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Abstract:  
 

As Zero Trust Architectures (ZTA) become increasingly adopted in enterprise networks, 

so it is essential to continuously monitor the security status of connected devices. Real-

time threat monitoring within the devices that are connected to the network is necessary 

for this. It's challenging, especially in resource-constrained settings, to ensure continuous 

monitoring in current devices available in market. ProTECT (Programmable Threat 

Evaluation and Control Unit) addresses this challenge by providing a continuous real-

time monitoring, non-tamperable, trust score for ZTA network connected devices. Trust 

score in security coprocessor segregated from device computing architecture has been 

determined employing real-time hardware monitoring of CPU micro-architectural 

signals. We examined ProTECT on an open-source RISC-V processor based architecture 

against ransomware, RoP & cache-based micro-architectural attacks. While illustrating 

area overheads, we implement framework on an AMD Virtex XC7V2000T FPGA 

Module. 

1. Introduction 
 

With the advent of IoT, contemporary network 

infrastructure is becoming dynamic, accommodating 

growing array of distributed devices, including 

wearable technology, including health monitors & 

smartwatches, as well as sensor devices in essential 

infrastructure. Internet-connected devices 

proliferation has significantly escalated cyber-

attacks threat. Weak, discretionary, perimeter-

focused access policies employed in contemporary 

networks exacerbate these threats. NIST established 

specifications [1-6] for ZTA for reducing these 

threats, wherein device's network access privileges 

are determined dynamically by its behavior rather 

than being statically assigned depending on user 

authentication. Consequently, device exhibiting 

anomalous behavior will have its network privileges 

dynamically restricted. 

Fundamental requisite for reliable implementation 

of ZTA is continuous monitoring of device's security 

status during application execution. Network must 

determine if device is compromised or acting as 

specified. Runtime health signature acquisition is 

difficult. Native methods could remotely monitor 

device network activity or install software daemon 

for recording operations for anomalies. The previous 

method failed for yielding adequate insights into 

detailed activities. Device may fail to identify all 

malicious behaviors, & in latter scenario, trusting 

received signatures becomes challenging, 

particularly when device is compromised. 

Current paper proposes runtime security-health 

implementation monitoring for devices through 

specialized hardware modules that monitor System-

on-Chip (SoC) operation for identifying attack-

specific behaviors. Monitoring is conducted at 

hardware level software stack irrespectively. 

Hardware digitally verifies device trust score & 

transmits it to Zero Trust Network (ZTN) host for 

confidentiality along with integrity. This enables 

network for dynamically adjusting device access 

policies. Contrary to network as well as software-

based methods, device hardware calculates trust 

scores, providing accurate and reliable security 

indicators. 

Illustrated in figure 1, our framework, termed 

ProTECT (Programmable Threat Evaluation and 

Control Unit), comprises specialized hardware 

modules integrated within SoC. Event Monitor 
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modules are intricately connected to CPU cores bus 

interfaces with monitor configurable execution 

parameters. A secure RISC-V processor is 

responsible for executing the architecture-specific 

Threat Evaluation Model (TEM) firmware that is 

stored in flash ROM memory and provide the trust 

score value for the session. Trust scores that measure 

device's security health are calculated by TEM after 

it periodically retrieves execution logs from trace 

memory.  

 

Figure 1.  ProTECT framework 

 

Applications executing on CPU cores are not 

allowed to accessing secure elements used by sec-

controller for tracking critical signals of each CPU 

core, computing trust scores, evaluating trace 

memory, for communicating via network interface. 

This assures trust score's integrity and reliability. 

Following are paper's primary contributions: 

• ProTECT framework can be integrated into SoCs 

thereby providing devices in zero-trust networks 

with non-tamperable, confidential, & trustworthy 

trust scores, enabling them for determining dynamic 

access policy decisions. 

• ProTECT is demonstrated by using TEMs that 

utilize ANNs (Artificial Neural Networks) & 

SVM(Support Vector Machines) to RISC-V-based 

SoC [10-14]. For variety of workloads, including 

embench-IoT suite [15], Coremark [16], & 

Dhrystone [13], as well as threat vectors involving 

micro-architectural side-channels, RoP(Return-

oriented Programming) attacks, & ransomware 

attacks, TEMs calculate trust scores. 

• The area overheads of ProTECT were determined 

based on the synthesis analysis of AMD Virtex 

XC7V2000T FPGA.  

The remainder of the paper is arranged in the 

following way: Section 2 describes related work, and 

Section 3 explains ProTECT architecture. Section 4 

contains the ProTECT assessment and Section 5 

contains the conclusion. 

