

Copyright © IJCESEN

International Journal of Computational and Experimental

Science and ENgineering

(IJCESEN)

Vol. 10-No.4 (2024) pp. 1372-1378
http://www.ijcesen.com

ISSN: 2149-9144

 Research Article

ProTECT: A Programmable Threat Evaluation and Control Unit for Zero Trust

Networks

Rahul SHANDILYA1*, R.K. SHARMA2

1School of VLSI Design and Embedded Systems, NIT Kurukshetra-136119, Haryana, India

* Corresponding Author Email: rss.nitk@gmail.com - ORCID: 0009-0006-3073-092X

2Dept. of Electronics and Communication Engineering, NIT Kurukshetra-136119, Haryana, India
Email: mail2drks@gmail.com - ORCID: 0009-0009-2430-669X

Article Info:

DOI: 10.22399/ijcesen.673

Received : 21 November 2024

Accepted : 27 November 2024

Keywords :

Device Security,

Threat Monitoring,

Network Security,

Zero Trust Architectures,

FPGA.

Abstract:

As Zero Trust Architectures (ZTA) become increasingly adopted in enterprise networks,

so it is essential to continuously monitor the security status of connected devices. Real-

time threat monitoring within the devices that are connected to the network is necessary

for this. It's challenging, especially in resource-constrained settings, to ensure continuous

monitoring in current devices available in market. ProTECT (Programmable Threat

Evaluation and Control Unit) addresses this challenge by providing a continuous real-

time monitoring, non-tamperable, trust score for ZTA network connected devices. Trust

score in security coprocessor segregated from device computing architecture has been

determined employing real-time hardware monitoring of CPU micro-architectural

signals. We examined ProTECT on an open-source RISC-V processor based architecture

against ransomware, RoP & cache-based micro-architectural attacks. While illustrating

area overheads, we implement framework on an AMD Virtex XC7V2000T FPGA

Module.

1. Introduction

With the advent of IoT, contemporary network

infrastructure is becoming dynamic, accommodating

growing array of distributed devices, including

wearable technology, including health monitors &

smartwatches, as well as sensor devices in essential

infrastructure. Internet-connected devices

proliferation has significantly escalated cyber-

attacks threat. Weak, discretionary, perimeter-

focused access policies employed in contemporary

networks exacerbate these threats. NIST established

specifications [1-6] for ZTA for reducing these

threats, wherein device's network access privileges

are determined dynamically by its behavior rather

than being statically assigned depending on user

authentication. Consequently, device exhibiting

anomalous behavior will have its network privileges

dynamically restricted.

Fundamental requisite for reliable implementation

of ZTA is continuous monitoring of device's security

status during application execution. Network must

determine if device is compromised or acting as

specified. Runtime health signature acquisition is

difficult. Native methods could remotely monitor

device network activity or install software daemon

for recording operations for anomalies. The previous

method failed for yielding adequate insights into

detailed activities. Device may fail to identify all

malicious behaviors, & in latter scenario, trusting

received signatures becomes challenging,

particularly when device is compromised.

Current paper proposes runtime security-health

implementation monitoring for devices through

specialized hardware modules that monitor System-

on-Chip (SoC) operation for identifying attack-

specific behaviors. Monitoring is conducted at

hardware level software stack irrespectively.

Hardware digitally verifies device trust score &

transmits it to Zero Trust Network (ZTN) host for

confidentiality along with integrity. This enables

network for dynamically adjusting device access

policies. Contrary to network as well as software-

based methods, device hardware calculates trust

scores, providing accurate and reliable security

indicators.

