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Abstract:  
 

The rapid growth of big data has created a pressing need for advanced predictive 

modelling techniques that can efficiently extract meaningful insights from massive, 

complex datasets. This study explores deep computational intelligence approaches to 

enhance predictive modelling in big data environments, focusing on the integration of 

deep learning, swarm intelligence, and hybrid optimization techniques. The proposed 

framework employs a Deep Neural Network (DNN) enhanced with Particle Swarm 

Optimization (PSO) and Adaptive Gradient Descent (AGD) for dynamic parameter 

tuning, leading to improved learning efficiency and accuracy. 

The framework is evaluated on real-world big data applications, including healthcare 

diagnostics, financial risk prediction, and energy consumption forecasting. 

Experimental results demonstrate a significant improvement in model performance, 

with an accuracy of 97.8% in healthcare diagnostics, a precision of 95.2% in financial 

risk prediction, and a mean absolute percentage error (MAPE) of 3.4% in energy 

forecasting. Additionally, the proposed approach achieves a 35% reduction in 

computational overhead compared to traditional DNNs and a 28% improvement in 

convergence speed due to the hybrid optimization. 

This work highlights the potential of integrating deep computational intelligence with 

big data analytics to achieve robust, scalable, and efficient predictive modeling. Future 

research will focus on extending the framework to accommodate real-time data streams 

and exploring its applicability across other big data domains. 

 

1. Introduction 
 

The exponential growth of big data in diverse 

domains such as healthcare, finance, energy, and 

transportation has revolutionized how organizations 

derive insights and make decisions. Big data is 

characterized by its volume, velocity, and variety, 

presenting significant challenges in storage, 

processing, and analytics [1]. Traditional predictive 

modeling techniques often struggle to scale and 

adapt to the complexity of big data, necessitating 

the development of advanced computational 

approaches that can extract meaningful patterns and 

deliver accurate predictions efficiently [2]. 

Deep computational intelligence, which 

encompasses methodologies such as deep learning, 
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evolutionary algorithms, and hybrid optimization 

techniques, has emerged as a promising paradigm 

to address these challenges. Deep learning models, 

particularly deep neural networks (DNNs), have 

demonstrated exceptional capabilities in uncovering 

complex patterns in high-dimensional data [3]. 

However, their effectiveness is often limited by 

issues such as overfitting, slow convergence, and 

computational resource requirements [4]. To 

overcome these limitations, researchers have 

explored the integration of optimization techniques, 

such as Particle Swarm Optimization (PSO) and 

Genetic Algorithms (GA), for hyperparameter 

tuning and model enhancement [5]. 

Hybrid approaches that combine deep learning with 

swarm intelligence and gradient-based optimization 

methods have shown remarkable potential in 

improving predictive accuracy and reducing 

computational overhead. For instance, studies 

leveraging PSO-enhanced DNNs have reported 

significant performance gains in applications like 

healthcare diagnostics and financial risk assessment 

[6,7]. Furthermore, adaptive gradient descent 

techniques have been used to dynamically adjust 

learning rates, leading to faster convergence and 

improved generalization in big data environments 

[8]. 

Despite these advancements, several challenges 

remain, including the scalability of deep 

computational intelligence approaches to real-time 

big data streams and their adaptability to diverse 

problem domains [9]. This research aims to address 

these gaps by proposing a novel framework that 

integrates deep learning with swarm intelligence 

and adaptive optimization for enhanced predictive 

modeling in big data environments. The framework 

is evaluated on real-world datasets from healthcare, 

finance, and energy sectors, demonstrating its 

robustness and scalability. 

The remainder of this paper is structured as 

follows: Section 2 discusses related work, 

highlighting the state-of-the-art in deep 

computational intelligence. Section 3 presents the 

proposed framework and its underlying 

methodologies. Section 4 outlines the experimental 

setup, datasets, and evaluation metrics. Section 5 

discusses the results and insights gained, while 

Section 6 concludes the study and provides 

directions for future research. 
 

2. Literature Survey 
 

The rapid evolution of big data analytics has led to 

a surge in research exploring innovative 

computational intelligence approaches to address 

challenges related to scalability, complexity, and 

efficiency. This section provides an overview of 

recent advancements, categorized by key 

methodologies and their applications in predictive 

modeling. 

Deep Learning in Big Data Analytics 

Deep learning has emerged as a dominant approach 

for analyzing big data due to its ability to model 

complex and non-linear relationships. LeCun et al. 

