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Abstract:  
 

The Fault injection technique is commonly used to intentionally introducing attack on 

embedded systems, specifically advanced FPGAs and microcontrollers. The FPGA-

based embedded system uses SRAM for storage of configuration data. Due to technology 

scaling and growing complexity in FPGA bit files, multiple-bit upset is a primary threat 

to FPGAs. These devices are also vulnerable to radiation threats in space environments. 

To address these issues, this paper proposes burst error modeling and a Fault Injection 

Server (FIS). FPGA is utilized in the proposed fault injection architecture to efficiently 

inject Multiple-Bit Upset (MBUs) onto the design's interconnect without altering the 

value of flip-flops associated with the design path. There is no need to reload the same 

flops and memory with correct values since their values are unchanged. The Xilinx Zynq-

7000 FPGA has been used to evaluate the proposed FIS architecture, and It is able to 

perform two times faster than existing techniques. The FPGA resource utilization 

overhead also less as compared to other exiting design but it depends on number of fault 

injection points used. 

 

1. Introduction 
 

Injection of faults is a typical method for assessing a 

system's ability to handle physical faults [1-5]. Due 

to its low power consumption and flexible 

programming, the Field Programmable Gate Array 

(FPGA) is commonly used in practical field 

applications. The FPGA has reconfigurable logic, 

I/O, and connecting blocks unlike Von Neumann-

type devices such as microcontrollers and DSP 

processors [6-10]. The term 'hostile environment' is 

commonly used when referring to environments that 

could be a hindrance to the reliable operation of 

field-programmable gate arrays (FPGAs). Testing 

system resilience is frequently done when systems 

are implemented in hostile environments where 

errors are likely to occur [11]. Considering the 

potential uses of radiation-tolerant circuits, such as 

space missions, satellites, and high-energy physics 

experiments, there has been an interest in 

investigating fault-tolerant approaches to keep 

integrated circuits (ICs) working in hostile 

environments [12-23].  

FPGAs can be used to simulate defects in electronic 

systems, which is known as an FPGA-based fault 

injection system technique. A wide range of digital 

logic operations can be carried out through FPGAs, 

integrated circuits that can be programmed after 

manufacturing [17]. To examine the dependability 

and efficiency of digital systems, FPGA-based fault 

injectors are used. Safety systems, such as medical 

devices, aircraft, and automobiles, require this 

application. By intentionally flipping several bits in 

the data memory or configuration of the FPGA, 

FPGA-based fault injectors can be used to conduct 

experiments simulating the impact of MBUs. By 

introducing faults based on MBU models, 

researchers can evaluate how the FPGA behaves in 

practical fault scenarios and validate MBU 

mitigation strategies. 

The modeling of multiple-bit upset (MBU) aims to 

study and simulate scenarios where multiple bits in 

a memory unit get corrupted simultaneously. Data 

corruption can result from flipping multiple bits in a 

memory cell, which happens due to high-energy 

particles, radiation, or other environmental factors 

[12]. Error detection and correction mechanisms are 

developed through MBU modeling to reduce the 

impact of such faults. High-energy physics and 

aerospace applications for FPGAs have become 
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more popular in the past decade. FPGAs are popular 

for these applications because of their many 

advantages, including greater adaptability, cheap 

cost, and fast turnaround time. This is particularly 

true when compared to more expensive, specialized 

alternatives, such as integrated circuits that are 

designed specifically for specific applications [24].   

The utilization of commercial SRAM-based FPGAs 

in radiation settings is now common because they 

perform better and are cheaper than radiation-

hardened FPGA systems. The cost of commercial 

SRAM-based FPGAs is undoubtedly lower than 

radiation-hardened FPGA solutions, but they will 

either perform better or worse depending on the 

application's specific needs and limitations and the 

radiation environment [15]. Commercial FPGAs 

based on SRAM have higher production numbers 

and wider market availability, making them more 

economical than radiation-hardened FPGAs. [18].  