Illustrated in figure 1, our framework, termed

ProTECT (Programmable Threat Evaluation and

Control Unit), comprises specialized hardware

modules integrated within SoC. Event Monitor

http://www.ijcesen.com/
http://dergipark.ulakbim.gov.tr/ijcesen
mailto:rss.nitk@gmail.com
mailto:mail2drks@gmail.com

Rahul SHANDILYA, R.K. SHARMA / IJCESEN 10-4(2024)1372-1378

1373

modules are intricately connected to CPU cores bus

interfaces with monitor configurable execution

parameters. A secure RISC-V processor is

responsible for executing the architecture-specific

Threat Evaluation Model (TEM) firmware that is

stored in flash ROM memory and provide the trust

score value for the session. Trust scores that measure

device's security health are calculated by TEM after

it periodically retrieves execution logs from trace

memory.

Figure 1. ProTECT framework

Applications executing on CPU cores are not

allowed to accessing secure elements used by sec-

controller for tracking critical signals of each CPU

core, computing trust scores, evaluating trace

memory, for communicating via network interface.

This assures trust score's integrity and reliability.

Following are paper's primary contributions:

• ProTECT framework can be integrated into SoCs

thereby providing devices in zero-trust networks

with non-tamperable, confidential, & trustworthy

trust scores, enabling them for determining dynamic

access policy decisions.

• ProTECT is demonstrated by using TEMs that

utilize ANNs (Artificial Neural Networks) &

SVM(Support Vector Machines) to RISC-V-based

SoC [10-14]. For variety of workloads, including

embench-IoT suite [15], Coremark [16], &

Dhrystone [13], as well as threat vectors involving

micro-architectural side-channels, RoP(Return-

oriented Programming) attacks, & ransomware

attacks, TEMs calculate trust scores.

• The area overheads of ProTECT were determined

based on the synthesis analysis of AMD Virtex

XC7V2000T FPGA.

The remainder of the paper is arranged in the

following way: Section 2 describes related work, and

Section 3 explains ProTECT architecture. Section 4

contains the ProTECT assessment and Section 5

contains the conclusion.

2. Related Works

ZTA network security monitoring solutions must

fulfill these criteria: (a) monitors configurability, (b)

adaptability to emerging threat vectors, (c)

monitoring reliability (d) isolation from attack

surface. Device-level behavioral monitoring

solutions [5, 11, 7, 10] employ HPCs (Hardware

Performance Counters) [8] prevalent in

contemporary microprocessors. Micro-architectural

events are logged with constrained configurability

[8, 9]. Additionally, HPC-based monitoring's

isolation & dependability are limited by its reliance

on operating system(OS) for event reading. Further

research [5, 11, 7] attempted for minimizing HPCs

limitations through developing monitoring

mechanisms with focus on security. Kuruvila et al.

[5] reported developing appropriate customized

counters through instruction sequences application.

Monitoring & threat assessment operate as

applications without isolating SoC, a primary

drawback of these solutions. Recent investigations

[11, 7], including PHMon, enhance isolation through

the utilization of specialized hardware for

monitoring. However, configuring mechanism for

monitoring necessitates OS support, hence add the

overhead for host. Moreover, PHMon [7]

exclusively monitors executed instructions, thereby

lacking its ability to address intricate threat vectors,

Rahul SHANDILYA, R.K. SHARMA / IJCESEN 10-4(2024)1372-1378

1374

including ransomware or side-channel attacks. The

current existing design lacks the feature that

calculates trust levels for each process at runtime and

does not take into account threats that were detected

previously. These solutions are contrasted with

ProTECT in table 1. Utilizing a dedicated hardware

monitor along with separate dedicated security co-

processor other than primary core in SoC, ProTECT

improve the isolation limitations, monitoring,

adaptability, along with configurability.

3. The ProTECT Framework

Illustrated in figure 1, ProTECT framework consists

of three essential components. 1) The Threat

Monitoring and Control Unit (TMC) conducts

runtime surveillance for every designated CPU-core

interface and generates behavioral traces. TMC

stores intermediate data and traces on Trace

memory. The events detector and monitor are set up

in accordance with a pre-determined configuration.