2. Related Works 

ZTA network security monitoring solutions must 

fulfill these criteria: (a) monitors configurability, (b) 

adaptability to emerging threat vectors, (c) 

monitoring reliability (d) isolation from attack 

surface. Device-level behavioral monitoring 

solutions [5, 11, 7, 10] employ HPCs (Hardware 

Performance Counters) [8] prevalent in 

contemporary microprocessors. Micro-architectural 

events are logged with constrained configurability 

[8, 9]. Additionally, HPC-based monitoring's 

isolation & dependability are limited by its reliance 

on operating system(OS) for event reading. Further 

research [5, 11, 7] attempted for minimizing HPCs 

limitations through developing monitoring 

mechanisms with focus on security. Kuruvila et al. 

[5] reported developing appropriate customized 

counters through instruction sequences application. 

Monitoring & threat assessment operate as 

applications without isolating SoC, a primary 

drawback of these solutions. Recent investigations 

[11, 7], including PHMon, enhance isolation through 

the utilization of specialized hardware for 

monitoring. However, configuring mechanism for 

monitoring necessitates OS support, hence add the 

overhead for host. Moreover, PHMon [7] 

exclusively monitors executed instructions, thereby 

lacking its ability to address intricate threat vectors, 
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including ransomware or side-channel attacks. The 

current existing design lacks the feature that 

calculates trust levels for each process at runtime and 

does not take into account threats that were detected 

previously. These solutions are contrasted with 

ProTECT in table 1. Utilizing a dedicated hardware 

monitor along with separate dedicated security co-

processor other than primary core in SoC, ProTECT 

improve the isolation limitations, monitoring, 

adaptability, along with configurability.  

3. The ProTECT Framework 

Illustrated in figure 1, ProTECT framework consists 

of three essential components. 1) The Threat 

Monitoring and Control Unit (TMC) conducts 

runtime surveillance for every designated CPU-core 

interface and generates behavioral traces. TMC 

stores  intermediate data and traces on Trace 

memory. The events detector and monitor are set up 

in accordance with a pre-determined configuration. 

2) Trace memory is designated memory unit for 

every monitor for recording observed events. Only 

TMC and Sec-Controller are granted reading and 

writing privileges to trace memory, ensuring its 

isolation from remaining memory units within SoC. 

3) Sec-Controller is a security coprocessor capable 

of reading each trace memory's logs then invoking 

the TEMs on them. Sec-Controller offers device trust 

score based on output from TCMs & trace memory’s 

logs. We discuss in great detail every such element 

in this section. 

3.1 Event Monitor and Trace Memory 

Program execution generally follows a phase 

behavior [12], where each phase is associated with 

specific micro-architectural component events. As a 

result, every attack leaves behind unique fingerprint 

in hardware state that utilized for recognizing attacks 

& gauge their threat. To identify these fingerprints, 

ProTECT's event monitor offers fine-grained 

runtime monitoring. Events in event monitoring are 

selected according to threat model, contrary to 

HPCs, that have not been developed for security 

applications therefore aren’t customizable [8,9]. For 

instance, we define threat model in our ProTECT 

implementation, including threat vectors, RoP 

attacks, ransomware, as well as micro-architectural 

side-channels. We established events to track 

memory access instructions patterns, along with 

cache parameters, on basis of this threat model with 

only minor modifications of current design. Other 

CPU cores in SoC have no ability to impact these 

behavioral logs considering each core has its own 

event monitor. 

Observed events are recorded in trace memory to 

establish runtime behavioral trace for running 

program. The frame format for trace log is shown in 

figure 3, each trace log incorporated with 32-bit 

timestamp value, trace header, host signature and 

trust factor. Only corresponding event monitor has 

write access to trace memory. The Sec-Controller 

master interface is granted read and write privileges, 

but not other masters, to ensure isolation. 

3.1. Sec-Controller and Trace Memory 

ProTECT framework's security coprocessor is 

designated as Sec-Controller. It offers an 

environment for TEMs in operating for determining 

attack-like behavior captured in trace memory and it 

periodically reads monitored logs of processes of 

each CPU core. 

For adapting to an evolving threat landscape, these 

TEMs are trained offline then deployed on Sec-

Controller in line with threat model. TEM outputs for 

each CPU core determine device trust score. It is 

metric ranging from 0 (no trust) to 10 (complete 

trust) quantifies security status of device within ZTA 

network. The ProTECT trust score's computation 

frequency is regulated by the epoch parameter. Our 

experiments indicate that threat estimation using 200 

clock cycles is optimal. However, epoch value 

depends on the frequency of threat events. It can be 

configured within the TCM module to trigger the 

Sec-controller when exhausted. Sec-Controller 

operates in isolation of SoC computing stack, as 

demonstrated in figure 1. Sec-Controller memory 

has exclusive read/write access. It retains TEM code 

& intermediate data for trace memory unit in event 

processing. Inhibiting other CPU-cores for 

interfering in threat assessment logic. Figure 2 is the 

memory trace frame format. 

