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Abstract:  
 

Medical image fusion is the technique of integrating images from several medical 

imaging modalities without causing any distortion or information loss. By preserving 

every feature in the fused image, it increases the value of medical imaging for the 

diagnosis and treatment of medical conditions. A novel fusion mechanism for multimodal 

image data sets is proposed in this paper. Each of the source image is smoothened using 

cross guided filter in the initial step. Guided filter output is further smoothened to remove 

fine structures using rolling guidance filter. Then details (high frequency) of each source 

image are extracted by subtracting the rolling guidance filter output from corresponding 

source image. These details are fed to convolutional neural networks to obtain decision 

maps. Finally, the source images are fused based on decision map using maximum rule 

of combination. We assessed the performance of our suggested methodology using 

several pairs of medical imaging datasets that are accessible to the general public. 

According to the quantitative evaluation, the recommended fusion strategy for 

multimodal image fusion improves the average IE by 12.4%, MI by 41.8%, SF by 21.4%, 

SD by 22.81%, MSSIM by 31.1%, and Q_(AB/F) by 39% when compared to existing 

methods, which makes it appropriate for use in the medical field for accurate diagnosis. 

 

1. Introduction 

 
A variety of sensors can now capture a wide range 

of images owing to the quick development of sensor 

technologies. Multimodal biomedical imaging 

commonly involves the use of Magnetic Resonance 

Imaging (MRI), Computed Tomography (CT), 

Single Photon Emission Computed Tomography 

(SPECT), Positron Emission Tomography (PET), 

Green Fluorescent Protein (GFP) & Phase Contrast 

(PC) images. The Cross-section, sagittal plane, 

coronal plane and any inclined plane of the human 

body can all be displayed by MRI, which helps to 

show lesions in three dimensions and pinpoint their 

locations. CT scans show how organs and tissues 

absorb X-rays. The brighter zone in a CT scan 

indicates a higher-density portion, such as bone 

tissue having high calcium content. Consequently, a 

CT scan can identify a human body's high-density 

tissue region. Radiation tomography includes PET 

and SPECT scans. According to their imaging 

concept, the various concentrations of tracer 

molecules that enter the human circulatory system in 

various tissues correspond to varying intensities of 

tissue activity. Thus, the ability of SPECT and PET 

to identify bodily tissue with aberrant metabolism 

helps in the identification and localization of 

illnesses. In molecular biology, the two most used 

imaging techniques are GFP and PC. In the latter, the 

structural properties of cells are revealed, and it is 

useful to note any minute modifications to the 

mitochondria, cytoplasm, or nucleus. The 

distribution of proteins is seen in the former. The PC 

image has an exceptional grayscale spatial 

resolution, while the GFP image shows the protein 

distributions. The PC-GFP fusion aims to identify 

the intense protein region and preserve the structural 

elements of the phase contrast image. The fusion 

image facilitates biomedical analysis with its 

improved details and precise protein localization. 

Still, one sensor can only record one modal image. 

Compared to the single modal image, the fusion 

image has better visual quality and is more detailed. 

Because of this, image fusion methods are widely 
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employed in many different disciplines, including 

object identification [1-9], computer-aided diagnosis 

and detection [1-3], and image retrieval and 

classification [4-6]. 

While many fusion methods have been developed, 

the majority of them rely on the multiscale and 

multi-resolution transformation [10–12] (also 

known as MST-MRT). Algorithms for fusion based 

on MST-MRT can extract multiscale features at 

many resolutions. Furthermore, different layers can 

employ different fusion rules to enhance the fusion 

outcomes. Numerous MST-based fusion techniques 

have been developed, including Non-Subsampled 

Shearlet transform (NSST) [13-15], Non-

Subsampled contourlet transform (NSCT) [16–18], 

wavelets [19–21], and pyramids [22-24]. Wavelet-

based fusion approaches extract multi-scale 

characteristics using wavelet transform. 

Furthermore, wavelet coefficients can be fused using 

flexible methods. Wavelet inverse transformation is 

used to produce the fusion images. Despite having a 

versatile decomposition strategy that employs 

numerous wavelet basis functions, wavelet-based 

fusion algorithms lose a large number of coefficients 

during the process of fusion, resulting in a fuzzy 

fused image. Pyramid-based fusion algorithms share 

some of the same benefits and drawbacks as 

wavelet-based fusion techniques. The loss of detail 

during the pyramid deconstruction and fusion 

process cannot be prevented. With the benefits of 

multi-scale and multi-directionality, NSST and 

NSCT represent a new type of rapid transformation. 