2) Trace memory is designated memory unit for

every monitor for recording observed events. Only

TMC and Sec-Controller are granted reading and

writing privileges to trace memory, ensuring its

isolation from remaining memory units within SoC.

3) Sec-Controller is a security coprocessor capable

of reading each trace memory's logs then invoking

the TEMs on them. Sec-Controller offers device trust

score based on output from TCMs & trace memory’s

logs. We discuss in great detail every such element

in this section.

3.1 Event Monitor and Trace Memory

Program execution generally follows a phase

behavior [12], where each phase is associated with

specific micro-architectural component events. As a

result, every attack leaves behind unique fingerprint

in hardware state that utilized for recognizing attacks

& gauge their threat. To identify these fingerprints,

ProTECT's event monitor offers fine-grained

runtime monitoring. Events in event monitoring are

selected according to threat model, contrary to

HPCs, that have not been developed for security

applications therefore aren’t customizable [8,9]. For

instance, we define threat model in our ProTECT

implementation, including threat vectors, RoP

attacks, ransomware, as well as micro-architectural

side-channels. We established events to track

memory access instructions patterns, along with

cache parameters, on basis of this threat model with

only minor modifications of current design. Other

CPU cores in SoC have no ability to impact these

behavioral logs considering each core has its own

event monitor.

Observed events are recorded in trace memory to

establish runtime behavioral trace for running

program. The frame format for trace log is shown in

figure 3, each trace log incorporated with 32-bit

timestamp value, trace header, host signature and

trust factor. Only corresponding event monitor has

write access to trace memory. The Sec-Controller

master interface is granted read and write privileges,

but not other masters, to ensure isolation.

3.1. Sec-Controller and Trace Memory

ProTECT framework's security coprocessor is

designated as Sec-Controller. It offers an

environment for TEMs in operating for determining

attack-like behavior captured in trace memory and it

periodically reads monitored logs of processes of

each CPU core.

For adapting to an evolving threat landscape, these

TEMs are trained offline then deployed on Sec-

Controller in line with threat model. TEM outputs for

each CPU core determine device trust score. It is

metric ranging from 0 (no trust) to 10 (complete

trust) quantifies security status of device within ZTA

network. The ProTECT trust score's computation

frequency is regulated by the epoch parameter. Our

experiments indicate that threat estimation using 200

clock cycles is optimal. However, epoch value

depends on the frequency of threat events. It can be

configured within the TCM module to trigger the

Sec-controller when exhausted. Sec-Controller

operates in isolation of SoC computing stack, as

demonstrated in figure 1. Sec-Controller memory

has exclusive read/write access. It retains TEM code

& intermediate data for trace memory unit in event

processing. Inhibiting other CPU-cores for

interfering in threat assessment logic. Figure 2 is the

memory trace frame format.

Figure 2. Memory Trace frame format

3.3. Trust Score

A device's trust score is calculated through trust

factor by TEM. The trust score mechanism provides

an overview of the level of trust during a ongoing

session. The correlation between the behavior

observed in the ongoing session and the history of

the session plays a significant role in determining the

level of risk involved in the session. Program

behavior in each CPU core within SoC at t-th epoch

determines device trust score value from 0 to 10,

with lower scores indicating better security. Let the

TEM output be 𝑇𝑆𝑡 at t-th epoch which determines

the duration of current session. The trust score

calculation for the current session takes into account

all trust factors applied according to threat types. The

result of this evaluation is a consolidated value of

trust level, which describes the overall security

Rahul SHANDILYA, R.K. SHARMA / IJCESEN 10-4(2024)1372-1378

1375

posture of the device. In the trust scoring calculation,

trust factor are not weighed equally for all modules;

the most restrictive trust factor having higher value

takes precedence over all other trust factor given in

table 1. The order of trust factor restrictiveness (from

least restrictive to most restrictive) is as follows.

