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Abstract:  
 

Until recently, non-coding RNAs were considered junk RNA and were always ignored, 

but studies have revealed that many non-coding RNAs such as miRNA, lncRNA, and 

circRNAs play important roles in biological processes.  A subclass of non-coding RNAs 

with transcripts longer than 200 nucleotides, called lncRNAs, play important roles in 

many cellular processes such as gene regulation. For this reason, since wet experimental 

studies to identify disease-related lncRNA are time-consuming, computational methods 

are used. Many researchers have applied similarity-based and machine learning-based 

computational methods and achieved very successful results. Due to its high success rate, 

the deep learning technique is applied to many fields today. In this study, we used the 

Deep Autoencoder and Deep Neural Network method to predict disease related lncRNAs. 

As input data of Deep Autoencoder, the concatenated feature vector obtained from 

integrated disease similarity and integrated lncRNA similarity was used. To train the deep 

neural network for predicting relationships between lncRNAs and diseases, the features 

extracted from the autoencoder’s output were utilized. The prediction performance of our 

method was evaluated with the commonly used 5-fold cross validation and an AUC value 

of 0.9575 was obtained. It can be seen that the method we proposed is more successful 

than other compared methods. Additionally, case studies on colorectal cancer and lung 

cancer were conducted and confirmed with the literature. As a result, the Deep 

Autoencoder and Deep Neural Network method can be used reliably to identify candidate 

disease-related lncRNAs. 

 

1. Introduction 
 

Long non-coding RNAs (lncRNAs) are a subtype of 

non-coding RNA (ncRNA) characterized by a length 

exceeding 200 nucleotides [1]. Thought to be noise 

when first discovered, lncRNAs constitute the 

largest portion of the mammalian non-coding 

transcriptome [2]. Thanks to the development of 

bioinformatics technology, researchers have found 

that lncRNAs are involved in important biological 

processes such as cell growth, cell development, and 

gene expression regulation [3]. Studies have 

revealed that dysregulation of lncRNAs is related 

with many diseases, such as various cancers, 

cardiovascular diseases, and neurodegenerative 

disorders. For example, lncRNA has been 

discovered to be a tumor suppressor in prostate 

cancer cells [4]. Moreover, numerous lncRNAs have 

been identified in Alzheimer’s disease, Huntington’s 

disease, Parkinson’s disease, and amyotrophic 

lateral sclerosis [5]. 

Accurate identification of potential disease-

associated lncRNAs helps diagnose, treatment, and 

prevent diseases. It even contributes to the 

development of personalized medicines. However, 

revealing these relationships with traditional 

biological methods is a very expensive and long 

process. Therefore, many computational methods 

have been developed to identify lncRNAs associated 

with diseases. These developed methods are 

generally divided into five categories: network 

propagation-based methods, matrix factorization-

based methods, machine learning-based methods, 

deep learning-based methods, and graph neural 

network-based methods. 

 Network propagation methods: The network-

based approach aimed to reveal possible new 

associations at the network level by creating 

networks to represent lncRNA-disease 
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correlations. Network-based methods often do 

not require negative samples. 

 Matrix completion and factorization methods: 

The lncRNA-disease relationship can also be 

considered as a recommendation system. With 

the matrix factorization method, two low-

dimensional matrices that can approximate the 

original input matrix and fill in the missing 

relationships are obtained. Computational 

methods based on matrix completion and 

factorization do not require negative samples to 

train the model. 

 Machine learning methods: Today, machine 

learning methods are widely used to predict 

disease-related lncRNAs, as in every field. In 

this method, experimentally confirmed lncRNA-

disease associations are labeled as positive, 

while unknown ones are labeled as negative. 

Afterwards, classification methods are applied 

to predict disease-associated lncRNAs. 

 Deep learning methods: In recent decades, deep 

learning methods have been widely used for data 

mining and pattern recognition research. 

Additionally, deep learning is widely used in 

areas such as lncRNA-miRNA interaction 

prediction, lncRNA-protein interaction 

prediction, miRNA-disease relationship 

prediction, and drug repositioning. 

