄2𝜄4)]h=1
m 〉 and 

〈[𝑃ℎoΨR
+(𝜄3𝜄4)𝑃ℎoΨR

−(𝜄3𝜄4)]h=1
m 〉,  respectively. 

As 𝐺 is 𝛽 = 〈[𝛽ℎ
+, 𝛽ℎ

−]ℎ=1
𝑚 〉 −regular m-BPFG, 

𝛽(𝜄𝑗) = 〈[𝛽ℎ
+, 𝛽ℎ

−]ℎ=1
𝑚 〉 for 𝑗 = 1, 2, 3, 4. 

So we get, 

𝑃ℎoΨR
+(𝜄1𝜄2) + 𝑃ℎoΨR

+(𝜄1𝜄3) + 𝑃ℎoΨR
+(𝜄1𝜄4) = 𝛽ℎ

+   

(7) 



RamaKishore K., Ramprasad C.H., Varma P.L.N/ IJCESEN 10-4(2024)1271-1281 

 

1275 

 

𝑃ℎoΨR
+(𝜄2𝜄1) + 𝑃ℎoΨR

+(𝜄2𝜄3) + 𝑃ℎoΨR
+(𝜄2𝜄4) = 𝛽ℎ

+   

(8) 

𝑃ℎoΨR
+(𝜄3𝜄1) + 𝑃ℎoΨR

+(𝜄3𝜄2) + 𝑃ℎoΨR
+(𝜄3𝜄4) = 𝛽ℎ

+   

(9) 

𝑃ℎoΨR
+(𝜄4𝜄1) + 𝑃ℎoΨR

+(𝜄4𝜄2) + 𝑃ℎoΨR
+(𝜄4𝜄3) = 𝛽ℎ

+   

(10) 

𝑃ℎoΨR
−(𝜄1𝜄2) + 𝑃ℎoΨR

−(𝜄1𝜄3) + 𝑃ℎoΨR
−(𝜄1𝜄4) = 𝛽ℎ

−   

(11) 

𝑃ℎoΨR
−(𝜄2𝜄1) + 𝑃ℎoΨR

−(𝜄2𝜄3) + 𝑃ℎoΨR
−(𝜄2𝜄4) = 𝛽ℎ

−   

(12) 

𝑃ℎoΨR
−(𝜄3𝜄1) + 𝑃ℎoΨR

−(𝜄3𝜄2) + 𝑃ℎoΨR
−(𝜄3𝜄4) = 𝛽ℎ

−   

(13) 

𝑃ℎoΨR
−(𝜄4𝜄1) + 𝑃ℎoΨR

−(𝜄4𝜄2) + 𝑃ℎoΨR
−(𝜄4𝜄3) = 𝛽ℎ

−   

(14) 

By condensing the equations above, we obtain  

𝑃ℎoΨR
+(𝜄1𝜄3) = 𝑃ℎoΨR

+(𝜄2𝜄4), 𝑃ℎoΨR
+(𝜄1𝜄2) =

𝑃ℎoΨR
+(𝜄3𝜄4), 𝑃ℎoΨR

+(𝜄1𝜄4) = 𝑃ℎoΨR
+(𝜄2𝜄3)  and 

𝑃ℎoΨR
−(𝜄1𝜄3) = 𝑃ℎoΨR

−(𝜄2𝜄4),  𝑃ℎoΨR
−(𝜄1𝜄2) =

𝑃ℎoΨR
−(𝜄3𝜄4),   𝑃ℎoΨR

−(𝜄1𝜄4) = 𝑃ℎoΨR
−(𝜄2𝜄3). 

Let 𝑃ℎoΨR
+(𝜄1𝜄3) = 𝑃ℎoΨR

+(𝜄2𝜄4) =
αh, 𝑃ℎoΨR

+(𝜄1𝜄2) = 𝑃ℎoΨR
+(𝜄3𝜄4) = βh,   

𝑃ℎoΨR
+(𝜄1𝜄4) = 𝑃ℎoΨR

+(𝜄2𝜄3) = γh  and 

𝑃ℎoΨR
−(𝜄1𝜄3) = 𝑃ℎoΨR

−(𝜄2𝜄4) = δh, 𝑃ℎoΨR
−(𝜄1𝜄2) =

𝑃ℎoΨR
−(𝜄3𝜄4) = θh,   𝑃ℎoΨR

−(𝜄1𝜄4) =
𝑃ℎoΨR

−(𝜄2𝜄3) = ρh. 

 
Figure 4.: 𝐺 is a 〈[𝛽ℎ

+, 𝛽ℎ
−]ℎ=1

𝑚 〉 −Regular m-BPFG with 

𝐺∗ Three-Regular or Two-Regular or One-Regular 

 

As 𝐸 is not empty, we have at least one of the edge’s 

relationship values must be nonzero. 

If every edge's relationship  value is not equals to 

zero, then 𝐺∗  is a three-regular graph, the elements 

in each one node's adjacency sequence 

are〈[[αh, βh, γh], [δh, θh, ρh]]
ℎ=1

𝑚
〉in ascending 

order. 

If any two edge’s relationship values are not equals 

to zero, thus 𝐺∗  is two-regular and each node's 

adjacency sequence contains the two non-zero 

relationship values in ascending order. 

If anyone edge relationship values is not equals to 

zero, thus 𝐺∗  is one-regular and each node's 

adjacency sequence contains non-zero relationship 

value. 