Table 1. Trust factor value assignment based on trust

level

S.No. Trust Level Description
Trust

Factor

1
High Trust

Level
All allowed modules,

no restriction
0

2
Medium

Trust Level

For internal modules

inside the SoC, which

are not intended to

access other modules,

the device’s Trust level

will be set to medium.

1

3
Low Trust

Level
Some restriction based

on access types
2

4
Zero Trust

Level
All access restricted 3

Figure 3. Threat Evaluation Model

The trust factor that is the most restrictive has more

impact on the output of the trust scoring calculation.

Protected resources cannot be accessed by the device

if the trust level drops to zero. The higher trust score

calculated by TEM has contributed to blocking

malicious devices by design.

4. Results and Discussions

We analyzed ProTECT framework on open-source

5-stage RISC-V processor [14] SoC. Our focus is on

workloads involving threat vectors, including RoP

attacks, cache-based side-channel attacks, and

ransomware. We configured 10 events detector event

monitor to log. These events encompasses read &

write requests from every core, cache line flushes,

cache hits in addition to misses, with counter for RoP

devices that correlates to ret & call instructions,

selected based on threat vectors. On basis of their

efficacy in identifying threats subset of events to

monitor has been selected. We demonstrate Sec-

Controller in our implementation by implementing

an additional RISC-V CPU core that performs TEMs

employing ANN along with customized

implementations of a one-class SVM algorithm. Sec-

Controller has single 36k BRAM configuration. In

order to reveal area specifications, further tested

ProTECT framework employing an AMD Virtex

XC7V2000T FPGA Module.

4.1 Evaluating ProTECT with various threat

vectors

Given consecutive attack exhibits unique execution

characteristics, it is imperative to meticulously select

subset of events that most effectively encapsulate

threat model. Employing embench-IoT benchmark

suite [15], Coremark [16], Dhrystone [13], along

with Decision Forest classifier, Figure 1

demonstrates that selected events distinguish attacks

from benign programs. Occurrences of read requests

& cache misses are effective in categorizing

ransomware attacks, whereas gadget counter event

primarily identifies RoP attacks. Effectiveness of

classifying cache side-channel attacks varies among

different cache events. TEM training offline utilizes

event traces & is configured through secure ZTA

host communication channel (Figure 1). Threat

assessment & trust scores for various attacks in threat

model would be discussed subsequently.

Ransomware, which is designed to compromise user

data within the system by acquiring privileges and

systematically encrypting file systems. Our approach

to creating RISC-V ransomware attacks involves

utilizing different cryptographic algorithms for

analysis. TEM employs an offline-trained ANN with

essential monitors for these attacks. This ANN

comprises an input layer containing 16-nodes along

with 2-hidden layers with 16 & 8 nodes,

correspondingly. Microarchitectural Side-Channel

Attacks can be employed including Prime+Probe &

Flush+Reload [4] for extracting sensitive

information, from cache memory includes

passwords & cryptographic keys. We utilize cache

flushing & timing measurements on RISC-V for

executing these attack behaviors in our analysis [14].

Sec-Controller categories attacks One-class SVM in

TEM. Current model has been trained on benign

programs dataset against cache-based attacks [2].

Model clusters data on this benign behavior. A

comparison of ProTECT with existing security

monitoring solutions. Table 2 is comparison of

ProTECT with existing security monitoring

solutions.

Rahul SHANDILYA, R.K. SHARMA / IJCESEN 10-4(2024)1372-1378

1376

Table 2. A comparison of ProTECT with existing security monitoring solutions.

Research Articles 
Kuruvila

et al. [5]

Yoon et al.