To a certain degree, the edges and details of the fused 

image can be preserved using fusion algorithms 

based on NSST and NSCT. Different fusion 

procedures, however, can quickly cause the loss of 

high-frequency coefficients, which leaves details 

obscure and edges fuzzy. Besides, a popular fusion 

algorithm is sparse representation (SR) [25–27]. 

Coefficient optimization and dictionary 

establishment are the two key components of SR. 

Due to its rapid speed and broad range of 

applications, SR is frequently utilized in image 

denoising, information fusion, and restoration 

[28,29]. SR-based fusion algorithms nevertheless 

possess a lot of flaws even with good fusion results. 

For instance, choosing the dictionary size can be 

challenging. An excessively large dictionary will 

result in a slow fusion speed and a lengthy 

optimization process. A too-small size dictionary 

will result in incomplete information and an 

unsatisfactory fusion output. Furthermore, selecting 

the optimization algorithm is challenging. The 

effects of various optimization algorithms on fusion 

outcomes vary. Because of their quick speed and 

effective filtering, filter-based algorithms have been 

increasingly popular in the imaging sector recently. 

A proposal for guided image filter [30] was made in 

2013. While guided image filtering has been a 

significant advancement in the imaging field, its 

ability to preserve edges and remove noise is limited 

because it solely takes spatial weights into account. 

In 2014, the rolling guiding filter [31] was proposed 

as a solution to these issues. It introduces several 

guidance processes and takes into account both 

spatial and range weights. As a result, the rolling 

guidance filter has the ability to simultaneously 

eliminate microscopic structure and preserve large-

scale structure. Deep convolutional neural networks 

[32,33] are currently extensively employed in 

imaging-related disciplines. Convolution, pooling, 

and activation layers are the three primary layers that 

make up CNN. After being trained, CNN can fit a 

wide variety of data. Furthermore, CNN can adapt to 

a wide range of difficult tasks because it is simple to 

construct various network configurations. CNN is 

therefore applicable to a wide range of tasks, 

including super-resolution of images [34,35], image 

classification [36], image segmentation [37], and 

image fusion [38]. 

 

2. Related work 
 

2.1 Guided Image Filter 

 

A guided image filter (GIF) is an explicit image 

filtering technique that computes the output for each 

pixel by examining the statistics of its surrounding 

neighborhood. This method enables the filter to 

adapt to local image characteristics, effectively 

smoothing the image while preserving key features 

such as edges [30]. The output 𝐹𝑖 of a guided image 

filter at pixel ‘𝑖’ is computed using a local linear 

model based on the guidance input 𝑃 focused at pixel 

‘𝑘’ in a square dimensioned window 𝑤𝑘. It involves 

computation of local mean as given from equation 1 

to equation 4. 
 

𝜇𝑃(𝑘) =
1

|𝑤𝑘|
∑ 𝑃(𝑖)𝑖∈𝑤𝑘

           (1) 

 

𝜇𝐼(𝑘) =
1

|𝑤𝑘|
∑ 𝐼(𝑖)𝑖∈𝑤𝑘

           (2) 

 

𝜇𝐼𝑃(𝑘) =
1

|𝑤𝑘|
∑ 𝐼(𝑖)𝑃(𝑖)𝑖∈𝑤𝑘

           (3) 

 

𝜇𝑃2(𝑘) =
1

|𝑤𝑘|
∑ (𝑃(𝑖))2

𝑖∈𝑤𝑘
           (4) 

 

Using the local mean values, the linear coefficients 

of guided filter are evaluated by equation 5 and 

equation 6. 

 

𝑚𝑘 =
𝜇𝐼𝑃(𝑘)−𝜇𝑃(𝑘)𝜇𝐼(𝑘)

(𝜇𝑃2(𝑘)−(𝜇𝑃(𝑘))2)+𝜀
           (5) 
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nk =  μI(k) − mkμP(k)           (6) 
 

The output of filter  𝐹 due to pixel ‘𝑖’ is computed as 

follows: 

 
𝐹𝑖 = 𝑚𝑘𝑃𝑖 + 𝑛𝑘 , ∀𝑖 ∈ 𝑤𝑘            (7) 

 

Where 𝜀 is the regularization control parameter. For 

multiple windows 𝑤𝑘 centered at 𝑘 each having a 

common pixel 𝑖, calculate the mean estimates of all 

𝐹𝑖 to resolve this overlap, as expressed in equation 8, 

which represents the output of the filter. 