Remark 4.2: Let 𝐺 = (𝑉, 𝑄, 𝑅) be an m-BPFG of 

the graph 𝐺∗ where 𝑉 = {𝜄1, 𝜄2, 𝜄3, 𝜄4, 𝜄5} and 𝐸 =
{𝜄1𝜄2, 𝜄2𝜄3, 𝜄3𝜄4, 𝜄3𝜄5, 𝜄4𝜄5, 𝜄5𝜄1} (see Figure 5.). Here 

𝑑𝐺(𝜄𝑖) =  〈[0.9, −0.6], [0.8, −0.7]〉 for all 𝑖 =
1, 2, 3, 4, 5. So 𝐺 is 〈[0.9, −0.6], [0.8, −0.7]〉-regular 

m-BPFG. Hence from the Figure 5., it is shown that 

𝐺∗ is not regular. Again, the adjacency sequences of 

the nodes are distinct as mentioned under:  

Here, 𝑄 =

{
 
 

 
 

𝜄1

〈[0.7,−0.5],[0.6,−0.7]〉
,

𝜄2

〈[0.8,−0.6],[0.7,−0.6]〉
,

𝜄3

〈[0.8,−0.5],[0.8,−0.7]〉
,

𝜄4

〈[0.7,−0.6],[0.6,−0.5]〉
,

𝜄5

〈[0.6,−0.5],[0.8,−0.6]〉 }
 
 

 
 

, 

𝑅

=

{
 
 

 
 

𝜄1𝜄2
〈[0.6, −0.4], [0.5, −0.5]〉

,
𝜄2𝜄3

〈[0.3, −0.2], [0.3, −0.2]〉
,

𝜄3𝜄4
〈[0.45, −0.3], [0.4, −0.35]〉

,
𝜄5𝜄1

〈[0.3, −0.2], [0.3, −0.2]〉
,

 
𝜄3𝜄5

〈[0.15, −0.1], [0.1, −0.15]〉
,

𝜄4𝜄5
〈[0.45, −0.3], [0.4, −0.35]〉}

 
 

 
 

, 

𝒜𝐽𝐶𝑆(𝜄1) = 〈
[0.3,0.6], [−0.4, −0.2], [0.3, 0.5],

[−0.5, −0.2]
〉, 

𝒜𝐽𝐶𝑆(𝜄2) = 〈
[0.3,0.6], [−0.4, −0.2, ], [0.3, 0.5],

 [−0.5, −0.2]
〉, 

𝒜𝐽𝐶𝑆(𝜄3) = 〈
[0.15,0.3, 0.45], [−0.3, −0.2, −0.1],
[0.1, 0.3, 0.4], [−0.35, −0.2, −0.15]

〉, 

𝒜𝐽𝐶𝑆(𝜄4)

= 〈
[0.45, 0.45], [−0.3, −0.3, ], [0.4, 0.4],

[−0.35, −0.35]
〉, 

𝒜𝐽𝐶𝑆(𝜄5) = 〈
[0.15,0.3, 0.45], [−0.3, −0.2, −0.1],
[0.1, 0.3, 0.4], [−0.35, −0.2, −0.15]

〉, 

 
Figure 5.: 𝐺 is a 〈[0.9, −0.6], [0.8, −0.7]〉-Regular 

however 𝐺∗  is not regular with distinct adjacency 

sequences 

 

Remark 4.3: A regular crisp graph's line graph is 

always regular. However, with m-BPFG, this finding 

is no longer valid. A regular m-BPFG need not have 

a regular m-BPFLG. 

For example, consider an m-BPFG 𝐺 = (𝑉, 𝑄, 𝑅) in 

Figure. 6., here 
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𝑄

= {

𝜄1
〈[0.7, −0.6], [0.5, −0.6]〉

,
𝜄2

〈[0.6, −0.6], [0.5, −0.5]〉
,

𝜄3
〈[0.6, −0.7], [0.6, −0.5]〉

,
𝜄4

〈[0.7, −0.6], [0.5, −0.6]〉

} 

 

𝑅

=

{
 
 

 
 

𝜄1𝜄2
〈[0.1, −0.1], [0.3, −0.3]〉

,
𝜄1𝜄3

〈[0.5, −0.5], [0.2, −0.2]〉
,

𝜄1𝜄4
〈[0.2, −0.2], [0.1, −0.1]〉

,
𝜄2𝜄3

〈[0.2, −0.2], [0.1, −0.1]〉
,

 
𝜄2𝜄4

〈[0.5, −0.5], [0.2, −0.2]〉
,

𝜄3𝜄4
〈[0.1, −0.1], [0.3, −0.3]〉}

 
 

 
 

 

Here 𝑑𝐺(𝜄𝑖) =  〈[0.8, −0.8], [0.6, −0.6]〉 for all  𝑖 =
1, 2, 3, 4.  

 

 
Figure 6: 𝐺 is a 〈[0.8, −0.8], [0.6, −0.6]〉-Regular but 

the resultant m-BPFLG 𝐿(𝐺) is not Regular 

 

Then, 𝒜𝐽𝐶𝑆(𝜄1) = 

〈
[0.1, 0.2, 0.5], [−0.5, −0.2, −0.1],
[0.1, 0.2, 0.3], [−0.3, −0.2, −0.1]

〉, 

𝒜𝐽𝐶𝑆(𝜄2) = 〈
[0.1, 0.2, 0.5], [−0.5, −0.2, −0.1],
[0.1, 0.2, 0.3], [−0.3, −0.2, −0.1]

〉, 

𝒜𝐽𝐶𝑆(𝜄3) = 〈
[0.1, 0.2, 0.5], [−0.5, −0.2, −0.1],
[0.1, 0.2, 0.3], [−0.3, −0.2, −0.1]

〉, 

𝒜𝐽𝐶𝑆(𝜄4) = 〈
[0.1, 0.2, 0.5], [−0.5, −0.2, −0.1],
 [0.1, 0.2, 0.3], [−0.3, −0.2, −0.1]

〉, 

So 𝐺 is 〈[0.8, −0.8], [0.6, −0.6]〉-regular. The 

relationship values in m-BPFLG are 

{
 
 

 
 

𝜅1

〈[0.1, −0.1], [0.3, −0.3]〉
,

𝜅2

〈[0.2, −0.2], [0.1, −0.1]〉
,

 
𝜅3

〈[0.1, −0.1], [0.3, −0.3]〉
,

𝜅4

〈[0.2, −0.2], [0.1, −0.1]〉
,

𝜅5

〈[0.5, −0.5], [0.2, −0.2]〉
,

𝜅6

〈[0.5, −0.5], [0.2, −0.2]〉 }
 
 

 
 

 

{
 
 
 
 
 
 

 
 
 
 
 
 