[11]

Delshadtehra

ni et al. [7]

Nikhilesh, et

al. [2]

ProTECT

(Proposed Work)

Event Monitor

Implementation
SW HW HW HW HW

Run-time

Configurable

Modification Support

No No No No
Yes, Run-time

configurable

Monitor

Programmability

Fixed

Configurat

ion

Fixed

Configurat

ion

Fixed

Configuration

Fixed

Configuratio

n

Programmable

Threat Vector

Adaptability
Yes No No Yes Yes

Isolation of HW

Monitor
No No Yes Yes Yes

Host Off-loading No No No No

Yes, Dedicated

Resources

Available

Instruction Decode

and Patch Controller
No No No No Yes

Continuous Event

Detection Count

NA NA NA
Up to 15

events

Up to 512 Events

capturing possible

Continuously

without reset

(RAM Size:4K)

Real-time timestamp

Capturing for events
No No No No Yes

Core Instruction

Execution

Monitoring

No No No No Yes

This model evaluates new program by calculating

distance between event vectors relating to program

as well as benign clusters. Event vectors in benign

clusters indicate benign program behavior.

Malicious software event vectors usually appear

outside benign clusters.

ROP attacks are used to create addresses that refer

back to specific points in program code for daisy-

chain malicious logic. To efficiently identify these

attacks, we designed an event monitor ret & call

instructions to capture gadget execution.

Every device launches in trusted manner (𝑇𝑆𝑡=0).

We identified benign program execution consistently

maintains high trust. However, ProTECT's threat

evaluation demonstrates that a device executing

micro-architectural attack , ransomware, or RoP

attacks consistently decreases trust which is

identified with increased value of 𝑇𝑆𝑡. Micro-

architectural attacks, including Flush+Reload along

with Prime+Probe [4], conduct anomalous cache

accesses, due to this device blocks the access and

move to zero trust state with increased value of 𝑇𝑆𝑡
to 10.

4.2. ProTECT Overheads

ProTECT doesn't impact SoC application

performance since it doesn't interfere with critical

path. However, incorporating hardware requires

more silicon. Area overheads for ProTECT-

attributed synthesized on an AMD Virtex

XC7V2000T FPGA device. Table 3 presents the

analysis of FPGA resource overhead that is caused

by the addition of ProTECT module to the target

FPGA. The ProTECT framework requires an extra

2.35% of CLBs (Configurable Logic Blocks) and

8.5% of FFs (Flip Flops) to be added in addition to

the FPGA target. The proposed FIS does not have

any limitations as compared to existing methods and

requires less number of CLBs and FFs resources

inside FPGA. It includes trace memory units for each

CPU-core & event monitors. Network Security is an

important subject and a number of papers have been

reported on this subject [17-26].

5. Conclusions

We presented the creation, implementation, and

testing of ProTECT, a framework designed to

Rahul SHANDILYA, R.K. SHARMA / IJCESEN 10-4(2024)1372-1378

1377

Table 3. FPGA resources overhead due to ProTECT module integration in sub-system design.

Slice Logic

Sub-System

without

ProTECT

Sub-System

with

ProTECT

% Overhead

Slice LUTs 267552 273709 2.35 %

· LUT as Logic 264400 270481 2.3 %

· LUT as Memory 3152 3228 2.4 %

Slice Registers 148612 161244 8.5 %

meticulously monitor the security status of devices

in the ZTA network. ProTECT offers configurable,

adaptable, isolated, & tamper-resistant mechanism

for fulfilling ZTA network requirements. ProTECT

framework is capable of enforcing a variety of

security policies at runtime and also assisting with

detecting software bugs and security vulnerabilities.

In the ZTA domain, ProTECT offers a novel solution

that can update security policies in run-time for

embedded device security, including integration of

device integrity metrics into trust scores and security

monitoring within the framework. Our ProTECT

prototype includes a full FPGA implementation that

interfaces the monitor with a RISC-V processor,

along with the necessary hardware and firmware

support. On average, The proposed ProTECT

framework requires an extra 2.35% of CLBs

(Configurable Logic Blocks) and 8.5% of FFs (Flip

Flops) to be added in addition to the FPGA target,

which is less as compared to existing design.

