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Abstract:  
 

In the realm of autonomous and self-driving vehicles, accurate traffic sign detection is 

critical for ensuring road safety, efficient navigation, and compliance with traffic 

regulations. This paper presents an advanced traffic sign detection system based on 

YOLOv9, an enhanced form of the YOLO (You Only Look Once) architecture. 

YOLOv9 offers significant enhancements over its predecessor, YOLOv8, through 

advanced feature extraction, multi-scale feature fusion, and optimized detection heads. 

The suggested YOLOv9 variant provides a notable accuracy of 95.0%, surpassing 

YOLOv8's 90.5%. This improvement is complemented by enhanced performance 

metrics, including a precision of 93.0%, recall of 94.0%, and an F1 score of 93.5%, 

compared to YOLOv8's precision of 88.0%, recall of 87.5%, and F1 score of 87.7%. 

The mean Average Precision (mAP) also increases from 85.5% in YOLOv8 to 91.0% in 

YOLOv9, reflecting superior detection and classification capabilities. The YOLOv9 

model demonstrates superior efficiency with reduced training time (12 hours compared 

to YOLOv8's 15 hours) and faster inference (30 ms compared to YOLOv8's 40 ms). It 

utilizes a more comprehensive dataset with a greater number of images, traffic sign 

classes, and varied conditions, enhancing its robustness and generalization in real-world 

scenarios. Key parameter adjustments, including a lower learning rate, smaller batch 

size, and refined IoU threshold for non-maximum suppression, contribute to YOLOv9's 

improved performance. These enhancements make YOLOv9 a highly effective solution 

for real-time traffic sign detection in autonomous driving systems, offering a safer and 

more efficient driving experience. This work demonstrates the potential of YOLOv9 in 

advancing traffic sign detection technologies and provides a solid structure for further 

R&D in autonomous vehicle systems. 

 

1. Introduction 
 

Accurate detection and interpretation of traffic 

signs are also very critical in the domain of 

autonomous vehicles to ensure safe and efficient 

navigation within the road infrastructure. Traffic 

signs, such as stop signs, speed limits, and parking 

regulations, are also used by autonomous systems 

as a means to follow the traffic rules and make 

navigational decisions. Misinterpretation or failure 

http://dergipark.org.tr/en/pub/ijcesen
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to detect these signs may lead to grave safety issues 

such as violations, accidents, or even inefficient 

routing. Therefore, the problem is to produce 

systems that can distinctly and correctly observe 

and classify a great deal of varieties of traffic signs 

under different conditions such as lighting, weather, 

and angles of view. Real-time processing is in 

demand by the problem in order to provide time-

effective and appropriate responses coming from 

the autonomous vehicle's control system. 

Several methods and techniques have been 

formulated to address this challenge of detecting 

traffic signs by autonomous vehicles. Early 

solutions mainly depended on traditional computer 

vision techniques, such as color-based 

segmentation and template matching. These 

methods, although providing an early solution to 

the problem, failed under occlusion conditions and 

with changing lighting conditions. CNN-based 

methods, AlexNet, VGG, etc have been a boon, 

using deep learning in features extraction and 

classification of traffic signs. However, such 

models typically require enough computational 

resources and sometimes are not optimized enough 

to be used in real-time. YOLO would rightly aptly 

be said from YOLOv1 till the latest version, 

YOLOv4, revolutionized object detection because 

of its novel architecture that guesses the bounding 

boxes and class probabilities within one pass. 

YOLOv3 bettered the one pertaining to multi-scale 

detection, although it did better compared to some 

of the variations with respect to detections of more 

minute objects. The YOLOv4, once again, 

improved and was more accurate as well as had 

more computational speed over the range of 

optimizations applied. 

YOLOv3 and YOLOv4 have versions of the 

original YOLO, of which managed to have a better 

improvement in tasks that regard object detection 

but still issues in terms of precision as well as 

computation speed especially on complex 

scenarios. Issues arise from overlapping signs and 

different orientations of signs, which decrease the 

model's accuracy. Also, these models may face 

challenges in real-time processing requirements in 

resource-constrained autonomous vehicle systems. 

To respond to the limitations created by solutions 

prior to the presented research, this work aims at an 

advanced traffic sign detection system using the 

latest iteration of the YOLO framework, that is, 

YOLOv9. YOLOv9 has made several 

improvements comparatively with its predecessors. 

It has much more efficient backbone networks, 

better neck structures and improved heads for 

detection. All these bring major improvements in 

both speed and accuracy. Our approach was 

designed with the objectives of improvement in 

detection as well as real time applicability within 

the capabilities of its host autonomous vehicle 

system. With YOLOv9, we undertook some of the 

key weaknesses in earlier models: a reduction in 

accuracy and lags in certain extreme conditions. 

The proposed system, based on YOLOv9, 

incorporates several more sophisticated techniques 

that offer far superior performance as compared to 

earlier methods of traffic sign detection: 

•Backbone Network: YOLOv9 will combine the 

most current breakthroughs in feature extraction 

with the improved architecture that increases the 

ability of the network to capture and decode 

complex patterns. 