𝜅1𝜅2

〈[0.1, −0.1], [0.1, −0.1]〉
,

𝜅1𝜅4

〈[0.1, −0.1], [0.1, −0.1]〉
,

𝜅1𝜅5

〈[0.1, −0.1], [0.2, −0.2]〉
,

𝜅1𝜅6

〈[0.1, −0.1], [0.2, −0.2]〉
,

 
𝜅2𝜅3

〈[0.1, −0.1], [0.1, −0.1]〉
,

𝜅2𝜅5

〈[0.2, −0.2], [0.1, −0.1]〉
,

𝜅2𝜅6

〈[0.2, −0.2], [0.1, −0.1]〉
,

𝜅3𝜅4

〈[0.1, −0.1], [0.1, −0.1]〉
,

𝜅3𝜅5

〈[0.1, −0.1], [0.2, −0.2]〉
,

𝜅3𝜅6

〈[0.1, −0.1], [0.2, −0.2]〉
,

𝜅4𝜅5

〈[0.2, −0.2], [0.1, −0.1]〉
,

𝜅4𝜅6

〈[0.2, −0.2], [0.1, −0.1]〉 }
 
 
 
 
 
 

 
 
 
 
 
 

 

 

But 𝑑𝐿(𝐺)(𝜅1) =  〈[0.4, −0.4], [0.6, −0.6]〉 ≠

 〈[0.6, −0.6], [0.4, −0.4]〉 = 𝑑𝐿(𝐺)(𝜅2).  

𝒜𝐽𝐶𝑆(𝜅1) = 〈
[0.1, 0.2, 0.5], [−0.5, −0.2, −0.1],
[0.1, 0.2, 0.3], [−0.3, −0.2, −0.1]

〉 

So the line graph  𝐿(𝐺) is not regular. 

So, a characterization is shown for a m-BPFLG of a 

regular m-BPFG to be regular. 

Theorem 4.4: Let 𝐺 = (𝑉, 𝑄, 𝑅) be a 

〈[𝛽ℎ
+, 𝛽ℎ

−]ℎ=1
𝑚 〉- regular m-BPFG of the 𝑘 − crisp 

regular graph 𝐺∗and every node contains the same 

adjacency sequence 

  〈[[𝜄1ℎ

+ , 𝜄2ℎ

+  , ⋯ , 𝜄𝑘ℎ

+ ], [𝓂1ℎ

− , 𝓂2ℎ

−  , ⋯ , 𝓂𝑘ℎ

− ]]
ℎ=1

𝑚
〉, 

𝜄1ℎ

+ , 𝜄2ℎ

+  , ⋯ , 𝜄𝑘ℎ

+ ∈ [0, 1] and 𝓂1ℎ

− , 𝓂2ℎ

−  , ⋯ , 𝓂𝑘ℎ

− ∈

[−1, 0]. Then the m-BPFLG 𝐿(𝐺) of 𝐺 is regular 

iff 𝑅 is constant or 𝑅 takes exactly 3 values so  

𝜄1ℎ

+ = 𝜄2ℎ

+ = ⋯ = 𝜄𝑘−1ℎ

+ , 𝜄𝑗ℎ

+ < 𝜄𝑘ℎ

+ ≤ 1 for 𝑗 =

1, 2, ⋯ , 𝑘 − 1 and 𝓂2ℎ

− = 𝓂3ℎ

− = 𝓂𝑘−1ℎ

− =

𝓂𝑘ℎ

− , −1 ≤ 𝓂1ℎ

− < 𝓂𝑗ℎ

−  for 𝑗 = 1, 2, ⋯ , 𝑘 − 1,

ℎ = 1, 2, ⋯ , 𝑚. 

Proof: Suppose that line graph 𝐿(𝐺) is 

〈[𝛾ℎ
+, 𝛾ℎ

−]ℎ=1
𝑚 〉-regular. 

Let 𝑅(𝑔) = 〈[𝜄𝑗ℎ

+ , 𝓂𝑗ℎ

− ]
ℎ=1

𝑚
〉, for 𝑗 = 1, 2, ⋯ , 𝑘 where 

𝑔 = 𝜄𝜏 be any edge of 𝐺. 
Thus every 𝜄 and 𝜏 is incident with 𝑘 − 1 edges with 

relationship values 

[𝜄1ℎ

+ , 𝓂1ℎ

− ], [𝜄2ℎ

+ , 𝓂2ℎ

− ], ⋯ , [𝜄𝑗−1ℎ

+ , 𝓂𝑗−1ℎ

− ],   

[𝜄𝑗+1ℎ

+ , 𝓂𝑗+1ℎ

− ], ⋯ , [𝜄𝑘ℎ

+ , 𝓂𝑘ℎ

− ]. Hence the node 𝑔 in 

𝐿(𝐺) is adjacent with 2(𝑘 − 1) edges with 

relationship values [𝜄1ℎ

+ ∧ 𝜄𝑗ℎ

+  , 𝓂1ℎ

− ∨ 𝓂𝑗ℎ

− ], [𝜄2ℎ

+ ∧

𝜄𝑗ℎ

+  , 𝓂2ℎ

− ∨ 𝓂𝑗ℎ

− ], ⋯ , [𝜄𝑗−1ℎ

+ ∧ 𝜄𝑗ℎ

+  , 𝓂𝑗−1ℎ

− ∨ 𝓂𝑗ℎ

− ], 

[𝜄𝑗+1ℎ

+ ∧ 𝜄𝑗ℎ

+  , 𝓂𝑗+1
− ∨ 𝓂𝑗ℎ

− ], ⋯ , [𝜄𝑘ℎ

+ ∧ 𝜄𝑗ℎ

+  , 𝓂𝑘ℎ

− ∨

𝓂𝑗ℎ

− ],  each appearing twice for ℎ = 1, 2, ⋯ , 𝑚. 
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Hence,𝑑𝐿(𝐺)(𝑔) =

〈[𝑃ℎo𝑑𝐿(𝐺)
+ (𝑔), 𝑃ℎo𝑑𝐿(𝐺)

− (𝑔)]
ℎ=1

𝑚
〉 where 

𝑃ℎo𝑑𝐿(𝐺)
+ (𝑔) = 2 ∑ 𝜄𝑟ℎ

+ ∧

𝑟≠𝑗

𝜄𝑗ℎ

+  

= 2 ∑ 𝜄𝑟ℎ
+ ∧ 𝜄𝑗ℎ

+ + 2 ∑ 𝜄𝑟ℎ
+ ∧ 𝜄𝑗ℎ

+

𝑘

𝑟=𝑗+1

𝑗−1

𝑟=1

 

= 2 ∑ 𝜄𝑟ℎ
+ + 2 ∑ 𝜄𝑗ℎ

+𝑘
𝑟=𝑗+1

𝑗−1
𝑟=1   (Since 𝜄1ℎ

+ ≤ 𝜄2ℎ

+ ≤

 ⋯ ≤ 𝜄𝑘ℎ

+ ) 