Author Statements:

 Ethical approval: The conducted research is not

related to either human or animal use.

 Conflict of interest: The authors declare that

they have no known competing financial interests

or personal relationships that could have

appeared to influence the work reported in this

paper

 Acknowledgement: The authors declare that

they have nobody or no-company to

acknowledge.

 Author contributions: The authors declare that

they have equal right on this paper.

 Funding information: The authors declare that

there is no funding to be acknowledged.

 Data availability statement: The data that

support the findings of this study are available on

request from the corresponding author. The data

are not publicly available due to privacy or

ethical restrictions.

References

[1] Tsai, M., Lee, S., & Shieh, S. W. (2024). Strategy for

implementing of zero trust architecture. IEEE

Transactions on Reliability. 73(1);93-100, doi:

10.1109/TR.2023.3345665

[2] Singh, N., Pal, S., Leupers, R., Merchant, F., &

Rebeiro, C. (2024). PROMISE: A Programmable

Hardware Monitor for Secure Execution in Zero

Trust Networks. IEEE Embedded Systems Letters.

Pp(99) Doi: 10.1109/LES.2024.3354831

[3] Federici, F., Martintoni, D., & Senni, V. (2023). A

zero-trust architecture for remote access in industrial

IoT infrastructures. Electronics, 12(3);566.

[4] Singh, N., Ganesan, V., & Rebeiro, C. (2022). Secure

Processor Architectures. In Handbook of Computer

Architecture (pp. 1-29). Singapore: Springer Nature

Singapore.

[5] Kuruvila, A. P., Mahapatra, A., Karri, R., & Basu, K.

(2021). Hardware performance counters: Ready-

made vs tailor-made. ACM Transactions on

Embedded Computing Systems (TECS), 20(5s), 1-

26.

[6] Stafford, V. (2020). Zero trust architecture. NIST

special publication, 800, 207.

[7] Delshadtehrani, L., Canakci, S., Zhou, B., Eldridge,

S., Joshi, A., & Egele, M. (2020). {PHMon}: A

programmable hardware monitor and its security use

cases. In 29th USENIX Security Symposium

(USENIX Security 20) (pp. 807-824).

[8] Das, S., Werner, J., Antonakakis, M., Polychronakis,

M., & Monrose, F. (2019, May). Sok: The

challenges, pitfalls, and perils of using hardware

performance counters for security. In 2019 IEEE

Symposium on Security and Privacy (SP) (pp. 20-

38). IEEE.

[9] Zhou, B., Gupta, A., Jahanshahi, R., Egele, M., &

Joshi, A. (2018, May). Hardware performance

counters can detect malware: Myth or fact?. In

Proceedings of the 2018 on Asia conference on

computer and communications security (pp. 457-

468).

[10] Hunt, G., Letey, G., & Nightingale, E. (2017). The

seven properties of highly secure devices. tech.

report MSR-TR-2017-16.

[11] Yoon, M. K., Mohan, S., Choi, J., Kim, J. E., & Sha,

L. (2013, April). SecureCore: A multicore-based

intrusion detection architecture for real-time

embedded systems. In 2013 IEEE 19th Real-Time

and Embedded Technology and Applications

Symposium (RTAS) (pp. 21-32). IEEE.

[12] Sherwood, T., Perelman, E., Hamerly, G., Sair, S., &

Calder, B. (2003). Discovering and exploiting

program phases. IEEE micro, 23(6), 84-93. DOI:

10.1109/MM.2003.1261391

Rahul SHANDILYA, R.K. SHARMA / IJCESEN 10-4(2024)1372-1378

1378

[13] Weicker, R. P. (1984). Dhrystone: a synthetic

systems programming benchmark. Communications

of the ACM, 27(10), 1013-1030.

[14] “Shakti: Open Source Processor Development

Ecosystem, IIT Madras..”Available:

https://shakti.org.in/.