 
𝐹𝑖 = 𝑚𝑖𝑃𝑖 + 𝑛𝑖            (8) 

 

In this work, the guided filter is utilized to 

decompose the source images. The CT source image 

guides the MRI input, while the MRI source image 

guides the CT input within the guided filtering 

process.  

 

2.2 Rolling Guidance filter 

 

Ever since it was first introduced, the rolling guiding 

filter has been widely used in imaging. It fully 

regulates the smoothing of details under a scale 

measure while maintaining edge integrity, 

depending on the rolling guidance. The rolling 

guiding filter is faster at achieving convergence than 

other edge-preserving filters because it uses iteration 

in the filtering process. Furthermore, it has the 

ability to maintain the extensive structure removal 

and edge recovery without artifacts by using 

automated structures [31]. 

 

Process of Small Structure Removal 

The tiny structure is eliminated in this method by 

applying a Gaussian filter. Texture, small target 

information and noise are typically included in the 

small structure. Assume that 𝐼 is the input image, 𝐺 

is the output image, and that (𝑖, 𝑗) is the image pixel 

coordinate vector and 𝜎𝑠 is the standard deviation, 

then equation 9 can be used to define Gaussian filter. 
 

𝐺(𝑖) =
1

𝐾𝑖
∑ 𝑒𝑥𝑝 (−

||𝑖−𝑗||2

2𝜎𝑠
2𝑗∈𝑁(𝑖) ) 𝐼(𝑗)           (9) 

 

Where 𝑁(𝑖) represents the neighborhood of pixel  𝑖 

and 𝐾𝑖 = ∑ exp (−
||𝑖−𝑗||2

2𝜎𝑠
2𝑗∈𝑁(𝑖) ) is employed for 

normalization. The filter has the ability to remove 

small structures when the scale is smaller than 𝜎𝑠 in 

the scale space. 

 

Process of Edge Recovery 

This method consists of joint filtering stages as well 

as an iterative process. The reason guided filtering 

was chosen as the joint filtering method is because it 

offers good edge preservation performance in 

addition to great computational efficiency. 𝐽1 is 

initially configured to be the Gaussian filtering 

output 𝐺. 𝐽𝑡+1 is the filter output of the 𝑡𝑡ℎ iterative 

process, which is generated from guided filtering 

using the guiding image as 𝐽𝑡 and the input as image 

𝐼. Here is an expression for the edge recovery 

process. 

 

𝐽𝑡+1(𝑖) =
1

𝐾𝑖
∑ 𝑒𝑥𝑝 (−

||𝑖−𝑗||2

2𝜎𝑠
2𝑗∈𝑁(𝑖) −

||𝐽𝑡(𝑖)−𝐽𝑡(𝑗||2)

2𝜎𝑟
2 ) 𝐼(𝑗)           

(10) 
 

Where 𝐾𝑖 = ∑ exp (−
||𝑖−𝑗||2

2𝜎𝑠
2𝑗∈𝑁(𝑖) −

||𝐽𝑡(𝑖)−𝐽𝑡(𝑗||2)

2𝜎𝑟
2 ) is a 

normalization parameter and 𝜎𝑟 is a control 

parameter used to control the range weights. 

In our work, rolling guidance filter is employed on 

the output of cross guided filter to remove all tiny 

structures that still persist. 

 

2.3 Convolutional Neural Network (CNN) 

 

As seen in Figure 1, a CNN is used in this study to 

create weight maps for the source images based on 

high-frequency image information. The network 

consists of two different CNN branches that 

represent weights and structures, with each receiving 

high-frequency (having large variation in 

intensity) sub-bands from each of the images. This 

form of architecture, known as a Siamese network, 

allows for simultaneous training of both pictures, 

allowing it to distinguish between each source 

image's high-frequency sub-band. Figure 1 depicts a 

schematic of the Siamese network's two branches 

[32,33]. 

Each branch has three convolutional layers with 64, 

128 and 256 filters, respectively, and one max-

pooling layer. Both the max-pooling layer and the 

convolutional layers use a 2 × 2 filter with a 

stretch of 2 and a 3 × 3 filter with a stretch of  

1. To minimize memory usage and computation 

time, we have eliminated two fully connected layers 

from our approach. This allows for the processing of 

images of any dimension, rather than just fixed-size 

images. The concatenated 512 feature maps are fed 

into a 2D vector softmax layer, which produces a 

probability distribution for the two classes. We 

utilize stochastic gradient descent (SGD) for 

optimization, applying the softmax loss function. 