 

In this study, to estimate the relationship between 

lncRNA and disease, Gaussian interaction profile 

Kernel similarities of lncRNAs and diseases, 

similarities of lncRNA functional and disease 

semantic were used to create lncRNA-disease 

association features. To evaluate the success 

performance of the method we applied, the 

commonly used 5-fold cross-validation technique 

was applied, and the ROC curve was plotted. An 

AUC value of 0.9575 was obtained in the 5-fold 

cross-validation technique. Then, we compared our 

method with eight previous computational methods 

such as SIMCLDA [6], BRWLDA [7], DMFCDA 

[8], LLCLPLDA [9], NIMCGCN [10], VGAELDA 

[11], MDA-SKF [12], and GDCL-NcDA [13]. We 

also evaluated the success performance of our 

method by conducting a case study on colorectal 

cancer and lung cancer. When the results were 

examined, it was seen that the method we used could 

successfully predict potential lncRNA-disease 

relationships. 

 

2. Materials and Methods 
 

2.1. Datasets 

 

The datasets we used in this study are known human 

lncRNA-disease associations, lncRNA functional 

similarity and disease semantic similarity, 

respectively. Obtaining and calculating this data is 

explained in detail below. 

 

Human lncRNA–disease associations 

Experimentally validated lncRNA-disease 

associations data were downloaded from the 

LncRNADisease [14] (v3.0) database 

(http://www.rnanut.net/lncrnadisease/). In this 

database, there are 13191 relationships between 

6066 lncRNAs and 566 diseases. The dataset 

interaction density is about 0.3842%. Matrix 𝐴 is 

created according to the relationship between 

lncRNAs and diseases. Here, 𝐴(𝑖, 𝑗) set to 1, if there 

is a relationship between lncRNA(𝑙𝑖) and 

disease(𝑑𝑗), otherwise set to 0. 

{
𝐴(𝑙𝑖 , 𝑑𝑗) = 1     𝑖𝑓 𝑙𝑛𝑐𝑅𝑁𝐴 𝑙𝑖  ℎ𝑎𝑠 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑤𝑖𝑡ℎ 𝑑𝑖𝑠𝑒𝑎𝑠𝑒 𝑑𝑗       

𝐴(𝑙𝑖 , 𝑑𝑗) = 0     𝑖𝑓 𝑙𝑛𝑐𝑅𝑁𝐴 𝑙𝑖  ℎ𝑎𝑠 𝑛𝑜 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑤𝑖𝑡ℎ 𝑑𝑖𝑠𝑒𝑎𝑠𝑒 𝑑𝑗

  (1) 

lncRNA functional similarity (LFS) 

Functionally similar lncRNAs are generally 

considered to be associated with similar diseases, 

according to assumption this manner, we calculated 

the LFS. For example, if lncRNA 𝑙𝑖 and lncRNA 𝑙𝑗 

are associated with 𝑚 diseases and 𝑛 diseases, 

respectively. Firstly, the similarity value between a 

disease 𝑑 and a disease set 𝐷 is calculated as follows 

and represented by 𝑆𝑉. 

 

𝑆𝑉(𝑑, 𝐷) = 𝑚𝑎𝑥1≤𝑖≤𝑘(𝑆𝑉(𝑑, 𝑑𝑖))  (2) 

 

where the disease set associated with lncRNA 𝑙𝑖 is 

represented by 𝐷. The calculation of LFS scores 

between the two lncRNAs is carried out as follows: 

 

𝐿𝐹𝑆(𝑙𝑖 , 𝑙𝑗) =
∑ 𝑆𝑉(𝑑,𝐷(𝑙𝑖))1≤𝑖≤𝑚 +∑ 𝑆𝑉(𝑑,𝐷(𝑙𝑗))1≤𝑗≤𝑛

𝑚+𝑛
  (3) 

 

Construction of disease-semantic similarity (SS) 

In addition to containing disease-specific 

information, the MeSH database [15] also contains 

directed acyclic graphs (DAGs) created from 

relationships between diseases. DAG structure is 

used when calculating the semantic similarities of 

diseases. As an example, the DAG structure of two 

diseases is shown in Figure 1. Semantic similarity 

scores of diseases were computed using the 

methodology proposed by Toprak [16]. 