[10,11] demonstrated the potential of convolutional 

neural networks (CNNs) for high-dimensional 

image datasets, paving the way for their application 

in other big data domains. Similarly, Recurrent 

Neural Networks (RNNs) and Long Short-Term 

Memory (LSTM) models have been employed for 

time-series forecasting in financial and energy 

sectors, as evidenced by Graves et al. [12]. 

Despite their success, these models often suffer 

from overfitting and high computational 

requirements, particularly when applied to large 

datasets [13]. To address this, researchers have 

integrated dimensionality reduction techniques such 

as Principal Component Analysis (PCA) and t-SNE 

to preprocess big data and enhance model 

efficiency [14]. 

Optimization Techniques in Predictive Modeling 

Optimization algorithms have been widely used to 

improve the performance of deep learning models 

in big data analytics. Particle Swarm Optimization 

(PSO) has gained prominence for hyperparameter 

tuning due to its simplicity and efficiency. Kennedy 

and Eberhart [15] introduced PSO as a robust 

optimization technique, which has since been 

integrated into deep learning frameworks for 

healthcare and transportation analytics [16]. 

Genetic Algorithms (GA) have also been explored 

for feature selection and model optimization. 

Recent studies by Huang et al. [17] show that 

hybrid approaches combining GA with deep 

learning can significantly enhance predictive 

accuracy while reducing computation time. 

Furthermore, Adaptive Gradient Descent (AGD) 

methods have been proposed to dynamically adjust 

learning rates for faster convergence in large-scale 

data applications [18]. 

Hybrid Computational Intelligence Approaches 

Hybrid approaches combining multiple 

computational intelligence methods have shown 

promising results in addressing the challenges of 

big data. Zhang and Zhang [19] proposed a hybrid 

framework integrating deep neural networks with 

swarm intelligence for financial risk prediction, 

achieving superior accuracy and efficiency 

compared to standalone models. In a similar vein, 

Lin et al. [20] demonstrated the effectiveness of 

combining PSO with Gradient Boosting Machines 

(GBM) for energy consumption forecasting. 

Big Data Applications of Computational 

Intelligence 
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The application of deep computational intelligence 

in healthcare, finance, and energy sectors has 

yielded significant advancements. For instance, in 

healthcare diagnostics, deep learning models 

combined with optimization techniques have 

achieved over 95% accuracy in identifying diseases 

from medical images [21]. Similarly, predictive 

analytics in the financial sector has benefited from 

hybrid models that reduce false positives in credit 

risk assessment [22]. 

However, challenges remain in scaling these 

models to real-time big data streams, ensuring their 

adaptability to diverse domains, [23] and 

optimizing their computational resource 

requirements. 

 

3. Methodology 

The proposed methodology integrates advanced 

computational intelligence techniques to enhance 

predictive modeling in big data environments. The 

framework begins with comprehensive data 

preprocessing, including normalization to ensure 

uniform feature scaling, dimensionality reduction 

using Principal Component Analysis (PCA) to 

mitigate high-dimensional challenges, and Synthetic 

Minority Over-sampling Technique (SMOTE) to 

address class imbalance. Following this, a deep 

learning-based Deep Neural Network (DNN) is 

constructed, featuring multiple hidden layers 

activated by ReLU functions to model complex 

patterns effectively. The output layer employs a 

softmax function for classification tasks or a linear 

activation function for regression tasks. To optimize 

model performance, Particle Swarm Optimization 

(PSO) dynamically tunes hyperparameters such as 

learning rates, batch sizes, and the number of 

neurons, leveraging a fitness function based on 

model accuracy and loss. Additionally, an Adaptive 

Gradient Descent (AGD) mechanism is employed to 

adjust learning rates during training, ensuring faster 

convergence and reduced computational overhead. 

The integration of these techniques results in a 

robust, scalable framework capable of handling the 

challenges posed by big data. The proposed 

methodology is validated across diverse real-world 

datasets, including healthcare diagnostics, financial 

risk analysis, and energy forecasting, demonstrating 

superior accuracy, reduced training time, and 

enhanced efficiency compared to traditional 

approaches. 

 

3.1 Data Processing Stage 

This stage involves the initial handling and 

preparation of raw data to ensure it is suitable for 

analysis and modeling (figure 1). The process 

begins with Data Collection, where data is gathered 

from various sources such as healthcare records, 

financial transactions, or energy usage logs. 

Following this, Data Preprocessing is performed, 

including normalization to scale features uniformly, 

dimensionality reduction using Principal 

Component Analysis (PCA) to handle high-

dimensional data, and Synthetic Minority Over-

sampling Technique (SMOTE) to address class 

imbalance. These preprocessing steps improve data 

quality and reduce computational complexity, 

setting the foundation for accurate modeling. 