Additionally, the batch size is set to 128, with a 

weight decay of 0.00001 and a momentum of 0.9. 

The CNN fusion process for high-frequency images 

consists of three steps: pattern recognition, 

preliminary segmentation, and consistency 
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Figure 1. Feature extraction using the Siamese network built on CNN.  

 

 
Figure 2. Decision map generation with CNN using high frequency bands. 

 
checking, as illustrated in Figure 2. Each of these 

phases is discussed in the following sections. 

(a) Pattern Recognition: To generate a score map, 

high-frequency sub-bands from each image are 

sent through two separate network branches. 

The score map uses coefficients with weights 

ranging from 0 to 1 to represent the 16 × 16 

equivalent blocks produced from the high-pass 

sub-images. In order to create a feature map 

𝑀(𝑝, 𝑞) of similar size, the overlapping regions 

in the score map are averaged. 

(b) Preliminary Segmentation: The binary map 

B(p,q) must be derived once the feature map 

M(p,q) has been obtained. The binary maps are 

created using a choose-max selection approach 

with a threshold of 0.5 to extract features that are 

more helpful. Equation 11 is utilized to 

determine this concept. 

 

𝐵(𝑝, 𝑞) = {
1         𝑖𝑓     𝑀(𝑝, 𝑞) ≥ 0.5

0         𝑖𝑓     𝑀(𝑝, 𝑞) < 0.5
           (11) 

The following step is used to process the binary map 

B(p,q), by validating consistency. 

(c) Consistency testing: Pixels that are incorrectly 

classified and have values that are substantially 

different from those of their neighbors are 

known as discontinuity points in the binary map. 

To overcome this, our approach removes 

singularities from the focus map using an 8 x 8 

window consistency check. Furthermore, the 

fused image may have artifacts introduced by 

the decision map. In order to reduce the artifact 

issue, we employ a guided filtering method that 

maintains edges. The normalization parameter 

"ε" and window size "r" are set to 0.1 and 5, 

respectively. 

 

3. Proposed mechanism 

 
Figure 3 depicts a flow diagram for our suggested 

fusion process. The detailed technique is as follows: 

Step 1: Take the source images intended for fusion 

and designate them as 𝐼1 and 𝐼2 . 
Step 2: Apply cross guided filter on 𝐼1 and 𝐼2  using 

equation 1 to equation 5 and compute filter outputs. 

Filter output for first source image, 

 
𝐵1 = 𝑔𝑢𝑖𝑑𝑒𝑑𝑓𝑖𝑙𝑡𝑒𝑟(𝐼2, 𝐼1, 𝑟, 𝜖) 

 

Filter output for second source image, 

 
𝐵2 = 𝑔𝑢𝑖𝑑𝑒𝑑𝑓𝑖𝑙𝑡𝑒𝑟(𝐼1, 𝐼2, 𝑟, 𝜖) 
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Where 𝑟 is the radius that controls the size of 

neighborhood during the smoothing operation, 

which is taken as rk = 5 and 𝜀 is the regularization 

control parameter that controls preservation of 

edges, which is taken as 10−6. 

Step 3: Apply rolling guidance filter on output of 

cross guided filter using equation 6 and equation 7 

to remove tiny structures. 

 
𝐵𝑎𝑠𝑒1 = 𝑅𝐺𝐹(𝐵1, 𝜎𝑠, 𝜎𝑟) 

 

𝐵𝑎𝑠𝑒2 = 𝑅𝐺𝐹(𝐵2, 𝜎𝑠, 𝜎𝑟) 

Step 4: Generate the high frequency (detail) layers 

of source images by subtracting the rolling guidance 

filter output from respective source image. 

 
𝑑𝑒𝑡𝑎𝑖𝑙1 = 𝐼1 − 𝐵𝑎𝑠𝑒1 

 

𝑑𝑒𝑡𝑎𝑖𝑙2 = 𝐼2 − 𝐵𝑎𝑠𝑒2 

 

Step 5: Feed the detail layers of source images to the 

convolutional neural network and obtain decision 

map 𝐷(𝑝, 𝑞) from the feature weights. 

Step 4: Combine the source images based on 

decision map using maximum combination rule 

described in equation 3 12 to generate the fused 

image. 
𝐹(𝑝, 𝑞) = 𝐷(𝑝, 𝑞) ∗  𝐼1(𝑝, 𝑞) + (1 − 𝐷(𝑝, 𝑞)) ∗  𝐼2(𝑝, 𝑞)           

(12) 
 

Where D(p, q) represents the decision map obtained 

from high frequency sub bands using CNN, I1(p, q) 

and I2(p, q) are the source images while F(p, q) is 

the fused image. 
 