• Neck: Here, this architecture leverages an FPN 

structure of high level. Such a layout may as well 

be better in organizing features across scales than 

others. It is especially important for the object of 

detecting different sizes as well as distances. 

• Detection Head: In YOLOv9, the detection head 

has been optimized with anchor-free mechanisms. 

Noisy or overlapping data would not much affect 

bounding box prediction from this architecture 

because it uses anchor-free mechanisms. This helps 

make the model robust in many scenes. 

We applied a diversified dataset of images of traffic 

signs captured in varied conditions to train and test 

the YOLOv9 model. Such a dataset ensures the 

model is flexible and usable in a wide range of 

scenarios and lighting conditions by including 

images of traffic signs captured from various angles 

and lighting conditions. Moreover, it encompasses 

a wide range of variations and types of traffic signs, 

thereby allowing comprehensive vision of the 

challenges real applications will pose. The 

proposed system will thus be trained on this diverse 

dataset, and hence able to predict and deal with the 

various environmental conditions and 

configurations of signs, thus raising the reliability 

and accuracy of the system. 

1.6 Performance Metrics 

To validate the efficiency of our proposed traffic 

sign detection system, we made use of several 

performance metrics. 

• It measures the last correctness of the model in 

identifying traffic signs. 

• Precision: Evaluates the proportion of true 

positive detections from all positive detections, 

indicating how well the model avoids false 

positives. 

•  Recall: It checks the model's ability to identify 

all instances of traffic signs relevant to it; this 

means no false negatives. 

• F1 Score: This yields a stabilization of the 

measure for precision and recall, providing an 

entire assessment of the model's potential in the 

detection of traffic signs. 
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2. Related works 
 

Then there is the considerable improvement in the 

area of traffic sign detection for accuracy and 

efficiency: many methods have been developed. 

This chapter reviews the latest by looking through 

the methodologies, merits, and demerits in the 

recent research articles regarding the subject matter. 

We present here 15 of the most noted works 

contributing to the evolution of traffic sign 

detection systems. Convolutional Neural Networks 

are among the applications herein due to their high 

ability to extract features in the case of traffic sign 

detection. For example, [1] used AlexNet for the 

traffic sign classification task, and they reached 

better accuracy than traditional methods. The merit 

of CNNs is their ability to learn the complex 

features associated with the raw images, and that 

automatically ensures high classification 

performance; however, the main demerit is the high 

value of the computational requirements related 

with the training deep CNNs, this is the limitation 

for real-time applications. Real-time processing 

capabilities introduced by YOLO versions highly 

advanced traffic sign detection. This version, 

YOLOv3, as explained in [2] multi-scale 

predictions increase the enhancement of the 

detection. This paper overcomes the shortcomings 

that YOLO identifies small overlapping signs. 

Advantages of YOLOv4, as discussed in [3], is 

improved speed and precision due to innovation 

like CSPNet and PANet. Benefits include the 

balance of speed and accuracy. 

However, their performance degrades in more 

cluttered scenes and they cannot detect signs under 

diverse conditions. The SSD Single Shot MultiBox 

Detector of [4] gives a fantastic approach as it 

predicts both bounding boxes and class scores in a 

single pass. The technique provides fast and 

efficient detection and thus is used in real-time 

systems. The merit of SSD is that it can work well 

with varied object scales. On the other hand, its 

demerit is lower accuracy with small object 

detection than the more advanced architectures 

such as YOLOv4. Faster R-CNN, which was 

introduced in [5], further improves detection 

accuracy with the integration of RPNs into CNNs 

for enhancing the accuracy of bounding box 

predictions. The merit of Faster R-CNN is that it 

has very high accuracy about detection objects at 

different scales and backgrounds. However, its 

demerit is that it is slower in processing compared 

to real-time systems like YOLO and SSD, making 

it not quite suitable for autonomous vehicle 

applications. The R-FCN model described in [6] 

utilizes position-sensitive score maps to enhance 

the accuracy of object detection. One of its merits is 

that it can accurately and efficiently locate objects 

with complex shapes and sizes. 

It is less suitable for real-time applications owing to 

its relatively slower processing speed compared 

with YOLO and SSD. [7] utilizes the RetinaNet 

based on the focal loss function to address the class 

imbalance issue in object detection tasks. This 

improves the detection of rare traffic signs that 

otherwise would be missed. Merit of RetinaNet: 

This improves performance well in handling class 

imbalance. The demerit is the detection speed is not 

as much as YOLO which is less applied for the real 

life. EfficientDet in [8] provides optimization in the 

sense of how the object detection model might be 

efficient for both accurate computation and 

computationally heavy costs. One of its merits is to 

perform much more with minimal computational 

need. The demerit, however is that it slightly 

reduces detection accuracy in comparison to the 

more complex models such as YOLOv4. YOLOv5, 

as described in [9], extended previous versions of 

YOLO with further architectural and training 

optimizations. The merit of YOLOv5 is that it 

achieves better accuracy while remaining very 

efficient with a very good balance of speed and 

precision. 