The following equation is utilized to compute the 

semantic value (𝑉) of disease 𝑑. 

 

𝑉(𝑑) = ∑ 𝐷𝑑(𝑡)𝑡∈𝑁𝑑
    (4) 

 

In the 𝐷𝐴𝐺𝑑 structure, the contribution of disease 𝑡 

to 𝑑 can be explained by the following equation. 

http://www.rnanut.net/lncrnadisease/
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Figure 1. Colorectal and Lung cancers’ DAG structures. 

 

 

{
𝐷𝑑(𝑡) = 1,                                                                    𝑖𝑓 𝑡 = 𝑑

𝐷𝑑(𝑡) = 𝑚𝑎𝑥{∆ ∗ 𝐷𝑑(𝑡′)|𝑡′ ∈ 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 𝑜𝑓 𝑡}, 𝑖𝑓 𝑡 ≠ 𝑑
  (5) 

 

The calculation of the semantic similarity between 

diseases 𝑑1 and 𝑑2 is as follows. 
 

𝑆𝑆(𝑑1, 𝑑2) =
∑ (𝑑1(𝑡)+𝑑2(𝑡))𝑡∈𝑁𝑑1

∩𝑁𝑑2

𝑉(𝑑1)+𝑉(𝑑2)
  (6) 

 

The semantic value of colorectal cancer in the DAG 

A structure was calculated as 3.406250 and semantic 

value of lung neoplasms in the DAG B structure was 

calculated as 2.687500. Afterwards, the semantic 

similarity between colorectal neoplasms and lung 

neoplasms was calculated as 0.046153846. Figure 2 

shows an example disease semantic network. 

 

 
Figure 2. Disease semantic network 

 

A heat map of the lncRNA functional matrix and the 

fusion of lncRNA matrix are seen in Figure 3(a) and 

heat map of the disease semantic matrix and the 

fusion of disease matrix are seen in Figure 3(b). As 

seen in the figure, both matrices are denser after 

fusion.  

 

Gaussian (GIP) Kernel methods for lncRNAs and 

diseases  

According to van Laarhoven et al., “lncRNAs with 

similar functions are likely to be associated with 

diseases with similar phenotypes (and vice versa)” 

[17]. Based on this assumption, the GIP kernel  

  

  
a) lncRNA matrices b) Disease matrices 

Figure 3. Visualization of lncRNA matrices and 

disease matrices 

 

methods for lncRNAs and diseases are computed in 

the following manner. 

 

𝐺𝐼𝑃_𝑙𝑛𝑐(𝑙𝑖 , 𝑙𝑗) = 𝑒𝑥𝑝 (−𝜆𝑙‖𝑀(𝑙𝑖) − 𝑀(𝑙𝑗)‖
2

)  (7) 

 

𝐺𝐼𝑃_𝑑𝑖𝑠𝑒𝑎𝑠𝑒(𝑑𝑖 , 𝑑𝑗) = 𝑒𝑥𝑝 (−𝜆𝑑‖𝑀(𝑑𝑖) − 𝑀(𝑑𝑗)‖
2

) (8) 

 

Here, parameters 𝜆𝑙 and 𝜆𝑑, which are the 

normalized kernel bandwidths, they can be 

calculated as follows. 

 

𝜆𝑙 =
1

𝑛𝑙
∑ ‖𝑀(𝑙𝑖)‖2𝑛𝑙

𝑖=1    (9) 

 

𝜆𝑑 =
1

𝑛𝑑
∑ ‖𝑀(𝑑𝑖)‖2𝑛𝑑

𝑖=1   (10) 

 

where 𝑛𝑙 and 𝑛𝑑 are number of all lncRNAs all 

diseases, respectively. 

