

Copyright © IJCESEN

International Journal of Computational and Experimental Science and ENgineering (IJCESEN)

Vol. 10-No.4 (2024) pp. 1501-1510 <u>http://www.ijcesen.com</u>

Research Article

A UPFC based Optimal Power Flow of an Integrated Power System

MD.Yaseen^{1*}, Sravana Kumar Bali²

¹Department of Electrical and Electronics Engineering, Research Scholar, GITAM Deemed to be University, Visakhapatnam, India

* Corresponding Author Email: yaseen.eee08@gmail.com - ORCID: 0000-0002-1169-033X

²Department of Electrical and Electronics Engineering, Assistant Professor, GITAM Deemed to be University,

Visakhapatnam, India

Email: sravanbali@gmail.com - ORCID: 0000-0002-5355-9348

Article Info:

Abstract:

DOI: 10.22399/ijcesen.622 **Received :** 14 November 2024 **Accepted :** 18 November 2024

Keywords :

FACTS devices, Moth Flame Optimization, Optimal Power Flow. The geopolitical landscape of the world has made it abundantly evident how important energy resources are and how best to use them on Earth. The ultimate consumers of electrical energy benefit from an additional benefit of lower costs due to resource optimization. In this paper a multi-objective optimal power flow (OPF) for an integrated power system in the presence of FACTS devices has been proposed. The selection of the multi-objective function makes this paper unique. Minimizing Negative Social Welfare (NSW) voltage variation and power loss are part of the objective function. Lower loss and NSW's guarantee of lower electricity costs per unit at the customer's end result in higher customer satisfaction. The Unified Power Flow Controller (UPFC) is the FACTS device utilised to solve the issue. An IEEE 57 bus system has been used to test the hypothesis. The objective function has been optimized by applying the Mouth Flame Optimisation Algorithm.

1. Introduction

India is an over populated country with rising energy needs. The country's transmission routes are under more strain now that the power business has been deregulated. As a result, optimizing power flow has become crucial in the power industry. To get HVDC efficiency FACTS Devices can be included in the AC Transmission System. To get around congestion in hydrothermal systems, M.O. Lawal and colleagues [1] proposed an optimal power flow method. It is possible to increase power plant output as a form of punishment by tracking power flows to determine which plants are causing line congestion. It is required to correct the utmost power of affected generators to relieve congestion. I. Batra et al. [2] included the TECM-PSO method's enhanced twin extremity mapping of the chaotic map to solve the congestion management problem in derestricted Power systems. The problem has been resolved. For their consideration of emergency wind and heat generator use, Teeparthi et al. [3] utilized the PSO-APO method. FACTS devices have proven effective in resolving power system issues [4]. Visakha et al. suggested a technique in [5] for installing a UPFC at the appropriate location even though planning for contingencies. Nusair et al. [6] have optimised the power flow of a power system with renewable systems in the presence of TCSC. Authors have carried out OPF in the presence of FACTS devices in order to cut costs [7]. In order to reduce expenses, optimal power flow for an integrated system with FACTS Devices Thyristor Controlled Series Compensator and Unified Power Flow Controller present has been carried out by the authors [8].

Appropriate FACTS device deployment and calibration are necessary to meet the different power system issues. With IPFC, power system congestion and backup problems have been effectively addressed [9, 10]. An IPFC has several terminals, therefore each IPFC converter needs to have its appropriate location planned [11]. In [12], a contingency analysis based on a voltage index has been developed. Kumar et al. [13] have proposed an IPFC placement strategy based on cat swarm optimisation with the aim of improving voltage stability. Verma et al. [14] recommended location of FACTS devices for voltage stability.

Integrated power systems have been the subject of research on FACTS device control. Apart from

technical issues such as voltage enhancement, recommendations have been made in the placement and dimensions of FACTS devices to maximise social welfare, reduce load shedding costs, and construct more branches. It has been observed that applying optimisation is more appropriate in the case of boosting social welfare. [15,16] created and effectively examined a combination of ideal power flow, FACTS placement and tuning for a objective function.

An integrated power system overall power function with numerous objectives is presented in this study. Wind turbines, solar panels, and conventional generators create the transmission network. Optimization maximizes societal welfare while decreasing losses and voltage volatility. Since the goal function minimizes, social welfare has declined. The goals have been achieved using three methods. OPFs were originally built to serve the integrated system's multi-objective purpose. The next stage is finding the optimum index-based power system UPFC placement. Using an index the optimal location for the Unified Power Flow Controller has been identified in the power system.

The UPFC is being adjusted to its best potential to meet the goals. Integrated system has been optimized once more to evaluate the system's power and conduct a contingency analysis. The data given and analysed highlights the system's robustness under unstable operation conditions. For the purpose of the study, an IEEE 57 test bus system and Moth Flame optimization (MFO) Algorithm were implemented.