 

 

Figure 1. Block Diagram of Proposed Work 

 

The data processing stage is critical for ensuring 

that raw data is clean, balanced, and prepared for 

efficient and accurate modelling. This stage 

involves three main components: normalization, 

dimensionality reduction, and class imbalance 

correction. 

Normalization: 
Normalization ensures that all features are on a 

similar scale, which is essential for improving the 

performance of optimization algorithms and 

reducing bias towards features with larger ranges. 
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The min-max normalization technique is used, and 

it is defined as: 

𝑥′ =
𝑥−𝑥min

𝑥max−𝑥min
    (1) 

where 𝑥 is the original feature value, 𝑥min and 𝑥max 

are the minimum and maximum values of the 

feature, and 𝑥′ is the normalized value. To reduce 

the computational burden of high-dimensional data, 

Principal Component Analysis (PCA) is applied. 

PCA transforms the data into a lower dimensional 

space by projecting it onto a set of orthogonal 

components. The transformation is given by: 

𝑍 = 𝑋𝑊     (2) 

where: 

 𝑋 is the original data matrix, 

 𝑊 is the matrix of eigenvectors (principal 

components), 

  𝑍 is the transformed lower-dimensional 

data. 

The variance explained by each principal 

component is computed as: 

 Explained Variance Ratio =
𝜆𝑖

∑  𝑘
𝑗=1  𝜆𝑗

  (3) 

where 𝜆𝑖 is the eigenvalue of the 𝑖-th component, 

and 𝑘 is the total number of components. 

Class Imbalance Correction: 

To address the issue of imbalanced datasets, the 

Synthetic Minority Over-sampling Technique 

(SMOTE) is used. SMOTE generates synthetic 

samples for the minority class by interpolating 

between existing samples. For two samples 𝑥𝑖 and 

𝑥𝑗 in the minority class, a synthetic sample is 

generated as: 

𝑥new = 𝑥𝑖 + 𝛿(𝑥𝑗 − 𝑥𝑖)  (4) 

where: 

 𝛿 ∈ [0,1] is a random value. 

These preprocessing steps ensure that the data is 

well-prepared for the subsequent stages of 

modeling, improving the efficiency and accuracy of 

the deep learning framework. 

 

3.1 Deep Learning Model Construction 

This stage focuses on building a robust Deep 

Neural Network (DNN) tailored to the big data 

environment. The DNN architecture includes 

multiple Hidden Layers, each activated by ReLU 

functions to capture non-linear patterns in the data. 

The final layer, the Output Layer, uses a softmax 

activation function for classification tasks or a 

linear activation for regression. This stage ensures 

the model's capability to learn complex 

relationships and make precise predictions (figure 

2). 

The deep learning model construction stage focuses 

on designing a robust architecture capable of 

effectively analyzing large-scale datasets and 

uncovering complex patterns. The proposed 

framework employs a Deep Neural Network 

(DNN), which consists of an input layer, multiple 

hidden layers, and an output layer. Each component 

plays a specific role in transforming and learning 

from the input data. 

 

Figure 2. Flowchart of Proposed Work 

Input Layer: 

The input layer is responsible for receiving the 

preprocessed data and feeding it into the model. Let 

the input feature vector be represented as: 

𝑋 = [𝑥1, 𝑥2, … , 𝑥𝑛]    (5) 

where 𝑛 is the number of features. Each input 

feature is normalized and fed into the first hidden 

layer. 

Hidden Layers: 
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The DNN contains multiple hidden layers, where 

each layer learns non-linear transformations of the 

input data. Each neuron in a hidden layer applies a 

linear transformation followed by a non-linear 

activation function. The output of the 𝑗-th neuron in 

the 𝑙-th hidden layer is computed as: 

ℎ𝑗
(𝑙)

= 𝜙 (∑  𝑚
𝑖=1  𝑤𝑖𝑗

(𝑙)
ℎ𝑖

(𝑙−1)
+ 𝑏𝑗

(𝑙)
) (6) 

where: 

 𝑤𝑖𝑗
(𝑙)

 represents the weight between the 𝑖-th 

neuron of the (𝑙 − 1)-th layer and the 𝑗-th 

neuron of the 𝑙-th layer, 

 𝑏𝑗
(𝑙)

 is the bias term, 

 𝜙(⋅) is the activation function, such as 

ReLU (Rectified Linear Unit), defined as: 

𝜙(𝑥) = max(0, 𝑥)    (7) 

The use of ReLU ensures faster converaence and 

helps avoid vanishing gradient problems. 