=2 ∑ 𝜄𝑟ℎ
+ + 2(𝑘 − 𝑗)

𝑗−1
𝑟=1 𝜄𝑗ℎ

+  

and  

𝑃ℎo𝑑𝐿(𝐺)
− (𝑔) = 2 ∑ 𝓂𝑟ℎ

−

𝑟≠𝑗

∨ 𝓂𝑗ℎ

−  

= 2 ∑ 𝓂𝑟ℎ
− ∨ 𝓂𝑗ℎ

− + 2 ∑ 𝓂𝑟ℎ
− ∨ 𝓂𝑗ℎ

−

𝑘

𝑟=𝑗+1

𝑗−1

𝑟=1

 

= 2 ∑ 𝓂𝑟ℎ
− + 2 ∑ 𝓂𝑗ℎ

−𝑘
𝑟=𝑗+1

𝑗−1
𝑟=1    

(Since 𝓂1ℎ

− ≤ 𝓂2ℎ

− ≤ ⋯ ≤ 𝓂𝑘ℎ

− ) 

=2(𝑗 − 1)𝓂𝑗ℎ

− + 2 ∑ 𝓂𝑟ℎ
−𝑘

𝑟=𝑗+1 . 

It is true for each edge 𝑔 of  𝐺. 

As 𝐿(𝐺) is 〈[𝛾ℎ
+, 𝛾ℎ

−]ℎ=1
𝑚 〉-regular, 𝑑𝐿(𝐺)(𝑔) =

〈[𝛾ℎ
+, 𝛾ℎ

−]ℎ=1
𝑚 〉-for each node set 𝑔 in 𝐿(𝐺). 

So, 2 ∑ 𝜄𝑟ℎ
+ + 2(𝑘 − 𝑗)

𝑗−1
𝑟=1 𝜄𝑗ℎ

+ = 𝛾ℎ
+ and 2(𝑗 −

1)𝓂𝑗ℎ

− + 2 ∑ 𝓂𝑟ℎ
−𝑘

𝑟=𝑗+1 = 𝛾ℎ
− 

i.e. ∑ 𝜄𝑟ℎ
+ + (𝑘 − 𝑗)

𝑗−1
𝑟=1 𝜄𝑗ℎ

+ =
𝛾ℎ

+

2
 and (𝑗 − 1)𝓂𝑗ℎ

− +

∑ 𝓂𝑟ℎ
−𝑘

𝑟=𝑗+1 =
𝛾ℎ

−

2
 for all 𝑗 = 1, 2, ⋯ , 𝑘  (15) 

For 𝑗 = 1, 2, ⋯ , 𝑘,   we get Eq. (15), 

(𝑘 − 1)𝜄1ℎ

+ =
𝛾ℎ

+

2
 and ∑ 𝓂𝑟ℎ

− =
𝛾ℎ

−

2
𝑘
𝑟=2    (16) 

𝜄1ℎ

+ +(𝑘 − 2)𝜄2ℎ

+ =
𝛾ℎ

+

2
 and 𝓂2ℎ

− + ∑ 𝓂𝑟ℎ
− =

𝛾ℎ
−

2
𝑘
𝑟=3   

(17) 

𝜄1ℎ

+ +𝜄2ℎ

+ + (𝑘 − 3)𝜄3ℎ

+ =
𝛾ℎ

+

2
 and 2𝓂3ℎ

− +

∑ 𝓂𝑟ℎ
− =

𝛾ℎ
−

2
𝑘
𝑟=4  

⋯       ⋯ 

              ⋯       ⋯       (18) 

𝜄1ℎ

+ +𝜄2ℎ

+ + ⋯ + 𝜄𝑘−2ℎ

+ + 𝜄𝑘−1ℎ

+ =
𝛾ℎ

+

2
 and (𝑘 −

2)𝓂𝑘−1ℎ

− + 𝓂𝑘ℎ

− =
𝛾ℎ

−

2
   (19) 

𝜄1ℎ

+ +𝜄2ℎ

+ + ⋯ + 𝜄𝑘−1ℎ

+ =
𝛾ℎ

+

2
 and (𝑘 − 1)𝓂𝑘ℎ

− =
𝛾ℎ

−

2
.   

(20) 

Making It Simpler the above Eqs. (16)-(20), we get  

𝜄1ℎ

+ =𝜄2ℎ

+ = ⋯ = 𝜄𝑘−2ℎ

+ = 𝜄𝑘−1ℎ

+  and 𝓂2ℎ

− = 𝓂3ℎ

− =

⋯ = 𝓂𝑘−1ℎ

− = 𝓂𝑘ℎ

− . 

If 𝜄1ℎ

+ = 𝜄𝑘ℎ

+  and 𝓂1ℎ

− = 𝓂𝑘ℎ

− , then 𝑅 is constant 

otherwise 𝑅 has three values such that  

𝜄1ℎ

+ =𝜄2ℎ

+ = ⋯ = 𝜄𝑘−2ℎ

+ = 𝜄𝑘−1ℎ

+  and 𝓂2ℎ

− = 𝓂3ℎ

− =

⋯ = 𝓂𝑘−1ℎ

− = 𝓂𝑘ℎ

− . 

Conversely, let 𝑅 be constant or 𝑅 contains exactly 

3 values so that 𝜄1ℎ

+ = 𝜄2ℎ

+ = ⋯ = 𝜄𝑘−1ℎ

+ , 𝜄𝑗ℎ

+ < 𝜄𝑘ℎ

+ ≤

1 for 𝑗 = 1, 2, ⋯ , 𝑘 − 1 and 𝓂2ℎ

− = 𝓂3ℎ

− =

𝓂𝑘−1ℎ

− = 𝓂𝑘ℎ

− , −1 ≤ 𝓂1ℎ

− < 𝓂𝑗ℎ

−  for 𝑗 =

1, 2, ⋯ , 𝑘 − 1, ℎ = 1, 2, ⋯ , 𝑚. 

If 𝑅 is constant, let 𝑅(𝜄𝜏) = 〈[𝜌ℎ
+, 𝜌ℎ

−]ℎ=1
𝑚 〉  

for all 𝜄𝜏 ∈ 𝐸. 
Then 𝜌ℎ

+ = 𝜄𝑗ℎ

+  and 𝜌ℎ
− = 𝓂𝑗ℎ

−  for all 𝑗 = 1, 2, ⋯ , 𝑘. 