Moth Flame Optimization

Nature served as the inspiration for this optimization concept. An algorithm based on the moths' nocturnal navigation approach was developed. A constant tilt toward the moon governs the moths' movement. The moths will often spin around the lights as well. Presumably, the moths represent the answer to the multi-objective function. Moth location is one among the factors in the problem. The catalogue of mathematical models that have been applied to the study of moth behavior.

$$M_i = S(M_i, F_i) \quad (1)$$

 M_i is the symbol for the i-th moth, Fj is the expression for the j-th flame, and S is the symbol for the spiral function. In light of these considerations, we offer the following definition for the logarithmic spiral that is utilized by the MFO algorithm

$$S(M_i, F_I) = D_i \cdot e^{bt} \cdot \cos(2\pi t) + F_j$$
(2)

b specifies the logarithmic spiral, D_i represents the distance between the i-th moth and the j-th falme, and t is a random value between -1 and 1. All

variables are described by this equation. M_i is the ith flame, while D_i is the distance between flames and the moth.

2. Proposed Methodology

Multi Objective Function

The following research objectives are included in the multi-objective function that is being minimized.

Objective 1- Negative Social Welfare

Negative Social Welfare in power systems is used to highlight the importance of avoiding actions or policies that reduce the overall economic well-being of society. By focusing on optimizing market efficiency, accounting for externalities, and ensuring equitable resource allocation, power system operators and policymakers aim to maximize social welfare, thereby ensuring that the benefits of electricity generation and consumption are maximized for society. Minimizing a negative value means it maximizes social welfare.

$$NSW = \sum_{i=1}^{NG} C_i(P_{Gi}) - \sum_{j=1}^{ND} B_j(P_{Dj})$$
(3)
$$C(P_g) = \sum_{i=1}^{n} a_{gi} P_{gi}^2 + b_{gi} P_{gi} + c_{gi}$$
(4)

$$B(P_d) = \sum_{i=1}^{n} a_{di} P_{di}^2 + b_{di} P_{di} + c_{di}$$

(5)

Objective 2- Minimization of Power Loss

$$F_{2} = \sum_{k=1}^{NT} G_{k(i,j)} [V_{i}^{2} + V_{j}^{2} - 2V_{i}V_{j}\cos(\delta_{ij})]$$
(6)

Where, V_i , V_j = i,j voltage in p.u.

Objective 3- Minimization of Voltage deviation: Only by continuously monitoring the voltage profile and minimising the voltage collapse that causes significant voltage spikes can an appropriate voltage profile be achieved.

The objective of the function for reducing voltage deviation is:

$$F_{3} = \sum_{i=1}^{N_{B}} \| V_{m} - 1 \|$$
(7)

V_m- Voltage at bus m and N_b – Number of buses

Constraints:

$$\sum_{i=1}^{NG} P_{Gi} + WP - P_{Loss} - P_L = 0$$
(8)

$$P_{Loss} = \sum_{j=1}^{N_{TL}} G_j [|V_i|^2 + |V_j|^2 - 2|V_i||V_j| \cos(\delta_i - \delta_j)]$$
(9)

$$P_i - \sum_{k=1}^{N_b} |V_i V_k Y_{ik}| \cos(\theta_{ik} - \delta_i + \delta_k) = 0$$
(10)

$$Q_i - \sum_{k=1}^{N_b} |V_i V_k Y_{ik}| \sin(\theta_{ik} - \delta_i + \delta_k) = 0$$
(11)

Inequality Constraints:

$$V_i^{\min} \leq V_i \leq$$

(12)

$$TL_1 \leq TL_1^{ma}$$

(14)

$$P_{Gi}^{\min} \le P_{Gi} \le P_{Gi}^{\max}$$

(15)

$$Q_{Gi}^{\min} \le Q_{Gi} \le Q_G$$

max

 $\phi_i^{\min} \leq \phi_i \leq \phi_i^{\max}$

(16)

Proposed Methodology

Optimal Power Flow (OPF) problem is solved with multi objectives stepwise as following:

- 1. Renewable energy sources Solar and Wind are placed at bus numbers 9 & 12 instead of thermal generators
- 2. The optimal power flow is performed for the multi objective function.
- 3. The Placement of Unified Power Flow Controller is done based on L-Index
- 4. The L-Index calculate the factual state of stability of the system with refer to its stability limit. It calculates the whole system stability.

$$L = \max_{j \in \alpha_{l}} \left\{ L_{j} \right\} = \max_{j \in \alpha_{l}} \left| 1 - \frac{\sum_{i \in \alpha G} E_{ji} V_{i}}{V_{j}} \right|$$
(17)

Where α_L - Load bus & α_G - generator bus.

The L-Index value will be in between 0 to 1.

At no load L = 0 while at a point near voltage collapse it is 1.

- 5. optimal power flow and UPFC tuning Were carried out for the multi-objective function.
- 6. The strength of the system is examined under line-outage conditions.