 
Figure 2. Memory Trace frame format 

 

3.3. Trust Score 

A device's trust score is calculated through trust 

factor by TEM. The trust score mechanism provides 

an overview of the level of trust during a ongoing 

session. The correlation between the behavior 

observed in the ongoing session and the history of 

the session plays a significant role in determining the 

level of risk involved in the session.  Program 

behavior in each CPU core within SoC at t-th epoch 

determines device trust score value from 0 to 10, 

with lower scores indicating better security. Let the 

TEM output be 𝑇𝑆𝑡 at t-th epoch which determines 

the duration of current session. The trust score 

calculation for the current session takes into account 

all trust factors applied according to threat types. The 

result of this evaluation is a consolidated value of 

trust level, which describes the overall security 
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posture of the device. In the trust scoring calculation, 

trust factor are not weighed equally for all modules; 

the most restrictive trust factor having higher value 

takes precedence over all other trust factor given in 

table 1. The order of trust factor restrictiveness (from 

least restrictive to most restrictive) is as follows. 

 
Table 1. Trust factor value assignment based on trust 

level 

S.No. Trust Level Description 
Trust 

Factor 

1 
High Trust 

Level 
All allowed modules, 

no restriction 
0 

2 
Medium 

Trust Level 

For internal modules 

inside the SoC, which 

are not intended to 

access other modules, 

the device’s Trust level 

will be set to medium. 

1 

3 
Low Trust 

Level 
Some restriction based 

on access types 
2 

4 
Zero Trust 

Level 
All access restricted 3 

 

Figure 3. Threat Evaluation Model 

The trust factor that is the most restrictive has more 

impact on the output of the trust scoring calculation. 

Protected resources cannot be accessed by the device 

if the trust level drops to zero. The higher trust score 

calculated by TEM has contributed to blocking 

malicious devices by design. 

4. Results and Discussions 

We analyzed ProTECT framework on open-source 

5-stage RISC-V processor [14] SoC. Our focus is on 

workloads involving threat vectors, including RoP 

attacks, cache-based side-channel attacks, and 

ransomware. We configured 10 events detector event 

monitor to log. These events encompasses read & 

write requests from every core, cache line flushes, 

cache hits in addition to misses, with counter for RoP 

devices that correlates to ret & call instructions, 

selected based on threat vectors. On basis of their 

efficacy in identifying threats subset of events to 

monitor has been selected. We demonstrate Sec-

Controller in our implementation by implementing 

an additional RISC-V CPU core that performs TEMs 

employing ANN along with customized 

implementations of a one-class SVM algorithm. Sec-

Controller has single 36k BRAM configuration. In 

order to reveal area specifications, further tested 

ProTECT framework employing an AMD Virtex 

XC7V2000T FPGA Module. 

4.1 Evaluating ProTECT with various threat 

vectors 

Given consecutive attack exhibits unique execution 

characteristics, it is imperative to meticulously select 

subset of events that most effectively encapsulate 

threat model. Employing embench-IoT benchmark 

suite [15], Coremark [16], Dhrystone [13], along 

with Decision Forest classifier, Figure 1 

demonstrates that selected events distinguish attacks 

from benign programs. Occurrences of read requests 

& cache misses are effective in categorizing 

ransomware attacks, whereas gadget counter event 

primarily identifies RoP attacks. Effectiveness of 

classifying cache side-channel attacks varies among 

different cache events. TEM training offline utilizes 

event traces & is configured through secure ZTA 

host communication channel (Figure 1). Threat 

assessment & trust scores for various attacks in threat 

model would be discussed subsequently. 

Ransomware, which is designed to compromise user 

data within the system by acquiring privileges and 

systematically encrypting file systems. Our approach 

to creating RISC-V ransomware attacks involves 

utilizing different cryptographic algorithms for 

analysis. TEM employs an offline-trained ANN with 

essential monitors for these attacks. This ANN 

comprises an input layer containing 16-nodes along 

with 2-hidden layers with 16 & 8 nodes, 

correspondingly. Microarchitectural Side-Channel 

Attacks can be employed including Prime+Probe & 

Flush+Reload [4] for extracting sensitive 

information, from cache memory includes 

passwords & cryptographic keys. We utilize cache 

flushing & timing measurements on RISC-V for 

executing these attack behaviors in our analysis [14]. 

Sec-Controller categories attacks One-class SVM in 

TEM. Current model has been trained on benign 

programs dataset against cache-based attacks [2]. 

Model clusters data on this benign behavior. A 

comparison of ProTECT with existing security 

monitoring solutions. Table 2 is comparison of 

ProTECT with existing security monitoring 

solutions. 