 

 
Figure 3. Process flow of proposed mechanism of fusion. 

 

4. Qualitative Analysis 

 
To demonstrate the effectiveness of the proposed 

fusion technique, five pairs of brain MRI and CT 

scans—labeled as "Dataset-A," "Data set-B," "Data 

set-C," "Data set-D," and "Data set-E"—were 

selected. Data set-A features the brain of a healthy 

individual; Data set-B depicts the brain of a patient 

who experienced a fatal stroke, Data set-C 

showcases a brain with a neoplastic tumor, Dataset-

D contains sagittal plane pictures of the cranial 

structure, while Dataset-E shows the brain of an 

individual with cerebellar metastases. Additionally, 

MR-T2 and SPECT datasets for metastatic 

bronchogenic illness, as well as MR-T2 and PET 

datasets for Alzheimer's disease, are included. Each 

dataset consists of 256 distinct shades of gray and 

has a resolution of 256 x 256 pixels. All datasets 

were obtained from the publicly available 

benchmark brain atlas at Harvard Medical School, 

accessible at 

http://www.med.harvard.edu/aanlib/home.html 

[39]. The results of existing methods are collected 

from [40-43]. Figure 4 illustrates the image fusion 

results for Dataset-A using various methods. Figures 

4(a) and (b) present the CT and MRI images, 

respectively, while Figures 4(c)–(h) show the fusion 

results from guided filter techniques, the proposed 

method, sparse representation (SR), convolutional 

neural networks (CNN), non-subsampled shearlet 

transformation (NSST), and discrete wavelet 

transformation (DWT). The soft tissues components 

from the MRI and the bone structures from the CT 

scan are primarily preserved in the fused data. The 

techniques do, however, differ only slightly in terms 

of contrast preservation and detail. The 

discrepancies between the compared procedures are 

indicated by a yellow rectangle. The highlighted area 

exhibits slightly reduced intensity in the fusion 

results, as seen in Figures 4(c) and (d). On the other 

hand, the fusion pictures produced by CNN and 

NSST, which are displayed in Figures 4(e) and (f), 
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may lose certain MRI details but tend to collect 

large data from the CT image. The guided filter 

preserves the characteristics of the original photos 

while exhibiting visual clarity comparable to our 

suggested method; however, as illustrated in Figures 

4(g) and (h), its contrast is inferior to that of our 

approach.  

Figure 5 shows Data set-B, the second batch of 

medical imagery. Using DWT causes a loss of dense 

tissue data, such as bone features, as seen in Figure 

5(d), which results in a bad visual effect. Figure 5(c) 

likewise shows low contrast. The outcomes of the 

remaining three approaches that are now in use did 

not differ significantly from one another. In contrast 

to the results of guided filter method, the proposed 

technique in this case has trouble collecting the 

column and row-wise fluctuations in intensity from 

the CT image, resulting in a lower preservation of 

CT information. 

 

 
(a) MRI input image 

 
(b) CT input image (c) SR approach (d) DWT approach 

(e) NSST approach (f) CNN approach 
 

(g) Guided filter approach 
 

(h) Proposed approach 

Figure 4. Fusion results of CT-MRI of healthy brain. 

 

 
(a) MRI input image 

 
(b) CT input image (c) SR approach 

 
(d) DWT approach 

 
(e) NSST approach 

 
(f) CNN approach 

 
(g) Guided filter approach 

 
(h) Proposed approach 

Figure 5. Fusion results of CT-MRI of fatal stroke. 

 

 

 
(a) MRI input image 

 
(b) CT input image 

 
(c) SR approach 

 
(d) DWT approach 

(e) NSST approach (f) CNN approach 
 

(g) Guided filter approach (h) Proposed approach 

Figure 6. Fusion results of CT-MRI of neoplastic tumor. 
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(a) MRI input image 

 
(b) CT input image (c) SR approach  

 
(d) DWT approach  

 
(e) NSST approach (f) CNN approach 

 
(g) Guided filter approach 

  
(h) Proposed approach 

Figure 7. Fusion results of CT-MRI of brain skull. 

 

 
(a) MRI input image 

 
(b) CT input image 

 
(c) SR approach 

 
(d) DWT approach 

 
(e) NSST approach 

 
(f) CNN approach 

 
(g) Guided filter approach 

  
(h) Proposed approach 

Figure 8. Fusion results of CT-MRI of cerebella metastasis. 
 