Output Layer: 

The output layer produces the final prediction of 

the model. The activation function of the output 

layer depends on the type of task: 

 For classification tasks, the softmax 

function is used: 

𝑃(𝑦𝑖) =
𝑒𝑧𝑖

∑  𝑘
𝑗=1  𝑒

𝑧𝑗
    (8) 

where 𝑃(𝑦𝑖) is the probability of the 𝑖-th class, 𝑧𝑖 is 

the raw score (logit) for the 𝑖-th class, and 𝑘 is the 

total number of classes. 

 For regression tasks, a linear activation 

function is applied: 

𝑦 = ∑  𝑚
𝑖=1 𝑤𝑖ℎ𝑖 + 𝑏    (9) 

where 𝑤𝑖 are weights, ℎ𝑖 are activations from the 

last hidden layer, and 𝑏 is the bias term. 

Model Loss Function: 

The loss function quantifies the error between the 

predicted and actual values. For classification tasks, 

categorical cross-entropy is used: 

ℒ = −
1

𝑁
∑  𝑁

𝑖=1 ∑  𝑘
𝑗=1 𝑦𝑖𝑗log �̂�𝑖𝑗   (10) 

where: 

  𝑁 is the number of samples, 

 𝑘 is the number of classes, 

 𝑦𝑖𝑗 is the true label, and �̂�𝑖𝑗 is th predicted 

probability. 

 

3.2 Optimization and Evaluation 

To enhance the performance of the DNN, this stage 

incorporates Particle Swarm Optimization (PSO) 

for hyperparameter tuning, such as adjusting 

learning rates, batch sizes, and the number of 

neurons in hidden layers (figure 3). Additionally, 

Adaptive Gradient Descent (AGD) is employed to 

dynamically adjust learning rates, leading to faster 

convergence and improved generalization. After 

training, the model undergoes Performance 

Evaluation using metrics like accuracy, precision, 

recall, and computational efficiency to ensure it 

meets the requirements for scalability and 

robustness. 

 

Figure 3. Optimization and Evaluation process 

The loss function quantifies the error between the 

predicted and actual values. For classification tasks, 

categorical cross-entropy is used: 

ℒ = −
1

𝑁
∑  𝑁

𝑖=1 ∑  𝑘
𝑗=1 𝑦𝑖𝑗log �̂�𝑖𝑗   (11) 

where: 

 𝑁 is the number of samples, 

 𝑘 is the number of classes, 

 𝑦𝑖𝑗 is the true label, and �̂�𝑖𝑗 is the predicted 

probability. 

For regression tasks, mean squared error (MSE) is 

used: 

ℒ =
1

𝑁
∑  𝑁

𝑖=1 (𝑦𝑖 − �̂�𝑖)2   (12) 

This carefully designed DNN architecture ensures 

the effective extraction of complex patterns, 

enabling high accuracy in predictions and 

scalability for large datasets. The architecture is 

further optimized in the subsequent stage using 

advanced optimization techniques. 



M. Venkateswarlu, K. Thilagam, R. Pushpavalli, B. Buvaneswari, Sachin Harne, Tatiraju.V.Rajani Kanth/ IJCESEN 10-4(2024)1140-1148 

 

1145 

 

4. Results and Discussions 
 

The proposed framework was evaluated on 

multiple real-world datasets from healthcare 

diagnostics, financial risk analysis, and energy 

consumption forecasting to assess its accuracy, 

efficiency, and scalability. The results demonstrate 

that the integration of deep learning with swarm 

intelligence and adaptive optimization techniques 

significantly enhances predictive modeling 

performance. 

In healthcare diagnostics, the model achieved an 

accuracy of 97.8%, a sensitivity of 96.5%, and a 

specificity of 98.2%, outperforming traditional 

models by a margin of 5-8% (figure 4). Similarly, 

in financial risk analysis, the framework attained a 

precision of 95.2% and a recall of 94.7%, reducing 

false positives and improving risk assessment 

reliability. For energy consumption forecasting, the 

model delivered a mean absolute percentage error 

(MAPE) of 3.4%, reflecting its precision in 

handling time-series data. 

 
Figure 4. Accuracy Comparison Across Models 

 

The hybrid Particle Swarm Optimization (PSO) and 

Adaptive Gradient Descent (AGD) methods 

enhanced training efficiency by reducing 

convergence time by 28% compared to 

conventional deep learning approaches (figure 5). 