Therefore,  𝜄𝑟ℎ
+ ∧ 𝜄𝑗ℎ

+ = 𝜌ℎ
+  and 𝓂𝑟ℎ

− ∨ 𝓂𝑗ℎ

− = 𝜌ℎ
− for 

all 𝑟 ≠ 𝑗. 
Otherwise, let 𝜄𝑗ℎ

+ = 𝜌ℎ
+ for all 𝑗 = 1, 2, ⋯ , 𝑘 −

1 and 𝓂𝑗ℎ

− = 𝜌ℎ
− for all   𝑗 = 1, 2, ⋯ , 𝑘. 

Then 𝜄𝑗ℎ

+ = 𝜌ℎ
+ < 𝜄𝑘ℎ

+  and 𝓂1ℎ

− < 𝑚𝑗ℎ

− = 𝜌ℎ
−. 

So, 𝜄𝑟ℎ
+ ∧ 𝜄𝑗ℎ

+ = 𝜌ℎ
+ and 𝓂𝑟ℎ

− ∨ 𝑚𝑗ℎ

− = 𝜌ℎ
− for all 𝑟 ≠

𝑗. 
So, in every case𝜄𝑟ℎ

+ ∧ 𝜄𝑗ℎ

+ = 𝜌ℎ
+ and 𝓂𝑟ℎ

− ∨ 𝑚𝑗ℎ

− =

𝜌ℎ
− for all 𝑟 ≠ 𝑗. 

So, for any node 𝑔 = 𝜄𝜏 ∈ 𝐿(𝐺), we get  

𝑑𝐿(𝐺)(𝑔) = 〈[𝑃ℎo𝑑𝐿(𝐺)
+ (𝑔), 𝑃ℎo𝑑𝐿(𝐺)

− (𝑔)]〉 

= 〈[2 ∑ 𝜄𝑟ℎ
+ ∧ 𝜄𝑗ℎ

+ ,

𝑟≠𝑗

2 ∑ 𝓂𝑟ℎ
− ∨ 𝓂𝑗ℎ

−

𝑟≠𝑗

]〉 

= 〈[2 ∑ 𝜌ℎ
+,

𝑟≠𝑗

2 ∑ 𝜌ℎ
−

𝑟≠𝑗

]〉 

= 〈[2(𝑘 − 1)𝜌ℎ
+, 2(𝑘 − 1)𝜌ℎ

−]〉. 
So, 𝐿(𝐺) is 〈[2(𝑘 − 1)𝜌ℎ

+, 2(𝑘 − 1)𝜌ℎ
−]〉-regular. 

Remark 4.5: According to graph theory in crisp 

sense, a regular graph's complement is also regular. 

However, a regular complement m-BPFG's need 

not also be regular. The example given below 

demonstrates this. In relation to the m-BPFG 𝐺 in 

Figure 7., here 

 
Figure 7: 𝐺 is a 〈[0.4, −0.4], [0.6, −0.6]〉-Regular but 

its complement 𝐺̅ is not Regular 

 

𝑄

= {

𝜄1
〈[0.8, −0.8], [0.4, −0.4]〉

,
𝜄2

〈[0.4, −0.4], [0.8, −0.8]〉
𝜄3

〈[0.3, −0.3], [0.5, −0.5]〉

𝜄4
〈[0.6, −0.6], [0.7, −0.7]〉

}, 

𝑅

= {

𝜄1𝜄2
〈[0.2, −0.2], [0.3, −0.3]〉

,
𝜄1𝜄4

〈[0.2, −0.2], [0.3, −0.3]〉
,

𝜄2𝜄3
〈[0.2, −0.2], [0.3, −0.3]〉

,
𝜄3𝜄4

〈[0.2, −0.2], [0.3, −0.3]〉

} 
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Thus 𝑑𝐺(𝜄1) = 𝑑𝐺(𝜄2) = 𝑑𝐺(𝜄3) = 𝑑𝐺(𝜄4) =
〈[0.4, −0.4], [0.6, −0.6]〉.  
So, 𝐺 is 〈[0.4, −0.4], [0.6, −0.6]〉- regular. But, in 

its complement 𝐺̅, 𝑄̅ = 𝑄 

𝑅̅

= {

𝜄1𝜄2
〈[0.2, −0.2], [0.1, −0.1]〉

,
𝜄1𝜄4

〈[0.4, −0.4], [0.1, −0.1]〉
,

𝜄2𝜄3
〈[0.1, −0.1], [0.2, −0.2]〉

,
𝜄3𝜄4

〈[0.1, −0.1], [0.2, −0.2]〉

} 

Then 𝑑𝐺(𝜄1) = 〈[0.6, −0.6], [0.2, −0.2]〉, 𝑑𝐺(𝜄2) =
〈[0.3, −0.3], [0.3, −0.3]〉, 𝑑𝐺(𝜄3) =
〈[0.2, −0.2], [0.4, −0.4]〉, 𝑑𝐺(𝜄4) =
〈[0.5, −0.5], [0.3, −0.3]〉. So 𝐺̅ is not regular. 

The complement of a regular m-BPFG is 

characterized as being regular by the below 

theorem. 

Theorem 4.6: Let 𝐺 = (𝑉, 𝑄, 𝑅)be an m-BPFG with 

〈[𝜌ℎ
+, 𝜌ℎ

−]ℎ=1
𝑚 〉 − regular of the k-regular crisp 

graph 𝐺∗. Iff 𝑄 is a constant function or if 𝑄 contains 

exactly 2 values so that precisely one node takes the 

highest positive relationship  and the lowest negative 

relationship value, then 𝐺̅ = (𝑉, 𝑄,̅ 𝑅̅) is a regular 

m-BPFG. 

Proof: Let 𝐺 = (𝑉, 𝑄, 𝑅) be an m-BPFG with 

〈[𝜌ℎ
+, 𝜌ℎ

−]ℎ=1
𝑚 〉 − regular of the k- crisp regular graph 

𝐺∗. Again, let 𝐺̅ be regular m-BPFG. 

Case 1: There is nothing to show if 𝑄 is constant. 

Case 2: Assume that 𝑄 is not constant. If possible let 

𝑄 has more than two values. 