Fusion of multi-source similarity 
We combined two similarities, such as lncRNA 

functional and GIP Kernel, according to previous 

studies [16, 18-20]. The similarity between two 

lncRNAs is calculated as follows, and integrated 

new lncRNA similarity matrix is represented by 

𝐿𝑆(𝑙𝑖 , 𝑙𝑗). 

𝐿𝑆(𝑙𝑖 , 𝑙𝑗) = 

{

𝐿𝐹𝑆(𝑙𝑖,𝑙𝑗)+𝐺𝐼𝑃_𝑙𝑛𝑐(𝑙𝑖,𝑙𝑗)

2
 𝑙(𝑖) and 𝑙(𝑗) have functional similarity

𝐺𝐼𝑃𝑙𝑛𝑐(𝑙𝑖,𝑙𝑗)                other                                                               
 (11) 

 

As the same way, the similarity between two 

diseases is calculated as follows and integrated new 

disease similarity matrix is represented by 

𝐷𝑆(𝑑𝑖, 𝑑𝑗). 

𝐷𝑆(𝑑𝑖 , 𝑑𝑗) = 

{

𝑆𝐷(𝑑𝑖,𝑑𝑗)+𝐺𝐼𝑃_𝑑𝑖𝑠𝑒𝑎𝑠𝑒(𝑑𝑖,𝑑𝑗)

2
 𝑑(𝑖) and 𝑑(𝑗) have semantic similarity

𝐺𝐼𝑃𝑑𝑖𝑠𝑒𝑎𝑠𝑒(𝑑𝑖,𝑑𝑗)                other                                                               
 (12) 
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2.2. Method 

 

This method we apply comprises two components: 

an Autoencoder and a Deep Neural Network. The 

data in the feature vector, which is the input of the 

Autoencoder, is the combination of lncRNA and 

disease vectors. That is, the integrated lncRNAs 

similarity matrix has dimensions 𝑛𝑙 × 𝑛𝑙, and the 

integrated disease similarity matrix has dimensions 

𝑛𝑑 × 𝑛𝑑. By combining integrated lncRNAs 

similarity matrix and integrated disease similarity 

matrix, we derived a feature vector of size 𝑛𝑙 + 𝑛𝑑 

for each lncRNA-disease pair. The labels for these 

feature vectors were acquired from the lncRNA-

disease relationship matrix.  

However, the lncRNA-disease association matrix 

consists of only 1 (positive) and zeros. Here, we 

randomly selected the same number of samples from 

unconfirmed lncRNA-disease associations as the 

number of positive samples and assigned them as -1 

(negative).  

The labels for each feature vector were obtained 

from the known lncRNA-disease relationships. The 

feature vectors of positive and negative labelled 

samples were determined as input data of a deep 

autoencoder.  

The resulting features from the autoencoder’s output 

were utilized for training a deep neural network. 

Afterwards, the association probability of 

unconfirmed lncRNA-disease pairs was predicted 

with the trained deep neural network. 

 

Feature selection based on Autoencoder 

An autoencoder is an unsupervised neural network 

comprising two components called the encoder and 

the decoder, that reproduces its input in its output. 

Given a vector 𝑥 at the input of an autoencoder, 

using a mapping function 𝑓, the encoder maps input 

sample to vector 𝑦 with the following equation. 

 

𝑦 = 𝑓(𝑊𝑥 + 𝑏) (13) 

 

Here, 𝑓, 𝑊, and 𝑏 represent the encoder’s transfer 

function, weight matrix, and bias vector, 

respectively. Then, using a similar mapping 

function, the encoded representation 𝑦  is decoded 

into the vector 𝑥′ by the decoder with following 

equation. 

 

𝑥′ = 𝑓(𝑊′𝑦 + 𝑏′)  (14) 

 

Here, 𝑊′ and 𝑏′ represent the reconstructed weight 

matrix and reconstructed bias vector, respectively. 