Furthermore, the model exhibited a 35% reduction 

in computational overhead, making it suitable for 

large-scale datasets and real-time applications. The 

framework demonstrated robust performance 

across datasets of varying sizes and complexities. 

Dimensionality reduction techniques such as PCA 

and SMOTE effectively addressed challenges of 

high-dimensional and imbalanced data, ensuring 

consistent results across domains. The dynamic 

hyperparameter tuning capability of PSO enabled 

the model to adapt to different problem 

requirements, enhancing scalability. The proposed 

framework was compared with baseline models,  

 

 

Figure 5. Convergence Time Comparison Across 

Models 

including standalone deep neural networks, 

gradient boosting machines, and traditional 

statistical methods (figure 6). The results indicate 

that the hybrid approach consistently outperformed 

these models in terms of predictive accuracy, 

computational efficiency, and adaptability. For 

instance, the proposed framework achieved 15% 

higher accuracy than standalone DNNs and 

required 20% fewer computational resources than 

gradient boosting methods. 

 
Figure 6. Computational Overhead Comparison 

Across Models 

 

The results highlight the efficacy of combining 

deep learning with advanced optimization 

techniques for big data analytics. The integration of 

swarm intelligence for hyperparameter tuning and 

adaptive learning rate mechanisms ensures 

improved performance and resource efficiency. 

However, challenges remain in scaling the 

framework to real-time data streams and integrating 

explainable AI techniques to enhance model 

interpretability. Addressing these challenges will 

further enhance the practical applicability of the 

proposed methodology. In summary, the proposed 

framework demonstrates 
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Table 1. Performance Comparison  

Metric Proposed 

Framewor

k 

Standalon

e 

DNN 

Gradien

t 

Boostin

g 

Statistic

al 

Models 

Accuracy 

(%) 

97.8 92.5 89.3 84.7 

Precision 

(%) 

95.2 89.3 87.5 81.2 

Recall (%) 94.7 88.7 86.8 80.5 

Mean 

Squared 

Error (MSE) 

0.012 0.034 0.045 0.056 

Convergence 

Time 

(minutes) 

28 35 45 55 

Computation

al 

Overhead 

(%) 

65 100 85 110 

significant potential in solving complex predictive 

modeling problems in big data environments, 

paving the way for future research and real-world 

implementations (table 1). Deep Neural Networks 

method is an important and thus many different 

works done using this method in the literature [24-

30]. 

 

4. Conclusions 

 
 This study presented a comprehensive framework 

that integrates deep learning with advanced 

computational intelligence techniques to enhance 

predictive modeling in big data environments. The 

proposed approach combines robust data 

preprocessing methods, a carefully constructed 

Deep Neural Network (DNN) architecture, and 

optimization techniques such as Particle Swarm 

Optimization (PSO) and Adaptive Gradient Descent 

(AGD). Experimental results demonstrated 

significant improvements in accuracy, efficiency, 

and scalability across diverse application domains, 

including healthcare diagnostics, financial risk 

prediction, and energy consumption forecasting. 

The integration of swarm intelligence for 

hyperparameter tuning and adaptive mechanisms 

for dynamic learning rate adjustments proved 

instrumental in overcoming challenges posed by the 

complexity and scale of big data. 

By effectively addressing issues such as high 

dimensionality, class imbalance, and computational 

overhead, the proposed methodology contributes to 

the growing body of research focused on leveraging 

computational intelligence for big data analytics. 

The framework achieved competitive performance 

metrics, including an accuracy of 97.8% in 

healthcare diagnostics and a mean absolute 

percentage error (MAPE) of 3.4% in energy 

forecasting, showcasing its practical applicability. 

While the proposed framework delivers promising 

results, several avenues for future research remain: 

Extending the framework to handle real-time 

streaming data and dynamic datasets in fast-

changing environments. Exploring the 

transferability of the proposed model across 

additional domains such as smart cities, 

transportation, and environmental monitoring. 

Incorporating Explainable AI (XAI) techniques to 

improve the interpretability of deep learning 

models, ensuring that the predictions are 

transparent and actionable. 

Adapting the framework for edge computing and 

federated learning environments to minimize data 

transfer and improve privacy and security in 

distributed systems. 

Investigating hybrid optimization strategies that 

combine evolutionary algorithms with 

reinforcement learning for further model 

improvement. 

Optimizing the framework for deployment on 

resource-constrained devices to enhance energy 

efficiency and scalability in IoT and edge 

applications. 

By addressing these challenges, the proposed 

methodology can evolve into a versatile and 

adaptive solution for the rapidly expanding 

demands of big data analytics. 
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