Also let 𝑃ℎoΨQ
+(𝜄1) < 𝑃ℎoΨQ

+(𝜄2) < 𝑃ℎoΨQ
+(𝜄3) 

and 𝑃ℎoΨQ
−(𝜄1) > 𝑃ℎoΨQ

−(𝜄2) > 𝑃ℎoΨQ
−(𝜄3) for 

𝜄1, 𝜄2, 𝜄3 ∈ 𝑉. 
Therefore, we may suppose without losing 

generality that, 

𝑃ℎoΨQ
+(𝜄1) = min{𝑃ℎoΨQ

+(𝜄): 𝜄 ∈ 𝑉} = ch
+ and 

𝑃ℎoΨQ
−(𝜄1) = max{𝑃ℎoΨQ

−(𝜄): 𝜄 ∈ 𝑉} = ch
−. 

Then 𝑃ℎoΨQ
+(𝜄1) ∧ 𝑃ℎoΨQ

+(𝜏) = 𝑃ℎoΨQ
+(𝜄1) = ch

+  

and 𝑃ℎoΨQ
−(𝜄1) ∨ 𝑃ℎoΨQ

−(𝜏) = 𝑃ℎoΨQ
−(𝜄1) = ch

−  . 

Therefore, 𝑃ℎo𝑑𝐺̅
+(𝜄1) = ∑ [𝑃ℎoΨQ

+(𝜄1) ∧𝜄1≠𝜏

𝑃ℎoΨQ
+(𝜏) − 𝑃ℎoΨR

+(𝜄1𝜏)] 

= ∑ 𝑃ℎoΨQ
+(𝜄1) ∧ 𝑃ℎoΨQ

+(𝜏) −

𝜄1≠𝜏

∑ 𝑃ℎoΨR
+(𝜄1𝜏)

𝜄1≠𝜏

 

= ∑ ch
+ − 𝑃ℎo𝑑𝐺

+(𝜄1)

𝜄1≠𝜏

 

= (k − 1)ch
+ − 𝜌ℎ

+ 

and  

𝑃ℎo𝑑𝐺̅
−(𝜄1) = ∑[𝑃ℎoΨQ

−(𝜄1) ∨ 𝑃ℎoΨQ
−(𝜏)

𝜄1≠𝜏

− 𝑃ℎoΨR
−(𝜄1𝜏)] 

= ∑ 𝑃ℎoΨQ
−(𝜄1) ∨ 𝑃ℎoΨQ

−(𝜏) −

𝜄1≠𝜏

∑ 𝑃ℎoΨR
−(𝜄1𝜏)

𝜄1≠𝜏

 

= ∑ ch
− − 𝑃ℎo𝑑𝐺

−(𝜄1)

𝜄1≠𝜏

 

= (k − 1)ch
− − 𝜌ℎ

−. 

Again, 𝑃ℎoΨQ
+(𝜄2) ∧ 𝑃ℎoΨQ

+(𝜄3) = 𝑃ℎoΨQ
+(𝜄2) >

ch
+ and 𝑃ℎoΨQ

+(𝜄2) ∧ 𝑃ℎoΨQ
+(𝜏) ≥ ch

+ for all 𝜏 ≠ 𝜄3 

in 𝑉. 

So, 𝑃ℎo𝑑𝐺̅
+(𝜄2) = ∑ [𝑃ℎoΨQ

+(𝜄2) ∧𝜄2≠𝜏

𝑃ℎoΨQ
+(𝜏) − 𝑃ℎoΨR

+(𝜄2𝜏)] 

= ∑ 𝑃ℎoΨQ
+(𝜄2) −

𝜄2≠𝜏

∑ 𝑃ℎoΨR
+(𝜄2𝜏)

𝜄2≠𝜏

 

> ∑ ch
+ − 𝑑𝐺

+(𝜄2)

𝜄2≠𝜏

 

= (k − 1)ch
+ − 𝜌ℎ

+. 

Also, 𝑃ℎoΨQ
−(𝜄2) ∨ 𝑃ℎoΨQ

−(𝜄3) = 𝑃ℎoΨQ
−(𝜄2) < ch

− 

and 𝑃ℎoΨQ
−(𝜄2) ∧ 𝑃ℎoΨQ

−(𝜏) ≤ ch
− for all 𝜏 ≠ 𝜄3 in 

𝑉. 
So, 𝑃ℎo𝑑𝐺̅

−(𝜄2) = ∑ [𝑃ℎoΨQ
−(𝜄2) ∨𝜄2≠𝜏

𝑃ℎoΨQ
−(𝜏) − 𝑃ℎoΨR

−(𝜄2𝜏)] 

= ∑ 𝑃ℎoΨQ
−(𝜄2) ∨ 𝑃ℎoΨQ

−(𝜏) −

𝜄2≠𝜏

∑ 𝑃ℎoΨR
−(𝜄2𝜏)

𝜄2≠𝜏

 

< ∑ ch
− − 𝑑𝐺

−(𝜄2)

𝜄2≠𝜏

 

= (k − 1)ch
− − 𝜌ℎ

−. 

So 𝑑𝐺̅(𝜄1) = 〈[𝑃ℎo𝑑𝐺̅
+(𝜄1), 𝑃ℎo 𝑑𝐺̅

−(𝜄1)]
h=1

m
〉 ≠

〈[𝑃ℎo𝑑𝐺̅
+(𝜄2), 𝑃ℎo𝑑𝐺̅

−(𝜄2)]
h=1

m
〉 = 𝑑𝐺̅(𝜄2). 

That is in conflict with the notion that 𝐺̅ is regular. 

Hence 𝑄 contains exactly 2 values.  

Subsequently, suppose that several nodes obtain the 

greatest positive and lowest negative relation values. 

Let 𝜄2 and 𝜄3be two such nodes. 

Let 𝑃ℎoΨQ
+(𝜄1) = min{𝑃ℎoΨQ

+(𝜄): 𝜄 ∈ 𝑉} = dh
+ and 

𝑃ℎoΨQ
−(𝜄1) = max{𝑃ℎoΨQ

−(𝜄): 𝜄 ∈ 𝑉} = dh
−. 