The demerit is the same as in other versions of 

YOLO: it may fail to detect overlapping or small-

size traffic signs. Cascade R-CNN, first described 

in [10], uses a multi-stage method of object 

detection by refining predictions for bounding 

boxes from stage to stage. As Cascade R-CNN 

yields quite high accuracy for objects of various 

sizes, its architecture is rather complex and 

increases the demands on computations, which may 

be detrimental for real-time performance. 

CenterNet, in [11], uses the mechanism to predict 

the center-ness for enhancing object localization. 

The strength of the approach is that it shows better 

detection accuracy with localization precision than 

most other methods. Its computational complexity 

may affect the performance in real-time 

applications and hence makes it less suitable as 

compared to the YOLO-based models as a 

weakness. Mask R-CNN, as developed in [12], is 

an extension to Faster R-CNN for the endowing 

segmentation, which enables pixel-level detection. 

Precise object segmentation is the prime merit of 

Mask R-CNN but being slower than other 

processing systems is its demerit. EfficientDet-D7 

[13] further improves the accuracy and efficiency 

of the EfficientDet model. Its merit lies in its 

improved accuracy and speed. 

As with other EfficientDet models, it is not one of 

the most accurate when compared with other highly 

specialized models, such as YOLOv4. YOLOv4-

CSP, described in [14], adds Cross-Stage Partial 
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networks to improve feature extraction and model 

efficiency. The strength of YOLOv4-CSP is a 

balanced ability with regard to both precision and 

speed. The demerit is that it might still have 

difficulty in highly cluttered environments 

compared to newer models like YOLOv9. 

YOLOv9, as described in [15], is a recent advance 

in the YOLO series with an architecture optimally 

fine-tuned to better both speed and accuracy. The 

merit of YOLOv9 is superior detection 

performance on traffic signs in varied conditions, 

including complex and dynamic environments. The 

limitation is that it consumes enormous 

computational power to train, but its real-time 

processing efficiency is one of the best. Reviewed 

literature has given different techniques for traffic 

sign detection. Each one has been appropriately 

used according to its benefits in possible 

weaknesses. Recent developments in deep learning, 

specifically through YOLO versions and other 

modern architectures, have pushed the limit of 

detection accuracy and speed to a great extent. 

However, the computational requirements and 

constraints of processing the real-time system are 

still open issues. This proposed work takes forward 

these steps with the help of YOLOv9, addresses the 

present-day limitation, and enhances the 

functionality of traffic sign detection in the 

autonomous vehicle system.  

 

3. Methodology 
 

3.1 Dataset Information 

The dataset used in this study comprises traffic sign 

images collected under varied conditions to ensure 

robust training and evaluation of the proposed 

YOLOv9-based traffic sign detection system. The 

table 1 give the comprehensive view of the key 

attributes of the dataset: Dataset for this experiment 

includes images of traffic signs captured under 

different conditions to provide the proposed 

YOLOv9-based traffic sign detection system with a 

more robust training and evaluation setting. The 

figure 1 gives an overview of the key attributes of 

the dataset.  
 

3.2 Pre-processing Techniques 
The model performance can be improved through 

good pre-processing techniques. The following is 

what has been applied: 

Image Resizing: All Images were resized to a 

uniform resolution of 1280x720 pixels. By doing 

this, there would be uniformity as well as 

optimizing the time taken to process without loss of 

detail.  
Normalization: Pixelvalues normalized to [0,1] 

range. Normalization helps in normalizing and 

speeding up the training since the input values are 

standardized. 

Data Augmentation: Rotation, scaling, and 

flipping strategies have been incorporated to 

enhance the richness of the training dataset. This 

makes the model more robust and gives it an 

increased capability for generality. 

Contrast and Brightness Adjustment: Adjustments 

were made to increase the visibility of the image 

under alternative lighting conditions. This 

technique makes it possible for the model to work 

effectively in diverse environmental conditions. 

 

3.3 Feature Selection 

The approach used for feature selection is: 

• Correlation Analysis: It selected those features 

that are highly correlated with the target labels. 

This process eliminates redundancy, which makes 

the model efficient because it focuses on the most 

relevant features. 

•  Dimensionality Reduction: PCA kind of methods 

were applied in order to reduce the number of 

features in retaining the most important significant 

data. Which means this might be useful for 

improved computational efficiency and possibly to 

reduce the overfitting effect. 

 

3.4 Techniques Used in Proposed Work 

The proposed YOLOv9-based traffic sign detection 

system incorporates several advanced techniques: 

• YOLOv9 Architecture: The YOLOv9 

framework was used due to its superior balance 

between speed and accuracy. The model includes 

enhancements in the backbone network, neck, and 

detection head for improved performance. 

• Anchor-Free Detection: YOLOv9 employs 

an anchor-free detection mechanism to simplify the 

model and enhance bounding box prediction 

accuracy. 

• Multi-Scale Feature Fusion: The improved 

feature pyramid network (FPN) design in YOLOv9 

allows for better multi-scale feature aggregation, 

crucial for detecting traffic signs of various sizes. 

• Real-Time Processing: YOLOv9's 

optimized architecture ensures that the model can 

perform real-time detection, which is essential for 

autonomous driving systems. 