3. Results and Discussions

IEEE 57 Bus System

In the following IEEE 57 Test bus system: number of transmission lines- 80, number of generator buses-6, slack bus -1 and number of load buses-50 represented in figure 1. For the placement of UPFC Only load buses have been considered. Renewable energy sources Solar and Wind are placed at bus numbers 9 &12 instead of thermal generators. In the table 1, Test bus system generation reallocation Values and Multi Objective function Parameters are shown. Negative Social welfare is represented with OF_1 , Voltage Deviation is represented with OF_2 , Active power loss is represented with OF₃ and Multiobjective Optimization is represented with OF4. Table-1 shows that OF1 obtains the optimum value of NSW; OF2 obtains the least voltage deviation of 1.2 p.u; and OF3 achieves the smallest active power loss of 4.24 MW, four objectives have been reasonably optimized. Each of the study's objectives has been given equal weight, though this can be altered based on needs.

Figure 1. IEEE 57 Bus System Modified

According to table 2, Bus 33 has the second weak Lindex after Bus 31. Tables 3 show the results after UPFC was implemented at bus 31.

Figure 2 compares L-index without and with UPFC. The L-index of severe lines has lowered with UPFC installation. For the mentioned system, a contingency analysis is performed. Table 4 shows the most severe cases and the lines most affected by the earlier situations. The most severe contingencies are on lines 24-26, 26-27, and 15-45, affecting 31 buses. Table 5 compares the line power flows under each of these contingency conditions. The OPF for the line 24-26 under contingency is shown in table 6.

Figure 2. Comparison of L-index without and with UPFC.

Table 7 presents the results of the UPFC installed on bus 31 for each situation mentioned above. It has been noted that the loss of power has decreased to 15.64 MW from 18.20 MW. Figure 3 shows system voltage changes without and with FACTS devices The multiobjective function's convergence with and without UPFC is shown in Figure 4. Figure 5 shows without and with UPFC system topologies reduce societal welfare.

4. Conclusions

A robust electrical structure is critical for attracting industry and foreign investment. To increase the stability and dependability of present power systems, FACTS devices can be used along with solar and wind renewable energy sources are viable alternatives to traditional power systems.

When renewable energy is present, the OPF efficiently enhances the system's power flow capacity.

Optimal UPFC tuning and location leads to increased system efficiency.

Implementing UPFC in the desired location leads to improved social welfare outcomes.

Moth flame optimisation is effective for multiobjective problems. Compared to other FACTS devices, UPFC is a cost-effective and viable option. Power system is studied and reported in the literature [17-19].

Table 1.	. MFO	technique fe	or IEEE 57	⁷ bus generation	ı reallocation	without UPFC
----------	-------	--------------	------------	-----------------------------	----------------	--------------

S. No	Parameters		OF ₁	OF ₂	OF ₃	OF ₄
		P _{G1}	127.5378	124.2723	195.4962	134.4906
		P _{G2}	100.0000	100.0000	1.1332	100.0000
		P _{G3}	40.5278	140.0000	117.0720	45.0145
1	Real power generation (MW)	P _{G6}	0.9233	30.9781	100.0000	12.6634
		P _{G8}	417.2525	288.7562	268.6933	393.2302
		P _{Gs}	180.0000	180.0000	180.0000	180.0000
		P _{Gw}	350.0000	350.0000	350.0000	350.0000
2	Total Active power g (MW)	eneration	1216.2414	1214.0066	1212.3947	1215.3987
3	Total real power genera (\$/hr)	tion cost	21383	24445	24663	21422
4	Active power Loss (MW)	20.4413	18.2066	16.5947	19.5986
5	Valve point effect (\$/hr)		21437	24508	24715	21470
6	Voltage deviation (p.u.)		4.7973	4.7143	4.7326	4.7848
7	Carbon Emission(ton/hr)		0.7303	0.4797	0.5428	0.6729
8	FPL		4462.8	4462.8	4462.8	4462.8
9	FPG		21383	24445	24663	21422
10	NSW		16920.2	19982.2	20200.2	16959.2
11	Objective function		16920	4.7143	16.5947	19397

Table 2. Values of the Severity Index for each bus of the IEEE 57 bus system

Rank	Bus Number	Lj	
1	31	0.3332	
2	33	0.3083	

MD.Yaseen, Sravana Kumar Bali/ IJCESEN 10-4(2024)1501-1510

3	32	0.3037
4	57	0.2871
5	42	0.2843
6	56	0.2836
7	30	0.2791
8	25	0.2415
9	34	0.2341
10	41	0.2291
11	35	0.2217
12	40	0.2093
13	36	0.2053
14	39	0.1948
15	37	0.191

Table 3. The MFO method with UPFC reallocates generation on IEEE 57 system at BUS 31.