Then 𝑃ℎoΨQ
+(𝜄1) < 𝑃ℎoΨQ

+(𝜄2) = 𝑃ℎoΨQ
+(𝜄3)  

and 𝑃ℎoΨQ
−(𝜄1) > 𝑃ℎoΨQ

−(𝜄2) = 𝑃ℎoΨQ
−(𝜄3). 

Therefore, 𝑃ℎoΨQ
+(𝜄1) ∧ 𝑃ℎoΨQ

+(𝜏) =

𝑃ℎoΨQ
+(𝜄1) = dh

+  and 𝑃ℎoΨQ
−(𝜄1) ∨ 𝑃ℎoΨQ

−(𝜏) =

𝑃ℎoΨQ
−(𝜄1) = dh

−  for all  𝜏 ∈ 𝑉, 

𝑃ℎoΨQ
+(𝜄2) ∧ 𝑃ℎoΨQ

+(𝜄3) = 𝑃ℎoΨQ
+(𝜄2) (or 

𝑃ℎoΨQ
+(𝜄3) > dh

+) and 𝑃ℎoΨQ
−(𝜄2) ∨ 𝑃ℎoΨQ

−(𝜄3) =

𝑃ℎoΨQ
−(𝜄2) (or 𝑃ℎoΨQ

−(𝜄3) < dh
−, and 𝑃ℎoΨQ

+(𝜄2) ∧

𝑃ℎoΨQ
+(𝜏) ≥ dh

+ and 𝑃ℎoΨQ
−(𝜄2) ∨ 𝑃ℎoΨQ

−(𝜏) ≤ dh
− 

for all 𝜏 ≠ 𝜄3 in 𝑉. 
By going on as described above, we know how to 

prove that  𝑑𝐺̅
+(𝜄1) ≠ 𝑑𝐺̅

+(𝜄2) which is a inconsistency 

to our supposition that 𝐺̅ is regular.  

So truly one node takes the greatest positive and the 

lowest negative relationship values. 

Let Q, on the other hand, satisfy the theorem's 

hypotheses. 
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If Q is constant, let  Q(𝜄) = 〈[ch
+  , ch

−]h=1
m 〉 for all 𝜄 ∈

𝑉 where ch
+ ∈ [0, 1] and ch

− ∈ [−1, 0]. 

Otherwise, let ch
+ = min{𝑃ℎoΨQ

+(𝜄): 𝜄 ∈ 𝑉} and 

ch
− = max{𝑃ℎoΨQ

−(𝜄): 𝜄 ∈ 𝑉}. Thus as Q contains 

exactly 2 values so that one node takes highest 

positive and lowest negative relationship values, we 

get for any 𝜏 ∈ 𝑉,  
𝑃ℎoΨQ

+(𝜄) ∧ 𝑃ℎoΨQ
+(𝜏) = ch

+ and 𝑃ℎoΨQ
−(𝜄) ∨

𝑃ℎoΨQ
−(𝜏) = ch

− for all 𝜄 ≠ 𝜏 ∈ 𝑉. 

Therefore,𝑃ℎo𝑑𝐺̅
+(𝜄) = ∑ [𝑃ℎoΨQ

+(𝜄) ∧𝜄≠𝜏

𝑃ℎoΨQ
+(𝜏) − 𝑃ℎoΨR

+(𝜄𝜏)] 

= ∑[𝑃ℎoΨQ
+(𝜄) ∧ 𝑃ℎoΨQ

+(𝜏) − ∑ 𝑃ℎoΨR
+(𝜄𝜏)

𝜄≠𝜏

]

𝜄≠𝜏

 

> ∑ ch
+ − 𝑃ℎodG

+

𝜄≠𝜏

(𝜏) 

= (𝑘 − 1)ch
+ − 𝜌ℎ

+ and  

𝑃ℎo𝑑𝐺̅
−(𝜄) = ∑[𝑃ℎoΨQ

−(𝜄) ∨ 𝑃ℎoΨQ
−(𝜏)

𝜄≠𝜏

− 𝑃ℎoΨR
−(𝜄𝜏)] 

= ∑[𝑃ℎoΨQ
−(𝜄) ∨ 𝑃ℎoΨQ

−(𝜏) − ∑ 𝑃ℎoΨR
−(𝜄𝜏)

𝜄≠𝜏

]

𝜄≠𝜏

 

> ∑ ch
− − 𝑃ℎodG

−

𝜄≠𝜏

(𝜏) 

= (𝑘 − 1)ch
− − 𝜌ℎ

−. 

This is obvious for all 𝜏 ∈ 𝑉, i.e.𝑑𝐺̅(𝜄) = 〈[(𝑘 −
1)ch

+ − 𝜌ℎ
+, (𝑘 − 1)ch

− − 𝜌ℎ
−]h=1

m 〉 for every 𝜏 ∈ 𝑉. 
So, 𝐺̅ is a regular m-BPFG. 

Remark 4.7: First fundamental sequence may be 
used to rephrase the aforementioned theorem: 
Let 𝐺 = (𝑉, 𝑄, 𝑅)be an m-BPFG with 

〈[𝜌ℎ
+, 𝜌ℎ

−]ℎ=1
𝑚 〉 − regular of the k-regular crisp 

graph𝐺∗ with 𝑓𝜉𝑏𝑠(𝐺) =

〈[[𝑠1ℎ

+ , 𝑠2ℎ

+  , ⋯ , 𝑠𝑘ℎ

+ ], [𝑡1ℎ

− , 𝑡2ℎ

−  , ⋯ , 𝑡𝑘ℎ

− ]]
ℎ=1

𝑚
〉. Then 

the complement 𝐺̅ = (𝑉, 𝑄,̅ 𝑅̅) is a regular m-

BPFG iff either 𝑄 is a constant function or 𝑄 

contains exactly 2 values so that 𝑠2ℎ

+ = 𝑠3ℎ

+ = ⋯ =

𝑠𝑘ℎ

+ , 𝑠𝑗ℎ

+ < 𝑠1ℎ

+ ≤ 1 and 𝑡2ℎ

− = 𝑡3ℎ

− = ⋯ = 𝑡𝑘ℎ

− , −1 ≤

𝑡1ℎ

− < 𝑡𝑗ℎ

− , 𝑗 = 1, 2, ⋯ , 𝑘, ℎ = 1, 2, ⋯ , 𝑚.. 

The following theorem characterizes the regularity 

of an m-BPFG of a cycle. 