• Loss Function Optimization: Advanced loss 

functions tailored for object detection were used to 

improve the model's training efficiency and 

detection precision. 

 

3.5 Algorithm YOLOv9_Traffic_Sign_Detection 

Input: Traffic Sign Dataset (images with 

annotations) 

Output: Trained YOLOv9 Model, Detection 

Results 
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Figure 1. Methodology 

 
Table 1. Attributes 

Attribute Description 

Dataset Name Traffic Sign Dataset 

Number of Images 10,000 

Number of Classes 50 

Image’s Resolution 1280 x 720 pixels 

Image’s Format JPEG, PNG 

Lighting Conditions 
Daylight, Night, Overcast, 

Rain 

Angles Front, Side, Oblique 

Annotations 
Bounding boxes, Class 

labels 

Dataset Source 
Collected from various 

locations and conditions 

 

 

Step 1: Load Traffic Sign Data set 

Step_2: Split Dataset into Training, Validation, and 

Testing Sets 

Step_3: Apply Pre-processing Techniques: 

        - Resize images to 1280 x 720 pixels 

        - Normalize pixel values to [0, 1] 

        - Apply data augmentation (rotation, scaling, 

flipping) 

        - Adjust contrast and brightness 

Step 4:Feature Extraction 

Initialize YOLOv9 Architecture: 

        - Backbone Network: Efficient feature 

extraction 

        - Neck: Multi-scale feature pyramid network 

(FPN) 

        - Detection Head: Anchor-free bounding box 

prediction 

Extract features from pre-processed images 

Step 5: Model Training by configuring training 

parameters: 

        - Learning Rate 

        - Batch Size 

        - Number of Epochs 

  Step 6: Train YOLOv9 Model on Training Set: 

        - Forward Pass: Compute predictions for 

bounding boxes and class labels 

        - Compute Loss: 

            - Classification Loss 

            - Bounding Box Regression Loss 

            - Objectness Loss 

        - Backward Pass: Update model weights using 

optimization algorithm (e.g., Adam) 

  Step 7: Validate Model Performance on 

Validation Set: 

        - Monitor accuracy, precision, recall, F1 score 

        - Analyze detection results for various traffic 

signs 

 Dataset Preparation: Prepares the dataset by 

applying various pre-processing techniques to 

standardize and enhance the images. 

 Feature Extraction: Initializes the YOLOv9 

model and extracts features from the images. 

 Model Training: Configures training 

parameters and trains the YOLOv9 model using 

the training set, while validating performance 

with the validation set. 

 Model Evaluation: Tests the trained model on 

unseen data and computes performance metrics 

to ensure its effectiveness. 

 Detection: Utilizes the trained model to detect 

traffic signs in new images and outputs 

annotated results. 

 Post-Processing: Analyzes and reports on the 

detection results to assess model performance 

and identify areas for improvement. 

Mathematical Model for YOLOv9-Based Traffic 

Sign Detection 

1. YOLOv9 Architecture 

The YOLOv9 architecture can be broken down into 

the following components: 

 Backbone Network (ℬ): Extracts feature maps 

from input images. Represents the input image 

as I with dimensions H1*W1*C1. Here H1 is 

the height, W1 is width and C1 is the number of 

channels. The backbone network produces 

feature maps 𝐹𝑏𝑎𝑐𝑘𝑏𝑜𝑛𝑒  with dimensions 𝐻1′ ∗
 𝑊1′ ∗ 𝐷where D is the depth of the feature 

maps. 

𝐹𝑏𝑎𝑐𝑘𝑏𝑜𝑛𝑒 =  ℬ(𝐼) 

 Neck (N): Aggregates multi-scale feature maps 

to enhance detection performance. Let 𝐹𝑛𝑒𝑐𝑘 

denote the output feature maps from the neck, 

incorporating features from different scales. 

𝐹𝑛𝑒𝑐𝑘 = Ν(𝐹𝑏𝑎𝑐𝑘𝑏𝑜𝑛𝑒) 
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 Detection Head (𝒟):  Predicts bounding boxes, 

class labels, and objectness scores. The 

detection head outputs a tensor P with 

dimensions S1 * S1 * (B1.5+C1), where S1 is 

the number of grid cells, B1 is the number of 

bounding boxes per grid cell and C1 is the no. of 

class labels. 

𝑃 = 𝒟(𝐹𝑛𝑒𝑐𝑘) 
2. Object Detection 

The YOLOv9 model detects objects using the 

following steps: 

Bounding Box Prediction: Each of the grid cell 

finds the B bounding boxes with coordinates 

(𝑥𝑖, 𝑦𝑖 , 𝑤𝑖, ℎ𝑖)where  𝑥𝑖 − 𝐶𝑒𝑛𝑡𝑒𝑟 𝑋 −
𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 𝑦𝑖- Center Y-Coordinate 𝑤𝑖- Width 

ℎ𝑖 − 𝐻𝑒𝑖𝑔ℎ𝑡 

𝐵𝑖 = (𝑥𝑖 , 𝑦𝑖 , 𝑤𝑖, ℎ𝑖) 
Class Probability Prediction: Each grid cell finds 

the probability of each of the classes 𝑃𝑗 for the 

detected object 

𝐵𝑗 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑃𝑗) 

Objectness score: Each bounding box has an 

objectness score 𝑂𝑖, representing the confidence 

that the box contains an object. 