The use of advanced techniques in silicon 

manufacturing leads to elevated frequencies and 

superior performance. Furthermore, FPGAs are 

machines that are capable of programming. During 

development, their behavior can be altered to meet 

different mission objectives. [20]. There is a gap in 

understanding between hardware and software-

based fault injection vulnerability detection. Fault 

injection vulnerabilities can be detected using both 

hardware and software. An EMP generator is used to 

achieve hardware-based detection [13].  

Considering the significance of reconfiguration 

tasks in FPGA applications, it is crucial to fully 

examine the effects of SETs during configuration 

memory re-writing. An approach has been proposed 

to evaluate the impact of SET pulses on 

reconfiguring configuration memory in SRAM-

based FPGAs. [6]. Additionally, SRAM-based 

FPGAs have a greater number of memory elements 

than their ASIC counterparts, which makes them 

more prone to Single Event Upset (SEU). The higher 

operating voltages of early SRAMs made them more 

resistant to soft errors. On the flip side, the node 

capacitance and operating voltage decrease with 

every new generation of SRAM [2,3]. To overcome 

these challenges, a new architecture for fault 

injection (FI) has been proposed by utilizing burst 

error modeling and fault injection server (FIS). 

• The built-in Instrumented FPGA-based FI allows 

for the effective injection of MBUs into the 

configuration memory of FPGAs.  

•  Soft error estimation accuracy is ensured by using 

an adaptive rate for FI.  

To evaluate the speedup of the proposed technique, 

it is necessary in evaluation to test FIS on Zynq-7000 

target FPGA against different fault injection 

technique on the OR1200 processor design which is 

used as workloads. 

This research work is organized as the following 

sections. In Section 2, we examine previous research 

on fault injection and detection technique. In Section 

3, there is a detailed explanation of the proposed 

approach. In Section 4, the outcome and discussion 

are discussed. Section 5 provides a summary as well 

as directions for future research. 

 

2. Material and Methods 
 

2.1 Related Works 

This section discusses various fault injection method 

for FPGA-based embedded systems.   

In 2024, Velayaudhan et. al. [4] proposed a method 

for injection faults through  Built-in circuit inside 

FPGA for MBUs in configuration memory with 

adaptive rate up to 53.4 faults/sec. There is a lot of 

scope to increase the fault injection rate.  

In 2023, Lanzieri L. et al. [1] suggested that 

embedded systems could detect and monitor age. 

Embedded devices that play crucial roles in 

reliability or safety-critical applications are 

experiencing an increasing problem with hardware 

aging. This work's primary objective is to make 

future research efforts easier by coordinating all 

major approaches.  

In 2022, Metawie H. et al. [8] proposed a method for 

introducing faults through the Quick EMUlator 

(QEMU). The fault model for memory coupling 

problems can be extended by simulating faults in the 

control and execution channels of an ARM 

processor. Their evaluation of a memory exam 

demonstrates the usefulness of the approach.   

In 2022, Richter-Brockmann, J. et al. [7] proposed 

revisiting hardware faults in adversary models. 

Moreover, the use of customized models makes it 

more difficult to compare different designs and 

evaluate results. Additionally, it demonstrates that 

the recommended adversary model can be applied to 

VerFI, a state-of-the-art fault-proof tool.   

In 2021, Claudepierre, L., and his coauthors came up 

with a TRAITOR platform that is inexpensive and 

able to generate precise bursts of faults with the help 

of clock glitches. The errors are caused by the 

injection of clock glitches, which have high 

repeatability and reliability. This platform is 

inexpensive, simple to use, and capable of injecting 

many spurts of faults. Future development will 

extract an exact fault model for TRAITOR using the 

STM32F100RB board. Furthermore, the 

investigation of software or hardware counter 

measures is being explored.  

Liao H. et al. [21] reported in 2019 that 

electromagnetic fault injection (EMFI) techniques 

have a major impact on the security of embedded 

devices. The idea behind this paper is to develop a 

new EMFI backside technique that utilizes 
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overclocking and an expanded fault model that 

incorporates the concept of critical charge. This 

research plays a major role in the security and fault 

injection resistance of embedded processors and 

their instruction set designs. The study's funding is 

partially supported by contributions from 

XtremeEDA and NSERC. 