S.No	Parameters		OF ₁	OF ₂	OF ₃	OF ₄
		P_{G1}	130.6627	164.8613	51.3093	126.9777
		P _{G2}	30.0000	107.3134	150.0000	32.7627
		P_{G3}	36.9251	0.2241	58.1959	44.0992
1	Real power generation (MW)	P_{G6}	0.5265	100.0000	100.0000	10.7416
		P_{G8}	386.2318	209.8010	222.7368	369.0287
		$\mathbf{P}_{\mathbf{Gs}}$	220.0000	220.0000	220.0000	220.0000
		$P_{Gw} \\$	410.0000	410.0000	410.0000	410.0000
2	Total Active power generation (1	MW)	1214.3461	1212.1998	1212.2420	1213.6099
3	Total real power generation cost	17385	20090	20123	17426	
4	Active power Loss (MW)	18.5461	16.3998	16.4419	17.8098	
5	Valve point effect (\$/hr)		17420	20118	20181	17477
6	Voltage deviation (p.u.)		3.4017	3.3772	3.3794	3.3976
7	Carbon Emission (Ton/hr)		0.6079	0.3825	0.3326	0.5598
8	PQ _{send}		0.1244	0.1213	0.1222	0.1242
9	PQ _{rec}		0.1174	0.1167	0.1169	0.1174
		V _{cr}	0.0350	0.0350	0.0350	0.0350
10	Siza	T _{cr}	-87.1236	-87.1236	-87.1236	-87.1236
10	Size	$V_{\rm vr}$	1.0227	1.0225	1.0225	1.0227
		$T_{\rm vr}$	-17.6231	-20.4587	-19.2199	-17.7540
11	FPL	4462.8	4462.8	4462.8	4462.8	
12	FPG		17385	20090	20123	17426
13	NSW		12922.2	15627.2	15660.2	12963.2
14	Objective function		12922	3.3772	16.4419	15084

Table 4.	Various line	outages of	cause severe	lines,	presented	in	descending	order	of L	j
----------	--------------	------------	--------------	--------	-----------	----	------------	-------	------	---

	Line of	outage	Severity line		Severity bus	
S. No	SEB	REB	FVSI Max Value	Line no with FVSI Max	Lj Max Value	BUS No with Lj Max
1	24	26	0.5217	41-43	0.4580	31
2	26	27	0.5218	41-43	0.4577	31
3	15	45	0.5777	41-43	0.4420	31
4	11	41	1.0996	41-43	0.4409	42
5	41	42	0.4564	41-43	0.4393	42
6	24	25	0.5071	41-43	0.4383	31
7	24	25	0.5062	41-43	0.4291	31
8	13	14	0.5644	41-43	0.4261	32
9	38	44	0.5621	41-43	0.4194	31
10	31	32	0.4914	41-43	0.4043	31

MD.Yaseen, Sravana Kumar Bali/ IJCESEN 10-4(2024)1501-1510

11	29	52	0.4997	41-43	0.4023	52
12	46	47	0.5479	41-43	0.4018	31
13	14	46	0.5476	41-43	0.4011	31
14	22	23	0.4931	41-43	0.3867	31
15	13	49	0.5360	41-43	0.3852	31