𝑂𝑖 = 𝜎(𝑃𝑜𝑏𝑗𝑒𝑐𝑡𝑛𝑒𝑠𝑠) 

3. Loss Function 

The YOLOv9 loss function consists of several 

components: 

 Classification Loss (ℒ𝑐𝑙𝑎𝑠𝑠): Measures the error 

between predicted class probabilities and true 

labels. This is typically computed using cross-

entrophy loss. 

ℒ𝑐𝑙𝑎𝑠𝑠 =  − ∑ 𝑇𝑟𝑢𝑒𝑖

𝑖

, log (𝑝𝑖) 

 Bounding Box Loss (ℒ𝑏𝑜𝑥): Measures the error 

between predicted and ground truth bounding 

box coordinates. This is typically computed 

using mean squared error (MSE) for coordinates 

(𝑥𝑖 , 𝑦𝑖 , 𝑤𝑖, ℎ𝑖). 

ℒ𝑏𝑜𝑥 = ∑[𝛼

𝑖

. 𝑀𝑆𝐸(𝑦𝑖 , 𝑦𝑖
∗) + 𝛽. 𝑀𝑆𝐸(𝑤𝑖 , 𝑤𝑖

∗)

+ 𝛽. 𝑀𝑆𝐸(ℎ𝑖 , ℎ𝑖
∗) 

 Objectness Loss (ℒ𝑜𝑏𝑗): Measures the error 

between predicted and true objecctness scores. 

ℒ𝑜𝑏𝑗 =  ∑ 𝑇𝑟𝑢𝑒𝑖

𝑖

, log(𝑜𝑖) + (1 − 𝑇𝑟𝑢𝑒𝑖)log (1

− 𝑜𝑖) 
 

 Total Loss (ℒ𝑡𝑜𝑡𝑎𝑙): The combined loss function 

used to train the YOLOV9 Model. 

ℒ𝑜𝑏𝑗 =  ℒ𝑐𝑙𝑎𝑠𝑠 + 𝜆𝑏𝑜𝑥. ℒ𝑏𝑜𝑥 + 𝜆𝑜𝑏𝑗 . ℒ𝑜𝑏𝑗 

Where  𝜆𝑏𝑜𝑥  and  𝜆𝑜𝑏𝑗  are weights to balance the 

contribution of each loss component. 

4. Detection and Post-Processing 

 Non-Maximum Suppression (NMS): 

After bounding box predictions, apply 

NMS to filter out repeated boxes and retain 

the probable confident detections. NMS is 

performed based on the Intersection-over-

Union (IoU) threshold. 

 
 Final Detection Results: The last output 

contains bounding boxes, class labels, as 

well as confidence scores for each detected 

traffic sign. 

Key Parameters for YOLOv9-Based Traffic Sign 

Detection 

1. Image resolution (H*W) 

 Description: The resolution to which 

images are resized before processing. 

 Value: 1280*720 pixels 

2. No. of Classes ( C) 

 Description: the no. of distrinct traffic sign 

classes in the dataset. 

 Value: 50 

3. No. of Bounding Boxes per Grid cell (𝐵) 

 Description: The no. of bounding boxes 

predicted by each grid cell. 

 Value: 3 

4. Grid Size (S*S) 

 Description: The size of the grid used 

todivide the image for detection. 

 Value: Usually 13 *1 13.26*26 or 52*52 

depending on the scale. 

5. Anchor Boxes 

 Description: Predefined bounding box 

shapes used for initial predictions. 

 Value: 9 ( varies based on design and 

implementation) 

6. Learning Rate (𝛼) 

 Description: The rate at which the model 

weights are updated during training. 

 Value: Varies usually between 1e-4 to 1e-

6. 

7. Bacth Size (𝐵𝑠) 

 Description: The no. of images processed 

at each step of training. 

 Value: 16, 32 or based on available 

resources. 

8. No. of Epochs (E) 

 Description: The no. of passes through 

training dataset. 

 Value: 50 to 100 

9. IoU Threshold for Non-Maximum Suppression 

(NMS) (𝑖𝑜𝑢𝑡ℎ) 

 Description: The threshold used to filter out 

redundant bounding boxes. 

 Value:0.5 

10. Loss Function Weights (𝜆𝑏𝑜𝑥 , 𝜆𝑜𝑏𝑗) 
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 Description: The weights uses to balance 

different components of the loss function. 

 Value: Typically, 𝜆𝑏𝑜𝑥 = 0.5, 𝜆𝑜𝑏𝑗 = 1.0 

11. Feature Map Dimensions (𝐻′ ∗ 𝑊′ ∗ 𝐷) 

 Description: Dimensions of the feature 

maps output by the backbone network. 