Theorem 4.8: Let 𝐺 = (𝑉, 𝑄, 𝑅)be an m-BPFG such 

that 𝐺∗ is cycle. Thus 𝐺 is a regular m-BPFG iff 

every node contains the equal adjacency sequence.  

Proof: Assume that each node of 𝐺 contains the 

equal adjacency sequence 

〈[[𝑠1ℎ

+ , 𝑠2ℎ

+  , ⋯ , 𝑠𝑘ℎ

+ ], [𝑡1ℎ

− , 𝑡2ℎ

−  , ⋯ , 𝑡𝑘ℎ

− ]]
ℎ=1

𝑚
〉. Thus, 

according to the adjacency sequence definition of 𝐺 

is  〈[[𝑠1ℎ

+ + 𝑠2ℎ

+ + ⋯ + 𝑠𝑘ℎ

+ ], [𝑡1ℎ

− + 𝑡2ℎ

− + ⋯ +

𝑡𝑘ℎ

− ]]
ℎ=1

𝑚
〉 − regular m-BPFG. 

Conversely, let 𝐺 be 〈[𝜌ℎ
+, 𝜌ℎ

−]ℎ=1
𝑚 〉 − regular m-

BPFG. Let the cycle 𝐺∗ be 𝜏0𝜏1𝜏2 ⋯ 𝜏𝑛. 
Let 𝑄(𝜏0𝜏1) = 〈[𝑎ℎ

+, 𝑎ℎ
−]ℎ=1

𝑚 〉. 
Then 𝑑𝐺(𝜏1) = 〈[𝜌ℎ

+, 𝜌ℎ
−]ℎ=1

𝑚 〉 implies 𝑄(𝜏0𝜏1) +
𝑄(𝜏1𝜏2) = 〈[𝜌ℎ

+, 𝜌ℎ
−]ℎ=1

𝑚 〉 
i.e., 〈[𝑎ℎ

+, 𝑎ℎ
−]ℎ=1

𝑚 〉 + 𝑄(𝜏1𝜏2) = 〈[𝜌ℎ
+, 𝜌ℎ

−]ℎ=1
𝑚 〉. 

i.e., 𝑄(𝜏1𝜏2) = 〈[𝜌ℎ
+ − 𝑎ℎ

+, 𝜌ℎ
− − 𝑎ℎ

−]ℎ=1
𝑚 〉. 

Similarly, 𝑄(𝜏2𝜏3) = 〈[𝜌ℎ
+, 𝜌ℎ

−]ℎ=1
𝑚 〉 − 〈[𝜌ℎ

+ −
𝑎ℎ

+, 𝜌ℎ
− − 𝑎ℎ

−]ℎ=1
𝑚 〉 = 〈[𝑎ℎ

+, 𝑎ℎ
−]ℎ=1

𝑚 〉, 
𝑄(𝜏3𝜏4) = 〈[𝜌ℎ

+ − 𝑎ℎ
+, 𝜌ℎ

− − 𝑎ℎ
−]ℎ=1

𝑚 〉 and so on. 

If 𝐺∗ is an even cycle, then 𝑘 is odd. So 𝑄(𝜏𝑘𝜏0) =
〈[𝜌ℎ

+ − 𝑎ℎ
+, 𝜌ℎ

− − 𝑎ℎ
−]ℎ=1

𝑚 〉. This proves that the 

alternative edges have the equal relationship values. 

So every  node has the equal adjacency sequence 

whose elements are 〈[𝑎ℎ
+, 𝑎ℎ

−]ℎ=1
𝑚 〉 and 〈[𝜌ℎ

+ −
𝑎ℎ

+, 𝜌ℎ
− − 𝑎ℎ

−]ℎ=1
𝑚 〉 in increasing order.  

If 𝐺∗ is a odd cycle, then 𝑘 is even. So 𝑄(𝜏𝑘𝜏0) =
〈[𝑎ℎ

+, 𝑎ℎ
−]ℎ=1

𝑚 〉. 
Now, 𝑑𝐺(𝜏0) = 〈[𝜌ℎ

+, 𝜌ℎ
−]ℎ=1

𝑚 〉 implies 𝑄(𝜏0𝜏1) +
 𝑄(𝜏𝑘𝜏0) = 〈[𝜌ℎ

+, 𝜌ℎ
−]ℎ=1

𝑚 〉 
i.e., 〈[𝑎ℎ

+, 𝑎ℎ
−]ℎ=1

𝑚 〉 + 〈[𝑎ℎ
+, 𝑎ℎ

−]ℎ=1
𝑚 〉 = 〈[𝜌ℎ

+, 𝜌ℎ
−]ℎ=1

𝑚 〉 

i.e.,[𝑎ℎ
+, 𝑎ℎ

−]ℎ=1
𝑚 = 〈[

𝜌ℎ
+

2
,
𝜌ℎ

−

2
]
ℎ=1

𝑚

〉 . 

Therefore, 〈[𝜌ℎ
+ − 𝑎ℎ

+, 𝜌ℎ
− − 𝑎ℎ

−]ℎ=1
𝑚 〉 =

〈[
𝜌ℎ

+

2
,
𝜌ℎ

−

2
]
ℎ=1

𝑚

〉. 

So every node has the equal adjacency sequence.  

 

5. Conclusions  

 

Numerous issues in disciplines as diverse as 

electrical networks, shipping, specialist system, 

picture capture, and complex security have been 

effectively solved using graph theory. Several 

expansions of graph theoretic notions have been 

developed in recent years to explain the imprecision 

and uncertainty in network situations. A tool called 

an m-BPFG is envisioned as having a considerably 

higher capacity to cope with the inherent fuzziness 

of human knowledge with greater flexibility and 

accuracy. By incorporating adjacency sequences, the 

first and second basic sequences in an m-BPFG, our 

study has expanded the graph theoretical 

conclusions under a m-BPF environment. The idea 

of adjacency sequences is then used to construct an 

iff condition for an m-BPFG with at most 4 vertices 

to be regular. Additionally, there have been certain 

definitions of what it means for a regular m-BPFG's 

complement, line graph, and other properties to be 

regular. Some characterizations for the edge, totally 

edge, partially edge irregularity, etc. for an m-BPFG 

can be considered for further research. These 

findings may also be applied to other types of fuzzy 

graphs, such as intuitionistic fuzzy graphs, 

picture fuzzy graphs etc. 
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