In 2020, Breier J. et al. [16] developed a new way to 

shield implementations from SIFA by using error-

correcting codes. They developed an electronic logic 

analysis instrument that examines the output for 

errors, recursively runs through all possible inputs, 

and injects a stuck-at-fault at each gate in the circuit.  

Cerveira F. et al. [22] proposed the analysis of 

exploratory data obtained from fault injection 

campaigns in 2018. The essay utilizes exploratory 

(big) data analysis techniques, tools, and approaches 

to organize and execute information extraction in a 

contemporary perspective on these problems. This 

has led to the discovery of a previously undiscovered 

possibility for accelerating the FI process.  

Several methods were employed to introduce errors 

in both single-bit and multiple-bit scenarios. The 

challenges it encounters include the immediate 

practical need to mitigate hardware aging in current 

systems and more complex fault models beyond 

clock glitches. To address these issues, a new FIS 

has been proposed in this work. 

 

2.2 Proposed Fault Injection Model 

This section describes a simulation framework for 

MBU injection and its associated design 

methodology. To reduce the accumulation of MBUs, 

early estimation of FPGA's sensitivity to run-time 

MBUs is crucial. This allows for exploring MBU 

modeling and anticipating its design before 

implementing an efficient MBU injector. Modeling 

an event-driven simulator and including functional 

models for the FPGA is the basis of the MBU 

injection framework shown in Figure 1. The 

roadblock rate, MBU injection rate, frame address, 

and fault list are all able to be redefined by the 

designer. Real-time fault injection experiments in 

dynamic radiation environments can be virtualized 

using this scalable, configurable, and versatile 

framework.   

The FPGA configuration memory contents can be 

artificially changed through in-built FI to emulate 

radiation-induced MBUs. To determine how a 

configuration memory upset will affect the 

originally implemented design behavior, the FPGA's 

output is monitored.   

To develop an effective FI technique, it is important 

to have knowledge of different fault models; this 

knowledge will be different for different FPGA 

resources. Failed routing resources in FPGAs can be 

induced by using the Stuck-at-1 or Stuck-at-0 

models, and the bit flip fault model can cause faults 

in FPGAs' memory resources. The radiation 

experiment conducted recently has revealed that 

over 48% of the faults are caused by MBUs [19]. The 

memory unit can experience a maximum of 8-bit 

upsets per word, and 2-bit, 3-bit, and 4-bit upsets 

play an important role.  

Linear feedback shift register (LFSR) is a shift 

register that feeds the input with a function of its 

previous states. The initial value of the LFSR is 

called the seed. The usage of LFSRs involves 

generating whitening sequences, pseudo-noise 

sequences, pseudo-random numbers etc. The 

feedback function determines a new bit depending 

on the state of certain taps (selected bits) in the shift 

register. The choice of taps is based on the LFSR's 

characteristic polynomial. In general, the feedback 

function is an exclusive OR of the values of the 

tapped bits in the shift register. This produces shift 

register output and it becomes the new input to shift 

register, and the process continues until the desired 

number of bits is shifted. In our design, LFSR has 

programmable taps so that it can operate different 

shift right functions. 

 

 
 

Figure 1. Programmable LFSR circuit 

 

The polynomial equation for 8-bit LFSR is given 

below which used to mimic run-time radiation 

environment in the experiments: 

Finite field arithmetic can be used to express the 

configuration of taps for feedback in an LFSR as a 

polynomial mod 2. The coefficients of the 

polynomial are required to be 1s or 0s. This is 

referred to as the reciprocal characteristic 

polynomial.  or feedback polynomial. In the 

presence of taps at the 7th and 6th bits, the feedback 

polynomial will be: 

 

                     𝑥7 +  𝑥6 + 1                                         (1) 
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In equation 1, 'one' is a reference to the input of the 

first bit, i.e. 𝑥0 which is equivalent to 1. The tapped 

bits are represented by the powers of the terms, 

counted from the left. Examples of feedback 

polynomials for shift registers with lengths up to 8 

are shown in the table 1. 