 Value: Depends on the backbone network 

(eg. 640*640 *1280) 

12. Bounding Box Coordinate (𝑥𝑖, 𝑦𝑖 , 𝑤𝑖 , ℎ𝑖) 

Description: Coordinates for the bounding 

box predictions: 

𝑥𝑖 − 𝐶𝑒𝑛𝑡𝑒𝑟 𝑋 − 𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 

𝑦𝑖- Center Y-Coordinate 

𝑤𝑖- Width 

ℎ𝑖 − 𝐻𝑒𝑖𝑔ℎ𝑡 

13. Class probability Prediction (𝑝𝑗) 

Description: The Probability of each class being 

present in the predicted bounding box. 

14. Objectness Score (𝑜𝑖) 

Description: The confidence score indicating the 

presence of an object in the bounded boxes. 

4. Results and Discussions 
 

This segment analyze the performance of the 

proposed YOLOv9 model for traffic sign detection, 

comparing it with its predecessor, YOLOv8. The 

evaluation focuses on accuracy, precision, recall, 

F1 score, mean Average Precision (mAP), training 

time, and inference speed. We also examine the 

impact of the enhanced YOLOv9 architecture on 

detection efficiency and its robustness in various 

real-world conditions. Figure 2: Distribution of 

various labels for traffic signs in the training dataset 

used with YOLOv9. This figure reflects the 

presentation of different classes of traffic signs in 

the dataset, which can be said to indicate the 

numbers of images related to a class. Figure 3 

depicts the distribution of the labels of traffic signs 

in the validation dataset. It provides instances or 

portions for every class of traffic sign, giving a 

view into which classes may be underrepresented or 

overrepresented in the dataset, and therefore how 

these might affect its performance and 

generalization on the model at validation. Figure 4 

plots the precision-confidence curve for the 

YOLOv9 model: plot of precision against 

confidence scores. This curve shows that the 

precisions vary at different confidence thresholds; 

this brings an insight into the relationship of the 

precision to the confidence, and it outlines how the 

model is well tolerant to keep its accuracy at 

various confidence levels. Recall-confidence plot 

for model YOLOv9 as recall, plotted against its 

confidence scores, which indicates and represents 

graphically how well recall changed with different 

variations in its confidence thresholds of how 

perceptively the model identifies correct positives 

and provides the kind of balance regarding its 

overall recall and corresponding confidence scores 

through figure 5. Figure 6. Confusion Matrix of the 

YOLOv9 model. It is shown how the model 

classifies traffic signs and evaluates actual vs. 

predictions true positives, false positives, true 

negatives, and false negatives. This gives an overall 

view of accuracies in classifications and areas to be 

improvised on. This curve in Figure 7 depicts 

confidence curves of the YOLOv9 model on its F1-

score. Such a curve presents how the F1 score, 

balancing the precision with recall, changes with 

the variations of a confidence threshold. Figure 8 

represents the performance evaluation metrics of 

the YOLOv9 model as an indication of accuracy, 

precision, recall, F1 score, and mean Average 

Precision (mAP).  

Accuracy: This is the extent to which the overall 

accuracy of traffic sign detection by the model is 

valid. 

Precision: The ratio of true positives over all the 

positive detections is used to measure it that is 

tantamount to how well the model in preventing 

false positives. 

Recall: This gives the capability of the model to 

recognize all the instances of traffic signs that are 

relevant, signifying its ability to avert false 

negatives. 

F1 Score: This provides a well-balanced measure 

of both precision and recall to give a whole 

assessment of the efficiency of the model in traffic 

sign detection. 

 

4.1 Accuracy Comparion. 

The correctness of the traffic sign detection model 

is a very serious metric to evaluate the efficiency of 

such a model. We demonstrate in table 2 

comparison about how much more accurate our 

proposed YOLOv9-based system is going to be, in 

comparison with the existing algorithm YOLOv8. 

In our case we managed to achieve up to 95.0% 

correctness on the YOLOv8's 90.5%. This 

improvement is mainly because YOLOv9 utilizes 

superior feature extraction techniques, multi-scale 

feature fusion, and optimized detection head that 

help with better localization and classification of 

traffic signs. Table 3 includes a few performance 

factors: Precision, Recall, F1 Score, and mean 

Average Precision (mAP). All the metrics also 

improve with this proposed YOLOv9 model 

compared to the YOLOv8, i.e., precision has 

improved from 88.0% to 93.0%, recall from 87.5% 

to 94.0%, and F1 score from 87.7% to 93.5%. The 

metric mAP, averaging in terms of precision among 

classes as well, is a huge boost from 85.5% to 
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91.0%. This also manifests the better detection and 

classification of the YOLOv9 model for traffic 

signs with improved reliability in real-world 

scenarios.  

 

4.2 Key Parameter Variation Comparison  

Table 4: compares the major parameters between 

YOLOv8 and the proposed model, YOLOv9, 

below. Compared to proposed model with 1e−5, 

YOLOv9 utilizes a very low learning rate value 

since that helps in fine-tuning the model with 

precision. The batch size is lower to stabilize the 

training convergence, at 16 instead of 32. It has 

more epochs in comparison, at 100 against 50 

epochs for YOLOv8. The nonmaximum 

suppression threshold for IoU was decreased to 0.4, 

which further allows the model to distinguish 

between very close spaced traffic signs. These 

parameter changes contribute to the higher quality 

of YOLOv9. Table 5, datasets of YOLOv8 and the 

proposed YOLOv9 model. YOLOv9 has leverage 

to make use of a larger, and hence more diversified 

dataset, where 10,000 images are being used for it 

as compared to YOLOv8 which uses 8,000. It 

encompasses more traffic sign classes (50 vs. 40) in 

diverse lightning conditions 4 vs. 3 and angles 4 vs. 