[15] D. Patterson et al., “Embench: A Modern Embedded

Benchmark Suite,” 2019. Available:

https://github.com/embench/embench-iot.

[16]“Coremark: An EEMBC Benchmark.”

https://www.eembc.org/.

[17]Godavarthi, S., & G., D. V. R. (2024). Federated

Learning’s Dynamic Defense Against Byzantine

Attacks: Integrating SIFT-Wavelet and Differential

Privacy for Byzantine Grade Levels Detection.

International Journal of Computational and

Experimental Science and Engineering, 10(4);775-

786. https://doi.org/10.22399/ijcesen.538

[18]P. Jagdish Kumar, & S. Neduncheliyan. (2024). A

novel optimized deep learning based intrusion

detection framework for an IoT networks.

International Journal of Computational and

Experimental Science and Engineering, 10(4)1169-

1180. https://doi.org/10.22399/ijcesen.597

[19]ONAY, M. Y. (2024). Secrecy Rate Maximization for

Symbiotic Radio Network with Relay-Obstacle.

International Journal of Computational and

Experimental Science and Engineering, 10(3);381-

387. https://doi.org/10.22399/ijcesen.413

[20]Jha, K., Sumit Srivastava, & Aruna Jain. (2024). A

Novel Texture based Approach for Facial Liveness

Detection and Authentication using Deep Learning

Classifier. International Journal of Computational

and Experimental Science and Engineering,

10(3);323-331. https://doi.org/10.22399/ijcesen.369

[21]S, P., & A, P. (2024). Secured Fog-Body-Torrent : A

Hybrid Symmetric Cryptography with Multi-layer

Feed Forward Networks Tuned Chaotic Maps for

Physiological Data Transmission in Fog-BAN

Environment. International Journal of

Computational and Experimental Science and

Engineering, 10(4);671-681.

https://doi.org/10.22399/ijcesen.490

[22]R, U. M., P, R. S., Gokul Chandrasekaran, & K, M.

(2024). Assessment of Cybersecurity Risks in

Digital Twin Deployments in Smart Cities.

International Journal of Computational and

Experimental Science and Engineering, 10(4);695-

700. https://doi.org/10.22399/ijcesen.494

[23]Prasada, P., & Prasad, D. S. (2024). Blockchain-

Enhanced Machine Learning for Robust Detection

of APT Injection Attacks in the Cyber-Physical

Systems. International Journal of Computational

and Experimental Science and Engineering,

10(4);799-810. https://doi.org/10.22399/ijcesen.539

[24]S, P. S., N. R., W. B., R, R. K., & S, K. (2024).

Performance Evaluation of Predicting IoT Malicious

Nodes Using Machine Learning Classification

Algorithms. International Journal of Computational

and Experimental Science and Engineering,

10(3);341-349. https://doi.org/10.22399/ijcesen.395

[25]C, A., K, S., N, N. S., & S, P. (2024). Secured Cyber-

Internet Security in Intrusion Detection with

Machine Learning Techniques. International

Journal of Computational and Experimental Science

and Engineering, 10(4);663-670.

https://doi.org/10.22399/ijcesen.491

[26]guven, mesut. (2024). Dynamic Malware Analysis

Using a Sandbox Environment, Network Traffic

Logs, and Artificial Intelligence. International

Journal of Computational and Experimental Science

and Engineering, 10(3);480-490.

https://doi.org/10.22399/ijcesen.460

https://www.eembc.org/
https://doi.org/10.22399/ijcesen.538
https://doi.org/10.22399/ijcesen.597
https://doi.org/10.22399/ijcesen.413
https://doi.org/10.22399/ijcesen.369
https://doi.org/10.22399/ijcesen.490
https://doi.org/10.22399/ijcesen.494
https://doi.org/10.22399/ijcesen.539
https://doi.org/10.22399/ijcesen.395
https://doi.org/10.22399/ijcesen.491