 
Table 1. Feedback polynomial functions for 

programmable taps 

Programable Taps 

( 𝒓𝟕→𝟏) 

Feedback polynomial 

1100000 𝑥7 + 𝑥6 + 1 

110000 𝑥6 + 𝑥5 + 1 

10100 𝑥5 + 𝑥3 + 1 

1100 𝑥4 + 𝑥3 + 1 

110 𝑥3 + 𝑥2 + 1 

11 𝑥2 + 𝑥1 + 1 

 

In following LFSR architecture, the input u is set to 

some the state bits XOR-ed together. its state 

equation is: 

 

𝑢[𝑘] =  
𝑁 − 1

⨁
𝑗 = 0

𝑏𝑗𝑆𝑗[𝑘]                     (2) 

 

In equation 2, coefficients 𝑏𝑗 that are either 0 or 1, 

and symbol ⨁ means to XOR all of its inputs 

together. 

 
Table 2. Percentage of occurrence of fault value    

                  generated by proposed LFSR-based MBU 

model 

Fault Type Occurrence % 

Random value generated without 

fault 

~ 23 % 

Random Value 

generated with 

fault 

7th bit position  ~13% 

6th bit position  ~7% 

5th bit position  ~8% 

4th bit position  ~9% 

3rd bit position  ~12% 

2nd bit position  ~11% 

1st bit position  ~8% 

0th bit position  ~9% 

 

The seed of LFSRs can be either constant and varied 

Table 2 shows the modeling of MBUs. The four 8-

bit LFSRs are connected in parallel to generate 32-

bit random data. The proposed design can be used to 

upset 1-bit, 2-bit, 3-bit and 4-bit based on the 

configuration set by the user.  Table 2 shows the fault 

generation rate for the proposed fault injection 

model, which was recorded for 1M execution times 

when a single bit flip in a byte was detected.   

  

2.3 Proposed Fault Injection Server  

It can perform single bit and multi bit upset sequence 

using LFSR. Proposed fault models can be derived 

from LFSR's seed and feedback polynomial vectors. 

32-bit fault injector circuit in figure 2 is composed 

of four 8-bit fault injector circuits that are connected 

together to inject a 32-bit fault at a time. FIS is 

capable of to create fault in any place inside the 

circuit with the help of FI element in the design, 

(figure 3). 

 

 

 
 

Figure 2. Fault injection sequence generation 

 

It is possible for the fault injector model to inject 

single, double, triple, or four-bit upsets. The 

percentage of occurrence of fault value generated by 

fault injector model is given in table 2. There is a 

masking logic to control the steps count to generate 

the configurable count of bit upset. By selecting 

error data for FIS and error-free data for normal 

operation, the configuration signal named as ‘FI 

Enable’ is used. ‘FI input’ can be feed in the fault 

injection chain sequence at the positive edge of 

clock. When all the fault input value is reached at 

desired location of flops then ‘FI enable’ signal is set 

to generate the fault at the interconnect where fault 

injection element placed. The Fault Injection input 

sequence that feed in the design can be read-back 

from data register as shown in figure 4. This 

captured data is evaluated on the basis of numbers of 

one and used for classification of fault that generated 

during the whole process.  

 

3. Results and Discussions 

 
The proposed FIS is designed to generate faults 

using an FPGA and is suited for embedded systems.  
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Figure 3. Fault injection chain build using fault 

injection elements 

 

Table 3. Fault injection rate 

Injection 

method 

Initialization 

time (ms) 

Write 

sequence 

time (ms) 

Injection 

Frequency 

Time 

(ms) 

Rate 

(Fault/S

ec) 

BUFIT 0.7 18 18.7 53.4 

SCFIT 18 18 36 27 

DPR - 54 54 18.5 

Proposed 

FIS 

5 4 9 111.1 

 

 

 
 

Figure 4. Fault injection server block diagram 

 

Different radiation environments and memory faults 

are simulated in the FIS injection framework by 

FPGA emulation. Fault injection logic has been 

added to the interconnect based on the fault list 

identified in the design to simulate faults in different 

memory locations.Table 3 compares various fault 

injection methods in terms of their performance 

measured at the same operating frequency. The 

performance of the proposed FIS method compared 

to BUFIT, DPR and SCFIT. FIS demonstrates a 

significantly lower total injection time and a higher 

injection rate, suggesting that it can inject faults 

more rapidly and efficiently. FIS has the shortest 

injection time compared to DPR, SCFIT and BUFIT. 