 



Rahul SHANDILYA, R.K. SHARMA / IJCESEN 10-4(2024)1372-1378 

 

1376 

 

Table 2. A comparison of ProTECT with existing security monitoring solutions. 

Research Articles   
Kuruvila 

et al. [5] 

Yoon et al. 

[11] 

Delshadtehra

ni et al. [7] 

Nikhilesh, et 

al. [2] 

ProTECT 

(Proposed Work) 

Event Monitor 

Implementation 
SW HW HW HW HW 

Run-time 

Configurable 

Modification Support 

No No No No 
Yes, Run-time 

configurable 

Monitor 

Programmability 

Fixed 

Configurat

ion 

Fixed 

Configurat

ion 

Fixed 

Configuration 

Fixed 

Configuratio

n 

Programmable 

Threat Vector 

Adaptability 
Yes No No Yes Yes 

Isolation of HW 

Monitor 
No No Yes Yes Yes 

Host Off-loading No No No No 

Yes, Dedicated 

Resources 

Available 

Instruction Decode 

and Patch Controller 
No No No No Yes 

Continuous Event 

Detection Count 

NA NA NA 
Up to 15 

events 

Up to 512 Events 

capturing possible 

Continuously  

without reset 

(RAM Size:4K) 

Real-time timestamp 

Capturing for events 
No No No No Yes 

Core Instruction 

Execution 

Monitoring 

No No No No Yes 

 

This model evaluates new program by calculating 

distance between event vectors relating to program 

as well as benign clusters. Event vectors in benign 

clusters indicate benign program behavior. 

Malicious software event vectors usually appear 

outside benign clusters.  

ROP attacks are used to create addresses that refer 

back to specific points in program code for daisy-

chain malicious logic. To efficiently identify these 

attacks, we designed an event monitor ret & call 

instructions to capture gadget execution.  

Every device launches in trusted manner (𝑇𝑆𝑡=0). 

We identified benign program execution consistently 

maintains high trust. However, ProTECT's threat 

evaluation demonstrates that a device executing 

micro-architectural attack , ransomware, or RoP 

attacks consistently decreases trust which is 

identified with increased value of 𝑇𝑆𝑡. Micro-

architectural attacks, including Flush+Reload along 

with Prime+Probe [4], conduct anomalous cache 

accesses, due to this device blocks the access and 

move to zero trust state with increased value of  𝑇𝑆𝑡  
to 10. 

4.2. ProTECT Overheads 

ProTECT doesn't impact SoC application 

performance since it doesn't interfere with critical 

path. However, incorporating hardware requires 

more silicon. Area overheads for ProTECT-

attributed synthesized on an AMD Virtex 

XC7V2000T FPGA device.  Table 3 presents the 

analysis of FPGA resource overhead that is caused 

by the addition of ProTECT module to the target 

FPGA. The ProTECT framework requires an extra 

2.35% of CLBs (Configurable Logic Blocks) and 

8.5% of FFs (Flip Flops) to be added in addition to 

the FPGA target. The proposed FIS does not have 

any limitations as compared to existing methods and 

requires less number of CLBs and FFs resources 

inside FPGA. It includes trace memory units for each 

CPU-core & event monitors. Network Security is an 

important subject and a number of papers have been 

reported on this subject [17-26]. 

 

5. Conclusions 

We presented the creation, implementation, and 

testing of ProTECT, a framework designed to 
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Table 3. FPGA resources overhead due to ProTECT module integration in sub-system design. 

Slice Logic 

Sub-System 

without 

ProTECT 

Sub-System 

with 

ProTECT 

% Overhead 

Slice LUTs                  267552 273709 2.35 % 

·       LUT as Logic              264400 270481 2.3 % 

·       LUT as Memory             3152 3228 2.4 % 

Slice Registers             148612 161244 8.5 % 

 

meticulously monitor the security status of devices 

in the ZTA network. ProTECT offers configurable, 

adaptable, isolated, & tamper-resistant mechanism 

for fulfilling ZTA network requirements. ProTECT  

framework is capable of enforcing a variety of 

security policies at runtime and also assisting with 

detecting software bugs and security vulnerabilities.  

In the ZTA domain, ProTECT offers a novel solution 

that can update security policies in run-time for 

embedded device security, including integration of 

device integrity metrics into trust scores and security 

monitoring within the framework. Our ProTECT 

prototype includes a full FPGA implementation that 

interfaces the monitor with a RISC-V processor, 

along with the necessary hardware and firmware 

support. On average, The proposed ProTECT 

framework requires an extra 2.35% of CLBs 

(Configurable Logic Blocks) and 8.5% of FFs (Flip 

Flops) to be added in addition to the FPGA target, 

which is less as compared to existing design. 
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