The fused image generated by the proposed 

algorithm exhibits excellent contrast and fully 

preserves the soft tissue information, as illustrated in 

Fig. 6(h). This highlights the advantages of the 

proposed technique compared to existing methods in 

the third medical image set, Data set-C. In contrast, 

the SR, DWT, and NSST techniques fail to retain the 

details of the source images, resulting in insufficient 

information about the bone structure, as seen in 

figure 7 and figure 8 for Data set-D and Dataset-E 

respectively. The results from our suggested method 

demonstrate greater detail, sharper edges, and 

enhanced contrast. 

 

5. Quantitative Analysis 

 
Measurement of fusion performance requires both a 

qualitative and quantitative evaluation criteria. In 

this study, the effectiveness of various fusion 

techniques is assessed using quantitative assessment 

measures such as mutual information (MI), mean 

structural similarity (MSSIM), image entropy (IE), 

spatial frequency (SF), margin information retention 

(QAB/F) and standard deviation (SD)[40-43]. 

1. In MI, two events are related to one another. 

These two independent random variables, 𝑌 and 

𝑍, have the following mutual information 

described by equation 13. 

 

𝑀𝐼(𝑌, 𝑍) = ∑ ∑ 𝑝(𝑦, 𝑧)𝑙𝑜𝑔2𝑦∈𝑌𝑧∈𝑍
𝑝(𝑦,𝑧)

𝑝(𝑦)𝑝(𝑧)
           (13) 

 

where 𝑝(𝑦, 𝑧) denotes the probability distribution of 

Y and Z combined, and p(y) and p(z) denote the 

respective marginal probability distributions of Y 

and Z. The total mutual information metric could be 

formulated using equation 14 to ascertain the 

disparity in fusion quality after the quantity of MI 

between the fused image 𝐹 and each of each of the 

input images (𝐴,𝐵)  has been measured. 

 
𝑀𝐼𝐹

𝐴𝐵 = 𝑀𝐼(𝐴, 𝐹) + 𝑀𝐼(𝐵, 𝐹)           (14) 
 

A higher MI score indicates that more information 

has been retrieved from the original images. 

2. The standard deviation (SD) is a metric used to 

quantify the level of divergence in an average 

collection of image data. equation 15 is used to 

calculate the standard deviation for the fused 

image. Where 𝐹(𝑚, 𝑛) is the fused picture pixel 

value at the location (𝑚, 𝑛) and 𝜇  is referred to 

as the mean. This statistic measures the clarity 
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of the combined output image; the higher the 𝑆𝐷 

value, the higher the quality of the image. 

 

𝑆𝐷 = √
1

𝑀𝑁
∑ ∑ (𝐹(𝑚, 𝑛) − 𝜇)2𝑁

𝑛=1
𝑀
𝑚=1            (15) 

 

𝜇 =
1

𝑀𝑁
∑ ∑ 𝐹(𝑚, 𝑛)𝑁

𝑛=1
𝑀
𝑚=1            (16) 

 

3. The total of the column frequency and row 

frequency is known as the spatial frequency 

(SF). It is calculated using equation 17. Here, the 

image size is shown by 𝑀x 𝑁, while the pixel 

value is indicated by 𝐼(𝑖, 𝑗). The resolution of the 

fused image increases with the score of this 

parameter. 

 

𝑆𝐹(𝑚, 𝑛) = √|𝑅𝐹(𝑚, 𝑛)|2 + |𝐶𝐹(𝑚, 𝑛)|2           (17) 

 

𝑅𝐹(𝑚, 𝑛)√
1

𝑀𝑥𝑁
∑ ∑ [𝐼(𝑚, 𝑛) − 𝐼(𝑚, 𝑛 − 1)]2𝑁

𝑗=2
𝑀
𝑖=2            

(18) 
 

𝐶𝐹(𝑚, 𝑛)√
1

𝑀𝑥𝑁
∑ ∑ [𝐼(𝑚, 𝑛) − 𝐼(𝑚 − 1, 𝑛)]2𝑁

𝑗=2
𝑀
𝑖=2            

(19) 
 

4. Image entropy (IE) is a measure of how much 

information is contained within a fused image. If 

the distribution of grey levels in a picture I is P 

= {P0,P1,... PL-1}, where PK is the probability that 

the Kth grey level will appear in the image, and 

L is the number of grey levels (256 for a grey 

scale image), then IE might be calculated as 

follows: 

 
𝐼𝐸 = − ∑ 𝑝(𝑖)𝑙𝑜𝑔2

𝐿−1
𝑖=0 𝑝(𝑖)           (20) 

 

The amount of information in the fused image 

increases with the IE score. 