As shown in Table 4. The comparison of fault 

injection time and speed improvement for different 

workloads is shown in Table 5. Logic for Counter, 

bubble sort circuit,  4-bit adder and 4-bit multiplier 

circuits are also implemented with the proposed FIS 

architecture and compared with existing techniques. 

The speed of the proposed technique has been 

enhanced by 2 times, 6 times, and 4 times compared 

to the existing BUFIT, DPR, and SCFIT, 

respectively. The initialization delay of 10 clocks is 

the shortest offered by FIS. The design has eight FI 

elements, causing a write delay of 8 clocks, leading 

to a total injection time of 18 clocks. This method 

achieves the highest injection frequency at 100Mhz 

in the FPGA, making it the most efficient in injecting 

faults quickly and frequently. The table shows that 

the proposed FIS method has higher fault injection 

rate and lower injection time compared to BUFIT, 

DPR and SCFIT, Suggesting that FIS is the better 

option for applications that require quick and 

frequent fault injections. Different workloads are 

compared in Table 4 by comparing fault injection 

times using three techniques: DPR, SCFIT, and the 

proposed FIS. Table 5 presents the analysis of FPGA 

resource overhead that is caused by the addition of 

an FI instrument to the target FPGA. The SCFIT 

technique requires an extra 6% of CLBs 

(Configurable Logic Blocks) and 5.8% of FFs (Flip 

Flops) to be added in 

 
Table 4. Speed improvement comparison of fault 

injection techniques 
Workloa

d 
DP
R 

(m

s) 

SCF
IT 

(ms) 

BUF
IT 

(ms) 

Propo
sed 

FIS 

(ms) 

Speed improvement 
in comparison to : 

DP

R 

SCF

IT 

BUF

IT 

Counter 
19
44 

129
6 

673 303 
~6
X 

~4X ~2X 

Bubble 

sort 

77

79 

518

4 
2693 1220 

~6

X 
~4X ~2X 

4-bit 

adder 

14
66 

983 512 245 
~6
X 

~4X ~2X 

4-bit 

multipli

er 

31

22 

204

2 
1064 496 

~6

X 
~4X ~2X 

 

Table 5. FPGA resources overhead due to build-in Fault 

Injection Server 

Resour

ce 

OR12

00 

withou

t FIS 

OR12

00 

with 

FIS 

% Overhead 

OR12

00 + 

FIS 

OR12

00 + 

BUFI

T 

OR12

00 + 

SCFIT 

CLB 3826 3991 4.30% 0.40% 4.80% 

FF 2319 2414 4.10% ~0% 5.80% 



Rahul SHANDILYA, R.K. SHARMA / IJCESEN 11-1(2025)40-46 

 

45 

 

addition to the FPGA target. The maximum 

available FFs in the Xilinx Zynq-7000 FPGA are not 

enough to meet the required FFs. This outcome 

demonstrates the practical limitations of utilizing the 

SCFIT method. The proposed FIS does not have any 

limitations as compared to existing methods and 

requires less number of CLBs and FFs resources 

inside FPGA.  

 

4. Conclusions 

 
This paper introduces a new FPGA-based technique 

called FIS, which is based on Xilinx Zynq-7000 

FPGA. It is capable of producing SEU and MBU. 

The real-time radiation environments can be 

emulated by modifying the sizes of these MBUs. 

MBUs are injected into the memory elements of an 

FPGA by means of the proposed FI element. Results 

in the OR1200 processor integration show that FIS 

is  two orders of magnitude faster than existing 

techniques, and it uses only ~4 % CLB overhead for 

target FPGA. The aim of this work is to enhance 

fault injection performance on FPGA by 

implementing additional features with the proposed 

FIS. In addition, LFSRs' deterministic nature and 

finite cycle length should be solved by exploring the 

integration of TRNGs, which may be more 

appropriate in the future. 
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