ſ

Τ

٦

SEB	REB	flow in line limit	Line flows under normal condition	Line flow under Line outage of 24-26	Line flow under Line outage of 26-27	Line flow under Line outage of 15-45
1	2	$(\mathbf{M}\mathbf{V}\mathbf{A})$	0.5050 0.2226;	0.5162 0.2261;	0.5161 0.2260;	0.4990 0.2000;
1	2	100	-0.3039 - 0.23201	-0.5105 - 0.25011	-0.5101 - 0.25001	-0.4889 - 0.20091
2	3	100	0.4014 - 0.11201	0.4310 - 0.11381	0.4312 - 0.11371	0.4787 - 0.08191
3	4	100	0.0039 - 0.11801	0.0245 0.0082;	0.3260 - 0.14021	0.3991 - 0.13331
4	5	100	0.0433 - 0.00131	0.0243 - 0.00831	0.0243 - 0.00821	0.0472 - 0.000331
6	7	100	-0.0004 + 0.00721	-0.0283 ± 0.00171	-0.0283 ± 0.00171	-0.1667 - 0.1782i
6	8	100	-0.2230 - 0.10471	-0.2790 - 0.12711	-0.2791 - 0.12721	-0.1007 - 0.17821
8	9	100	$1.0867 \pm 0.0082i$	1 1590 - 0 0069i	1 1588 - 0 0070j	1 1498 - 0 0683i
9	10	100	$0.3999 \pm 0.0482i$	0.4206 ± 0.00001	0.4206 ± 0.00701	0.4251 ± 0.00031
9	10	100	0.3555 + 0.04021	0.4994 - 0.1836i	0.4994 - 0.1836i	0.4231 + 0.04331
9	12	100	0.4000 = 0.17101 0.2217 + 0.1462i	0.4994 ± 0.16301 0.2344 ± 0.1520i	0.4994 = 0.10301 0.2343 + 0.1520j	0.4923 = 0.22071 $0.2210 \pm 0.1597i$
9	12	100	0.2217 + 0.14021 0.3598 + 0.0260i	0.2344 + 0.13201 0.3867 + 0.0211i	0.2343 + 0.13201 0.3866 + 0.0211i	0.2210 + 0.13771
13	13	100	0.3576 + 0.02001	0.5007 + 0.02111	0.5000 + 0.02111	0.5714 - 0.00141
13	15	100	$-0.4153 \pm 0.2327i$	$-0.4261 \pm 0.2511i$	$-0.4262 \pm 0.2510i$	$-0.62/18 \pm 0.3337i$
15	15	100	0.3422 - 0.2085i	0.3/199 - 0.2192i	-0.4202 + 0.23101 0.3500 - 0.2192i	0.3091 - 0.1397i
1	15	100	0.3422 - 0.20031	0.3499 - 0.21921	0.3300 - 0.21921	0.3071 - 0.13771
1	10	100	0.5055 - 0.05011	0.5000 - 0.01011	0.5299 - 0.0651i	0.4333 - 0.03031
3	17	100	0.3200 ± 0.00001	0.3277 = 0.00311 0.1653 $\pm 0.0780i$	0.5277 = 0.00511 0.1651 $\pm 0.0780i$	0.0740 ± 0.00011
3	15	100	0.1200 + 0.05051	0.1033 + 0.07301	0.1031 + 0.07301	0.0204 + 0.12001
4	18	100	0.1402 - 0.00721	0.1442 - 0.07311	0.1442 - 0.07311	0.1949 - 0.1031i
5	6	100	$-0.0866 \pm 0.0132i$	-0.1001 - 0.00451	-0.1001 - 0.09431	$-0.0829 \pm 0.0093i$
7	8	100	-0.0000 + 0.01321 0.8423 + 0.0744i	-0.1030 + 0.00011	-0.1035 + 0.00021	-0.0027 + 0.00751 0.8448 + 0.1106i
10	12	100	$-0.0287 \pm 0.2301i$	-0.0283 ± 0.2411	-0.0284 ± 0.2411	-0.0440 + 0.11001
10	12	100	-0.0207 + 0.23011 0.2191 \pm 0.23/19i	$0.2397 \pm 0.2390i$	$0.2396 \pm 0.2390i$	-0.0073 + 0.20301 0.2154 ± 0.2317i
12	13	100	-0.0335 - 0.5927i	-0.0144 - 0.6412i	-0.0144 - 0.6412i	0.0193 - 0.7381i
12	16	100	-0.0533 - 0.57271	$-0.0177 \pm 0.0386i$	-0.0144 - 0.04121	0.0175 ± 0.75011
12	17	100	$-0.0999 \pm 0.0298i$	$-0.1031 \pm 0.0342i$	$-0.1032 \pm 0.0342i$	$-0.1463 \pm 0.0171i$
1	15	100	0.5968 - 0.3526i	0.6110 - 0.3684i	0.6112 - 0.3683i	0.5313 - 0.2478i
18	19	100	0.0491 - 0.0310i	0.0583 - 0.0363i	0.0583 - 0.0363i	0.0739 - 0.0481i
10	20	100	0.0491 0.09101	0.0230 - 0.0268i	0.0230 - 0.0268i	0.0739 0.04011
21	20	100	0.0144 - 0.02231 $0.0088 \pm 0.0119i$	0.0230 + 0.02001	0.0230 + 0.02001	$-0.0131 \pm 0.0240i$
21	20	100	-0.0088 - 0.0119i	-0.0005 - 0.0159i	-0.0005 - 0.0159i	0.0131 - 0.0240i
22	23	100	0.0681 - 0.0537i	0.1984 - 0.1150i	0.1984 - 0.1150i	0.0202 - 0.0355i
23	24	100	0.0050 - 0.0325i	0.1347 - 0.0929i	0.1347 - 0.0929i	-0.0429 - 0.0145i
24	25	100	0.0719 - 0.0500i	0.0656 - 0.0457i	0.0656 - 0.0457i	0.0742 - 0.0538i
24	25	100	0.0691 - 0.0480i	0.0631 - 0.0439i	0.0631 - 0.0439i	0.0713 - 0.0517i
24	26	100	-0.1363 + 0.0593i	-	0.0000 + 0.0000i	$-0.1889 \pm 0.0858i$
26	27	100	-0.1363 + 0.0606i	0.0000 + 0.0000i	-	-0.1889 + 0.0887i
27	28	100	-0.2339 + 0.0729i	-0.0930 + 0.0050i	-0.0930 + 0.0050i	-0.2920 + 0.1093i
28	29	100	-0.2842 + 0.1025i	-0.1396 + 0.0289i	-0.1396 + 0.0289i	-0.3453 + 0.1435i
7	29	100	0.6150 - 0.2580i	0.4866 - 0.1686i	0.4866 - 0.1686i	0.6768 - 0.3093i
25	30	100	0.0780 - 0.0432i	0.0657 - 0.0354i	0.0657 - 0.0354i	0.0826 - 0.0458i
30	31	100	0.0404 - 0.0228i	0.0284 - 0.0155i	0.0284 - 0.0155i	0.0446 - 0.0248i
31	32	100	-0.0187 + 0.0079i	-0.0303 + 0.0145i	-0.0303 + 0.0145i	-0.0150 + 0.0066i
32		100	0.0291 0.0101;	0.0381 - 0.0191i	0.0381 - 0.0191i	0.0381 - 0.0191i
24	33	100	0.0301 - 0.01911	0.0501 0.01711	0.000-0-0.0-0-0	0.0001 0.01/11
34	33 32	100	0.0732 - 0.0457i	0.0855 - 0.0589i	0.0855 - 0.0589i	0.0694 - 0.0449i
34 34	33 32 35	100 100 100	$\frac{0.0381 - 0.01911}{0.0732 - 0.0457i}$ $-0.0732 + 0.0457i$	$\frac{0.0855 - 0.0589i}{-0.0855 + 0.0589i}$	0.0855 - 0.0589i -0.0855 + 0.0589i	$\frac{0.0694 - 0.0449i}{-0.0694 + 0.0449i}$