5. The following formula can be used to determine 

the Mean Structural Similarity Index Measure 

(MSSIM), which is a helpful indicator of picture 

similarity. 

 

𝑀𝑆𝑆𝐼𝑀 =
𝑆𝑆𝐼𝑀(𝐴,𝐹)+𝑆𝑆𝐼𝑀(𝐵,𝐹)

2
           (21) 

 

𝑆𝑆𝐼𝑀 =
(2𝜇𝑎𝜇𝑏+𝐶1)(2𝜎𝑎𝑏+𝐶2)

(𝜇𝑎
2+𝜇𝑏

2+𝐶1)(𝜎𝑎
2+𝜎𝑏

2+𝐶2)
           (22) 

 

Where 𝜇𝑎 is the average value of a and 𝜇𝑏 is the 

average value of b, , 𝜎𝑎𝑏is the covariance of a and b,  

𝜎𝑎
2is the variance of a, and  𝜎𝑏

2 is the variance of b. 

To avoid instability that results from a division with 

zero, two constants, 𝐶1 and 𝐶2, are used. The range 

of SSIM values is 0 to 1, where 1 denotes 

exceptional quality and 0 denotes poor quality. As 

the MSSIM score rises, the distortion effect in the 

fused image diminishes. 

6. QAB/F represents the degree to which the edge 

information from the input images transitions 

into the fused image. The evaluation is as 

follows: 

 

𝑄𝐴𝐵/𝐹 =
∑ ∑ (𝑄𝐴𝐹(𝑖,𝑗)𝑊𝐴(𝑖,𝑗)+𝑄𝐵𝐹(𝑖,𝑗)𝑊𝐵(𝑖,𝑗))𝑁

𝑗=1
𝑀
𝑖=1

∑ ∑ (𝑁
𝑗=1

𝑀
𝑖=1 𝑊𝐴(𝑖,𝑗)+𝑊𝐵(𝑖,𝑗))

           (23) 

 

When the QAB/F value rises and gets close to one, it 

means that there hasn't been much edge information 

lost in the fused image. Table 1 shows the 

quantitative analysis using image evaluation 

parameters, with the most significant results 

indicated in bold. The proposed image fusion 

method significantly outperformed others in terms of 

MI, IE, QAB/F, and MSSIM, while the remaining 

metrics show minimal comparability. This indicates 

that the method effectively preserves edge features 

and salient information. Figure 9 shows the average 

metric values for the fusion outcomes across 30 

slices of each dataset, highlighting the four 

important assessment metrics: MI, IE, QAB/F, and 

MSSIM.The average metric values for the fusion 

results across 30 slices of each dataset are visually 

represented in figure 9, illustrating the four key 

assessment metrics: MI, IE, QAB/F, and MSSIM. 
 

 
Table 1. Statistical metrics of proposed method for multimodal datasets. 

Dataset 

type 
Method 

Standard 

Deviation 

(SD) 

Mutual 

Information 

(MI) 

Spatial 

Frequency 

(SF) 

Image 

Entropy 

(H) 

Edge 

Strength 
MSSIM 

Dataset-

A 

SR 30.82 2.57 11.68 5.8 0.5756 0.5122 

DWT 44.71 1.92 17.13 6.17 0.6073 0.5246 

NSST 44.16 2.05 17.05 6.2 0.6816 0.5366 

CNN 52.89 2.43 17.4 6.07 0.7184 0.5518 

Guided 

filter 
52.89 2.31 16.97 6.52 0.721 0.5634 

Proposed 54.48 4.02 18.1 6.67 0.8776 0.9908 

Dataset-

B 

SR 51.4 3.42 17.76 4.94 0.5178 0.8248 

DWT 55.73 3.19 22.01 5.19 0.5051 0.7915 



S. Karthikeyan, P. Velmurugadass / IJCESEN 11-1(2025)725-736 

 

733 

 