Mean squared error were used as the loss function 

and Adam algorithm were used as the optimizer. 

 

Prediction of lncRNA–disease associations based 

on Deep Neural Network 

In this study, we used a feed-forward deep neural 

network model consisting of fully connected layers 

to predict novel relationships between lncRNAs and 

diseases. The deep neural network model we 

implemented consists of an input layer, three hidden 

layers and an output layer. We used the high-level 

feature vectors obtained from the autoencoder output 

as the input data of our feed-forward deep neural 

network model. We used the Adaptive Moment 

Estimation (Adam) optimizer for optimization, the 

Rectified Linear Unit (ReLU) activation function in 

the hidden layers, and the sigmoid function in the 

output layer. 

The flowchart of our proposed method to estimate 

lncRNA-disease relationships is shown in Figure 4. 

The integrated lncRNA and disease features were 

determined as the input of the deep autoencoder. The 

resulting features obtained at the autoencoder’s 

output were employed to train a deep neural network 

to predict disease-related lncRNAs. 

 

 
Figure 4. The flowchart of our proposed method 

 

3. Results and Discussion 

 
3.1. Performance Evaluation 

 

In the cross-validation method, the data is divided 

into 𝑘 subsets, 80% of the data is used to train the 

model, while 20% is used to test the model. For 

example, in 5-fold cross validation, the data is 

divided into five equal subsets. While the model is 

trained with four subsets, the model is tested with the 

remaining one subset and the average is calculated 

by repeating for each subset. We used the receiver 

operation characteristic (ROC) [21] curve to 

evaluate the prediction performance of our applied 

method. ROC curves are obtained by plotting true-

positive rate (TPR, Sensitivity) versus false positive 

rate (FPR, 1-Specificity). 

 

𝑇𝑃𝑅, 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
   (15) 

 

𝐹𝑃𝑅, 1 − 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
  (16) 
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where TP, TN, FP, and FN represent correctly 

classified positive samples, correctly classified 

negative samples, incorrectly classified positive 

samples, and incorrectly classified negative samples, 

respectively. 

Moreover, we also calculated the area under ROC 

curve (AUC) value. While an AUC value of 0.5 

indicates a random result, an AUC value close to 1 

indicates that the model’s predictive performance is 

successful. In five-fold cross validation, an AUC 

value of 0.9575 was obtained. 

In order to assess the accuracy of our proposed 

method’s predictions, we conducted a comparison 

with eight other calculation methods such as 

SIMCLDA, BRWLDA, DMFCDA, LLCLPLDA, 

NIMCGCN, VGAELDA, MDA-SKF, and GDCL-

NcDA. Table 1 shows the sorted AUC values of the 

other compared methods. When the table is 

examined, it is seen that the method we used obtains 

a better AUC value than the other eight compared 

methods. Figure 5 shows the ROC curve of our 

proposed method and the other eight compared 

methods in five-fold cross-validation technique. 

 

 

Table 1. AUC values 

SIMCLDA 0.7455 

BRWLDA 0.7661 

DMFCDA 0.8044 

LLCLPLDA 0.8237 

NIMCGCN 0.8612 

VGAELDA 0.9126 

MDA-SKF 0.9222 

GDCL-NcDA 0.9382 

 

 

 

Figure 5. ROC curve 

3.1. Case Studies 

Colorectal cancer and lung cancer are the most 

common cancer types worldwide and have a high 

mortality rate. For this reason, we conducted a case 

study on these two cancer diseases to demonstrate 

the prediction accuracy of our proposed method. The 

lncRNA-disease association data we obtained from 

the LncRNADisease database was used as the 

training set. In our training set, we assigned a value 

of zero to the known associations between lncRNAs 

and each disease. This means that we did not 

consider any prior knowledge of lncRNA-disease 

associations in our training process. This approach 

allows us to assess the accuracy of our proposed 

method in predicting novel associations between 

lncRNAs and diseases. After training our model and 

obtaining the top 20 predicted lncRNAs for both 

diseases, we verified these predictions using 

information from databases. 