36	37	100	-0.1618 + 0.1106i	-0.1703 + 0.1204i	-0.1703 + 0.1204i	-0.1457 + 0.0974i
37	38	100	-0.1976 + 0.1531i	-0.2028 + 0.1604i	-0.2028 + 0.1604i	-0.1710 + 0.1299i
37	39	100	0.0343 - 0.0406i	0.0307 - 0.0378i	0.0307 - 0.0378i	0.0239 - 0.0308i
36	40	100	0.0266 - 0.0357i	0.0221 - 0.0312i	0.0221 - 0.0312i	0.0142 - 0.0226i
22	38	100	-0.0769 + 0.0418i	-0.1988 + 0.0991i	-0.1988 + 0.0991i	-0.0072 + 0.0116i
11	41	100	0.0981 - 0.1712i	0.1020 - 0.1766i	0.1020 - 0.1766i	0.1093 - 0.1890i
41	42	100	0.0965 - 0.0310i	0.1005 - 0.0352i	0.1005 - 0.0352i	0.1080 - 0.0443i
41	43	100	-0.1250 + 0.1835i	-0.1302 + 0.1877i	-0.1302 + 0.1877i	-0.1400 + 0.1970i
38	44	100	-0.2749 + 0.2180i	-0.3154 + 0.2419i	-0.3154 + 0.2419i	0.1206 - 0.0165i
15	45	100	0.4154 - 0.3001i	0.4614 - 0.3402i	0.4615 - 0.3402i	-
14	46	100	0.3482 - 0.2580i	0.3911 - 0.2856i	0.3911 - 0.2856i	0.4994 - 0.3824i
46	47	100	0.3482 - 0.2430i	0.3911 - 0.2667i	0.3911 - 0.2667i	0.4994 - 0.3497i
47	48	100	0.0465 - 0.1132i	0.0881 - 0.1358i	0.0881 - 0.1358i	0.1921 - 0.2059i
48	49	100	-0.0444 + 0.0718i	-0.0631 + 0.0806i	-0.0631 + 0.0806i	-0.1066 + 0.1114i
49	50	100	0.0247 - 0.0042i	0.0064 - 0.0001i	0.0064 - 0.0001i	-0.0327 + 0.0176i
50	51	100	-0.1854 + 0.1009i	-0.2036 + 0.1049i	-0.2036 + 0.1050i	-0.2428 + 0.1228i
10	51	100	0.3726 - 0.1779i	0.3923 - 0.1855i	0.3923 - 0.1855i	0.4356 - 0.2135i
13	49	100	0.3079 - 0.2939i	0.3390 - 0.3229i	0.3390 - 0.3229i	0.4190 - 0.4191i
29	52	100	0.1565 - 0.0939i	0.1761 - 0.0950i	0.1761 - 0.0950i	0.1549 - 0.0935i
52	53	100	0.1024 - 0.0653i	0.1211 - 0.0652i	0.1211 - 0.0652i	0.1008 - 0.0649i
53	54	100	-0.0989 + 0.0364i	-0.0805 + 0.0369i	-0.0806 + 0.0369i	-0.1005 + 0.0368i
54	55	100	-0.1424 + 0.0534i	-0.1233 + 0.0530i	-0.1233 + 0.0530i	-0.1441 + 0.0540i
11	43	100	0.1450 - 0.2348i	0.1502 - 0.2421i	0.1502 - 0.2421i	0.1600 - 0.2585i
44	45	100	-0.3993 + 0.2449i	-0.4413 + 0.2701i	-0.4413 + 0.2701i	0.0000 + 0.0028i
40	56	100	0.0266 - 0.0356i	0.0220 - 0.0311i	0.0220 - 0.0311i	0.0141 - 0.0225i
56	41	100	-0.0603 - 0.0106i	-0.0649 - 0.0081i	-0.0649 - 0.0081i	-0.0732 - 0.0023i
56	42	100	-0.0222 - 0.0146i	-0.0259 - 0.0111i	-0.0259 - 0.0111i	-0.0324 - 0.0035i
39	57	100	0.0342 - 0.0404i	0.0306 - 0.0377i	0.0306 - 0.0377i	0.0239 - 0.0307i
57	56	100	-0.0328 - 0.0153i	-0.0364 - 0.0132i	-0.0364 - 0.0132i	-0.0431 - 0.0075i
38	49	100	-0.0562 + 0.1019i	-0.0856 + 0.1159i	-0.0856 + 0.1159i	-0.1544 + 0.1609i
38	48	100	-0.0890 + 0.1821i	-0.1480 + 0.2116i	-0.1480 + 0.2116i	-0.2890 + 0.3028i
9	55	100	0.2149 - 0.1002i	0.1948 - 0.0974i	0.1948 - 0.0974i	0.2167 - 0.1011i