NSST 54.56 3.34 20.95 5.12 0.5887 0.816 

CNN 59.92 3.34 21.93 4.89 0.5888 0.8146 

Guided 

filter 
55.68 3.79 20.25 5.2 0.6028 0.8207 

Proposed 60.56 5.07 21.71 5.84 0.8166 0.9898 

Dataset-

C 

SR 61.5 3.18 20.19 4.52 0.5157 0.764 

DWT 66.53 3.12 25.11 4.86 0.5473 0.7489 

NSST 65.89 3.2 24.52 4.88 0.5971 0.7733 

CNN 69.6 3.38 25.99 4.39 0.6042 0.7775 

Guided 

filter 
69.63 3.34 24.39 5.05 0.6119 0.7762 

Proposed 73.2 4.72 26.73 5.26 0.8051 0.9869 

Dataset-

D 

SR 69.84 3.33 28.98 7.56 0.4964 0.6532 

DWT 76.8 3.08 35.94 7.41 0.4699 0.6263 

NSST 79.49 3.23 34.6 7.44 0.5349 0.6628 

CNN 79.84 3.26 37.03 7.31 0.5171 0.6462 

Guided 

filter 
75.36 3.52 34.3 7.76 0.551 0.6602 

Proposed 79.06 4.64 30.38 7.65 0.8552 0.985 

Dataset-

E 

SR 51.71 3.19 17.58 5.24 0.4823 0.7427 

DWT 55.72 2.8 22.28 5.36 0.4573 0.7098 

NSST 53.79 2.94 21.47 5.44 0.5226 0.7311 

CNN 61.11 3.18 23.06 4.83 0.5214 0.7448 

Guided 

filter 
66.98 3.23 21.56 5.78 0.533 0.7342 

Proposed 76.05 5.83 25.5 5.94 0.8883 0.9884 

 

 

 

 

 
Figure 9. Average metric values for 30 slices of five different datasets. 
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The quantitative results indicate that the fusion 

outcomes of the Sparse Representation (SR) and 

DWT methods are unsatisfactory due to low 

intensity and insufficient detail regarding bone 

structures. While the CNN NSST, and guided filter 

techniques provide adequate visual quality, they fail 

to fully retain the edge and texture details within the 

highlighted yellow region in MR-CT images. 

Additionally, in the MR-PET and MR-SPECT 

fusion, the Guided Filter technique does not 

effectively preserve color information. In contrast, 

the proposed method successfully maintains salient 

features, delivering maximum information about 

bone structures and soft tissues, which results in 

more vivid and detailed fused images. 

Three of the six metrics taken for assessment—

image entropy (IE), standard deviation (SD) and 

spatial frequency (SF) —are commonly utilized to 

assess the quality of fused images and reflect the 

intrinsic properties of individual images. IE indicates 

the entropy of the fused image, while SF provides 

insight into the clarity of the image. SD, on the other 

hand, describes the contrast within the fused image. 

A higher SD disperses the gray level dispersion more 

broadly, while a higher contrast makes the fused 

image easier to see. The values of these metrics tend 

to increase because some existing techniques 

incorporate redundant features. To offer a more 

comprehensive objective analysis, this study 

introduces three additional metrics: mutual 

information (MI), Mean structural similarity index 

measure (MSSIM), and quality of edge information 

(QAB/F). MI evaluates the amount of data retrieved 

from the source images and assesses the similarity of 

intensity distributions between related image pairs; 

as more data is extracted from the original images, 

the MI value increases alongside the clarity and 

activity of the combined image. MSSIM quantifies 

the level of distortion in the fused image, On the 

other hand, QAB/F assesses how much edge 

information is retained in the fused image from the 

source images. A higher QAB/F value is particularly 

important for clinical image fusion as it enhances the 

accurate pathological examination of edges by 

integrating more edge information, including details 

about bone structure and texture. Convolutional 

Neural Networks has been used in different fields 

and reported in the literature [44-50]. 

 

6. Conclusion 

 
A method of image fusion for better diagnosis of 

brain related tumors is proposed in this work using 

guided filter and convolutional neural networks. The 

performance of proposed algorithm is tested on 

diverse datasets of brain related scans of CT and 

MRI. Based on the experimental results, we 

conclude that the proposed approach for multimodal 

image fusion offers significant advantages over 

existing methods, particularly in terms of improved 

image clarity, retention of important soft tissue and 

dense structure characteristics, and minimal edge 

distortion. This study also underscores the 

importance of using additional metrics such as MI, 

MSSIM, and QAB/F for comprehensive evaluation 

of fused image quality. According to the quantitative 

evaluation, the recommended fusion strategy for 

multimodal image fusion improves the average IE by 

12.4%, MI by 41.8%, SF by 21.4%, SD by 22.81%, 

MSSIM by 31.1%, and QAB/F by 39% when 

compared to existing methods, which makes it 

appropriate for use in the medical field for accurate 

diagnosis. Thus, the proposed approach has the 

potential to significantly enhance diagnostic 

capabilities in medical practice. 
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