3. Therefore, with such diversified datasets, 

YOLOv9 is capable of providing better 

representation of real-world scenarios, thus 

achieving better generalization and robustness in 

detecting signs. 

 

4.3 Time Consumption for Execution  

Execution time for inference and training between 

the YOLOv8 and the proposed YOLOv9 is 

presented in Table 6. Even though the proposed 

model takes much less time to train than YOLOv8 

does (12 h vs. 15 h), it has faster inference time 

compared to YOLOv8, and while YOLOv9 runs at 

30 ms, YOLOv8 takes 40 ms. Thus, the proposed 

architecture of YOLOv9 can detect traffic signs 

much more quickly in comparison to YOLOv8. The 

reduction in training time is mainly due to how 

YOLOv9 is made with efficient model design and 

improvements in training techniques, which makes 

it more appropriate for actual applications in 

autonomous driving systems. 

 
 5. Motivation and Justification  

Advances in autonomous and self-driving vehicles 

have underscored the need for more advanced 

traffic sign detection. Traffic signs guide vehicles 

on which routes to take and comply with traffic 

regulations, making them essential to ease 

navigation in complex driving environments.  

Table 2. Accuracy of Existing Algorithm and Proposed 

YOLOv9 Algorithm 

Algorithm Accuracy 

YOLOv8 90.5% 

Proposed YOLOv9 95.0% 

 
Table 3. Performance Metrics of Existing Algorithm and 

Proposed YOLOv9 Algorithm 

Metric YOLOv8 Proposed 

YOLOv9 

Precision 88.0% 93.0% 

Recall 87.5% 94.0% 

F1 Score 87.7% 93.5% 

mAP (mean average 

precision) 

85.5% 91.0% 

 

Table 4. Key Parameter Variation Comparison 

Parameters YOLOv8 Proposed 

YOLOv9 

Learning rate (a) 1e-4 1e-5 

Batch size (B) 32 16 

Number of 

Epochs (E) 

50 100 

Anchor Boxes 9 9 

IoU Threshold 

for NMS 

0.5 0.4 

 
Table 5. Dataset Comparison 

Dataset YOLOv8 Proposed 

YOLOv9 
Number of images 8.000 10.000 

Number of Classes 40 50 

Lighting condition 3 4 

Angles 3 4 

 

Table 6. Time Consumption for Execution 

Algorithm Interference 

time (ms) 

Traning time 

(hours) 

YOLOv8 40 15 

Proposed YOLOv9 30 12 

 

Therefore, the impact of traffic sign detection 

accuracy mainly depends on the safety, efficacy of 

navigation, and regulation compliance in the 

autonomous driving system. Although there has 

been much advancement in object detection 

technologies, previous approaches like YOLOv8 

exhibit the potential for inaccuracies, speed, and 

performance under varied scenarios that might 

lower the efficacy of autonomous vehicles. The 

present research work is an effort to overcome 

these drawbacks by using an enhanced YOLO 

architecture of YOLOv9. The improvements made 

included several enhanced features starting from 

better feature extraction and superior multi-scale 

feature fusion accompanied with optimally 

structured head for detection. All these 

improvements culminate in a highly significant 

increase in the detection accuracy with YOLOv9 

reaching up to 95.0%, compared to 90.5% with 
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YOLOv8. Such high improvements are important 

for the safety and efficiency of autonomous driving 

systems to reliably recognize traffic signs. 

The efficiency evaluation factors of YOLOv9 are 

much higher, including its increased precision, 

recall, and F1 score. For example, whereas the 

precision of YOLOv9 was only at 88.0%, it 

improved to 93.0%. Regarding its recall, it 

increased from 87.5% to 94.0%. These metrics 

indicate that YOLOv9 can deliver better consistent 

and accurate detection performance in categories of 

traffic signs under various conditions. Optimized 

training and inference times also enhance the 

proposed model. Training and inference times, both 

come down respectively by several hours compared 

to YOLOv8. Training time comes down from 15 

hours to 12 hours while inference time improves 

from 40 ms to 30 ms, making YOLOv9 a suitable 

candidate for real-time applications in an 

autonomous vehicle. Moreover, YOLOv9 uses a 

significantly larger dataset that contains many more 

images and even classes for traffic signs with a 

wider range of conditions as well. As this increases 

the model's ability to generalize and work well in 

real-world scenarios, some key parameters such as 

a smaller learning rate and smaller batch size 

further enhance YOLOv9's performance. These 

optimized parameters promote much more precise 

training of the model and convergence to a much 

higher quality of the final overall accuracy and 

reliability of the model. 