 Table 6. Optimization of power flows for various objective functions including renewable energy sources and line 24-26 contingencies, without UPFC

S.No	Parameter	r	OF ₁	OF ₂	OF ₃	OF ₄
		P _{G1}	141.8056	81.2680	197.9313	136.3244
		P _{G2}	78.7302	100.0000	0.6324	100.0000
1	Dealman	P _{G3}	42.9910	140.0000	124.3493	45.8422
	Real power	P _{G6}	5.6449	100.0000	100.0000	12.2361
	generation (IVI VV)	P _{G8}	418.5566	263.5079	261.0891	392.6158
		P _{Gs}	180.0000	180.0000	180.0000	180.0000
		P _{GW}	350.0000	350.0000	350.0000	350.0000
2	Total Active power generation (MW)	Total Active power generation (MW)		1214.7759	1214.0021	1217.0185
3	Total real power get cost (\$ /hr)	Total real power generation cost (\$ /hr)		25750	25109	21491
4	Active power Loss	(MW)	21.9283	18.9760	18.2022	21.2186
5	Valve point effect (\$ /hr)	21467	25792	25159	21538
6	Voltage deviation (p.u.)	5.2943	5.2067	5.2246	5.2802
7	Carbon Emission(to	Carbon Emission(ton/hr)		0.4296	0.5408	0.6740
8	FPL		4462.8	4462.8	4462.8	4462.8
9	FPG		21420	25750	25109	21491
10	NSW		16957.2	21287.2	20646.2	17028.2
11	Objective function		16958	5.2067	18.2022	19678

 Table 7. Lines 24-26: UPFC based renewable energy source contingency and optimal power flows for various objective functions

S.No	Parameters		OF ₁	OF ₂	OF ₃	OF ₄
		P_{G1}	124.1946	119.9534	173.6509	149.9027
		P_{G2}	30.0000	150.0000	30.0000	81.9120
		P _{G3}	38.9489	0.0241	60.7528	32.6227
1	Real power generation (MW)	P _{G6}	0.0041	100.0000	100.0000	0.1630
	6	P_{G8}	392.5310	286.4327	217.0364	319.6634
		P _{GS}	220.0000	148.0620	220.0000	220.0000
		P_{GW}	410.0000	410.0000	410.0000	410.0000
2	Total Active powe generation (MW)	er	1215.6786	1214.4722	1211.4401	1214.2638
3	Total real power generation cost (\$/	/hr)	17421	22391	19644	17772
4	Active power Loss	s (MW)	19.8786	18.6724	15.6401	18.4639
5	Valve point effect (\$/hr)		17452	22447	19674	17815
6	Voltage deviation	(p.u.)	3.4868	3.4628	3.4646	3.4708
7	Carbon Emission(ton/hr)	0.6170	0.4956	0.3764	0.4942
8	PQ _{send}		0.1343	0.1342	0.1342	0.1341
9	PQ _{rec}		0.1214	0.1207	0.1207	0.1209
		V_{cr}	0.0350	0.0350	0.0350	0.0350
10	Sizo	T_{cr}	-87.1236	-87.1236	-87.1236	-87.1236
10	5120	V_{vr}	1.0252	1.0251	1.0251	1.0251
		$T_{vr} \\$	-20.8943	-23.1973	-22.6031	-22.3639
11	FPL		4462.8	4462.8	4462.8	4462.8
12	FPG		17421	22391	19644	17772
13	NSW		12958.2	17928.2	15181.2	13309.2
14	Objective function	1	12958	3.4628	15.6401	15503

Figure 3. Voltage profile of multi-objective function.

Figure 4. Multi-objective function convergence

Figure 5. Negative Social Welfare without and with UPFC: A Comparison.

Author Statements:

- **Ethical approval:** The conducted research is not related to either human or animal use.
- **Conflict of interest:** The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper
- Acknowledgement: The authors declare that they have nobody or no-company to acknowledge.
- Author contributions: The authors declare that they have equal right on this paper.
- **Funding information:** The authors declare that there is no funding to be acknowledged.
- **Data availability statement:** The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.

References

 M. O. Lawal, O. Komolafe, and T. O. Ajewole. (2019). Power- flow-tracing-based congestion management in hydro- thermal optimal power fl ow algorithm. J. Mod. Power Syst. Clean Energy. 7(3);538–548, doi: 10.1007/s40565-018-0490-5.