Colorectal cancer, which is a major threat to human 

health, is the second most common type of cancer in 

females and the third in males [22]. Approximately 

more than 1 million new cases of colorectal cancer 

are diagnosed each year. As seen in Table 2, 19 of 

the top 20 predicted lncRNAs were validated in the 

literature. For example, it has been observed that 

PVT1 is overexpressed in colorectal cancer samples, 

and the expression level of PVT1 is higher in 

colorectal cancer cells than in normal cells [23]. Yan 

et al. demonstrated that XIST is highly expressed in 

colorectal cancer tissues and cells [24]. BANCR, 

also known as LINC00586, has been noted to exhibit 

overexpression in colorectal cancer tissues and has 

been linked to patient survival outcomes [25]. Low 

expression of CAS5 in colorectal cancer patients 

increased tumor metastasis and reduced survival rate 

[26]. Upregulation of HULC has been observed in 

colorectal cancer tissues [27]. NPTN-IT, on the other 

hand, could not be validated in the literature. 

Therefore, we think that lncRNA NPTN-IT could be 

a potential biomarker for colorectal cancer. 

Lung cancer stands as one of the most prevalent 

cancer types and is a primary contributor to cancer-

related fatalities globally [28]. There are two 

primary forms of lung cancer: small cell lung cancer 

(SCLC) and non-small cell lung cancer (NSCLC). 

SCLC is less common but tends to grow and spread 

quickly than NSCLC. On the other hand, NSCLC is 

the more prevalent type, comprising approximately 

80% of all cases [29]. As seen in Table 3, 17 of the 

top 20 predicted lncRNAs were validated in the 

literature. For example, overexpression of PVT1 has 

been observed to regulate proliferation in lung 

cancer patients [30]. Li et al. stated that XIST was 

upregulated in lung cancer tissues [31]. In most lung 

cancer patients, HULC expression level was 

observed to be increased in cancer tissues compared 

to normal tissues [32]. LncRNA HAR1A has been 

observed to be downregulated in lung 

adenocarcinoma and negatively correlates with 

prognosis [33]. BCAR4 expression level is higher 
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than normal level in NSCLC tissues and cells [34]. 

In both lung cancer tissues and cancer cell lines, 

there was observed an increased expression of 

NEAT1 [35]. Therefore, CCDC26, LINC00032, and 

PCA3 are likely to be associated with lung cancer. 

As a result, we think that these lncRNAs may be a 

potential biomarker for lung cancer. Besides cancer 

research deep learning has been applied in different 

applications [36-46]. 

 
Table 2. Colorectal Cancer 

  
 

Table 3. Lung Cancer 

 
 

4. Conclusion 

Experimental studies have revealed that lncRNAs 

have an impact on numerous biological processes. 

Nevertheless, the identification of these interactions 

can be both expensive and time-consuming. 

Therefore, it is imperative to employ computational 

methods in order to identify lncRNAs associated 

with diseases. In this study, we utilized Deep 

Autoencoder and Deep Neural Network techniques 

to predict potential associations between lncRNAs 

and diseases. The effectiveness of our method was 

evaluated using five-fold cross-validation and case 

studies. Through the implementation of five 

different cross-validation techniques, we obtained an 

AUC value of 0.9575. Furthermore, we compared 

this AUC value with those obtained from previous 

studies such as SIMCLDA, BRWLDA, DMFCDA, 

LLCLPLDA, NIMCGCN, VGAELDA, MDA-SKF, 

and GDCL-NcDA to assess the performance of our 

proposed method. Additionally, we conducted case 

studies specifically focused on colorectal cancer and 

lung cancer in order to further validate the predictive 

capabilities of our method. The top 20 predicted 

lncRNAs for each cancer type were carefully 

compared with existing literature findings and are 

presented in table 2 and table 3 accordingly. Upon 

close examination of these results, it becomes 

increasingly apparent that our method can be relied 

upon as a dependable and efficient technique for 

identifying potential disease-associated lncRNAs. 
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