 

6. Findings 
 

Several interesting features were revealed through 

the evaluation of the proposed YOLOv9-based 

traffic sign detection system with respect to the 

current state-of-the-art YOLOv8 model. The first 

interesting finding deals with the accuracy of the 

YOLOv9 model itself as it presents high accuracy 

at the level of 95.0 against YOLOv8's 90.5. This 

happens due to advanced feature extraction and 

optimized detection in the case of YOLOv9, thus 

permitting more precise identification and 

classification of traffic signs. From performance 

metrics, YOLOv9 leaves YOLOv8 far behind in all 

aspects.  

In particular, using precision and recall, it achieves 

a precision of 93.0% and a recall of 94.0%, whereas 

YOLOv8 has a precision and recall value of 88.0% 

and 87.5%, respectively. This offsets its F1 score at 

a rate of 93.5% higher than the score obtained in 

YOLOv8 at 87.7%, signifying that precision is 

more efficiently combined with recall. The mean 

Average Precision of YOLOv9 increases from 

85.5% to 91.0%, which hints that it is a good 

detector with strong ability in traffic sign detection 

and classification in multiple categories. 

Improvements in efficiency are also observed in the 

YOLOv9 model. Though the training time for the 

YOLOv8 is 15 hours, the YOLOv9 takes 12 hours. 

Similarly, if we compare the inference times, then 

they have reduced from 40 ms for the case of 

YOLOv8 to 30 ms with the YOLOv9. It will make 

quite a difference in real-time applications and 

hence is a better choice for deployment in 

autonomous driving systems where rapid 

processing can become a problem. Additionally, it 

gains the extension of the dataset for YOLOv9, as 

the model will have more images, classes of traffic 

signs, and even better lighting conditions and 

perspectives. The generalized capacity of this 

improvement makes it function robustly and validly 

in many real applications and increases the 

robustness and reliability of its idea.The other 

parameter tuning in YOLOv9 includes a lower 

learning rate and a smaller batch size; therefore, it 

was capable of successfully training more accurate 

models with faster convergence rates. Additionally, 

finer IoU thresholding for NMS improves the 

ability of YOLOv9 in dealing with overlapping 

traffic signs and enhances the detection accuracy. 

 

7. Conclusion 

The advanced YOLOv9 model proposed herein 

pushes traffic sign detection from autonomous 

vehicles to greater bounds, achieving a phenomenal 

accuracy of 95.0 percent, whereas YOLOv8 

achieved 90.5%. Enhanced efficiency evaluation 

factors: precision is 93.0%, recall is 94.0%, and F1 

score is 93.5% with a higher Mean Average 

Precision of 91.0% able to show that YOLOv9 

reaches superior performance in terms of accurately 

and reliably detecting traffic signs for classification. 

It also exhibits higher efficiency since it trains in a 

reduced time of 12 hours and infers relatively fast 

at 30 ms because of the subtle architecture 

optimization techniques applied.  

YOLOv9 mainly makes use of a large and holistic 

dataset that has diverse classes of traffic signs and 

varying conditions and hence shows improved 

robustness and generalization; therefore, in real-

time traffic sign detection of autonomous driving 

systems, YOLOv9 is a very powerful approach.  

Since these developments try to reach safer and 

more efficient driving conditions, one can hope for 

the same opportunities in advancing the detection 

technology of traffic signs in the case of YOLOv9. 

Machine learning used in this work has also been 

used in different applictions  [16-26]. 
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8. Future Enhancement 

Other possible improvements to the YOLOv9 

architecture may be more concentrated on the 

following areas to enhance its performance and 

application for autonomous detection of traffic 

signs. For enhanced detection in extreme 

environments, multimodal data might add and 

include other sources such as LiDAR and radar 

simultaneously with camera feeds. Stronger 

resilience of the model against adversarial attacks 

and optimization for deployment on edge devices 

with limited computational resources is essential to 

ensure reliable real-time detection in diverse 

scenarios. In addition, contextual awareness and 

cross-domain adaptation will also enhance the 

decision-making process as well as generalization 

across regions and road conditions. More accurate 

unbiased detections along with a lower reliance on 

labeled datasets can be realized through model 

interpretability and self-supervised learning. Such 

incremental learning would adapt the model over 

time to new traffic sign classes and conditions, but 

further optimization of real-time processing would 

be conducted by techniques such as model pruning 

and quantization to meet the stringent requirement 

of autonomous driving systems. Lastly, exploration 

into collaborative multi-agent systems could 

involve an idea where vehicles share detection 

information in real time, potentially improving both 

collective accuracy of traffic sign detection and the 

overall efficiency of the system. 
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Figure 2: Training dataset distribution of traffic signs labels 

 

Figure 3: Validation dataset distribution of traffic signs labels 



N. Sriram, Jayalakshmi V., P. Preethi, B. Shoba, K. Shenbagavalli / IJCESEN 10-4(2024)1424-1436 

 

1434 

 

 

Figure 4: Precision confidence curve 

 

Figure 5: Recall confidence curve 

 

 

Figure 6: Confusion Matrix 
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Figure 7: F1 Confidence Curve 

 

Figure 8: Performance Metrics 
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