- [2] I. Batra and S. Ghosh. (2019). A Novel Approach of Congestion Management in Deregulated Power System Using an Advanced and Intelligently Trained Twin Extremity Chaotic Map Adaptive Particle Swarm Optimization Algorithm. *Arab. J. Sci. Eng.* 44(8);6861–6886, doi: 10.1007/s13369- 189018-3675-3.
- [3] K. Teeparthi and D. M. Vinod Kumar. (2017). Multiobjective hybrid PSO-APO algorithm based security constrained optimal power flow with wind and thermal generators. *Eng. Sci. Technol. an Int. J.* 20(2);411–426, doi: 10.1016/j.jestch.2017.03.002.
- [4] Al. Ahmad, S. Ahmad Reza. (2020). Optimal placement and sizing of multi-type FACTS devices in power systems using metaheuristic optimisation techniques: An updated review. *Ain Shams Engineering Journal*. 11(3);611-628.
- [5] Nusair, K.; Alasali, F.; Ali, H.; William, H. (2021). Optimal placeent of FACTS devices and power-flow solutions for a power network system integrated with stochastic renewable energy resources using metaheuristic optimization techniques. *International Journal of Energy Research*, 45;18786–18809. https://doi.org/10.1002/er.6997
- [6] Subhojit Dawn, Prashant Kumar Tiwari, Arup Kumar Goswami. (2019). An approach for long term economic operations of com-petitive power market by optimal combined scheduling of wind turbines and FACTS controllers. *Energy*. 181;709-723

- [7] Rui Ma, Xuan Li, Yang Luo, Xia Wu, and Fei Jiang. (2019). Multi-objective Dynamic Optimal Power Flow of Wind Integrated Power Systems Considering Demand Response. *CSEE journal of power and energy systems*. 5(4);.
- [8] M. Akanksha, G. V. Nagesh Kumar. (2015). Line utilisation factor-based optimal allocation of IPFC and sizing using firefly algorithm for congestion management. *IET Generation, Transmission & Distribution*. 10(1);1-8 https://doi.org/10.1049/ietgtd.2015.0493
- [9] R. Verma, A. Rathore. (2021). Optimal Placement of Facts Device Considering Voltage Stability and Losses using Teaching Learning based Optimization. *J. Inst. Eng. India Ser. B.* 102;771–776.
- [10] Adetokun,B. B., Cristopher, M. M. (2021). Application and control of flexible alternating current transmission system devices for voltage stability enhancement of renewable-integrated power grid: A comprehensive review. *Heliyon*. 7(3);e06461. doi: 10.1016/j.heliyon.2021.e06461.
- [11] Farid Hamzeh Aghdam, Sina Ghaemi, Amin Safari, Meisam Farrokhifar. (2021). Profit-based evaluation of optimal FACTS devices planning for the large consumers and TRANSCO considering uncertainty. *Int Trans Electr Energ Syst.* 31;1-22.
- W. A. Oyekanmi, G. Radman, A. A. Babalola, T.
 O. Ajewole. (2014). Power System Simulation and Contingency Ranking Using Load Bus Voltage Index. *IEEE*. DOI:10.1109/ICECCO.2014.6997553
- [13] Sina Ghaemi, Farid Hamzeh Aghdam, Amin Safari, Meisam Farrokhifar. (2019). Stochastic economic analysis of FACTS devices on contingent transmission networks using hybrid biogeographybased optimization. *Electrical Engineering*. 101; 829– 843. https://doi.org/10.1007/s00202-019-00825-6
- [14] Partha P. Biswas, Parul Arora, R. Mallipeddi, P. N. Suganthan, B. K. Panigrahi. (2021). Optimal placement and sizing of FACTS devices for optimal power flow in a wind power integrated electrical network. *Neural Computing and Applications*. 33;6753-6774. <u>https://doi.org/10.1007/s00521-020-05453-x</u>
- [15] Seyedali Mirjalili. (2015). Moth-Flame Optimization Algorithm: A Novel Nature-inspired Heuristic Paradigm. *Knowledge-Based Systems*. 38;228-249.

http://dx.doi.org/10.1016/j.knosys.2015.07.006

- [16] Yu Li, Xinya Zhu and Jingsen Liu. (2020). An Improved Moth-Flame Optimization Algorithm for Engineering Problems. Symmetry. 12;1234; doi:10.3390/sym12081234
- [17] S, P., & A, P. (2024). Secured Fog-Body-Torrent : A Hybrid Symmetric Cryptography with Multi-layer Feed Forward Networks Tuned Chaotic Maps for Physiological Data Transmission in Fog-BAN Environment. International Journal of Computational and Experimental Science and Engineering, 10(4);671-681. <u>https://doi.org/10.22399/ijcesen.490</u>
- [18] ONAY, M. Y. (2024). Secrecy Rate Maximization for Symbiotic Radio Network with Relay-Obstacle. International Journal of Computational and Experimental Science and

Engineering, 10(3);381-387. https://doi.org/10.22399/ijcesen.413

[19] Kabashi, G., Kola, L., Kabashi, S., & Ajredini, F. (2024). Assessment of climate change mitigation potential of the Kosovo energy and transport sector. *International Journal of Computational and Experimental Science and Engineering*, 10(3);517-526. https://doi.org/10.22399/ijcesen.325