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Abstract:  
 

Glaucoma is a major cause of blindness, often undetected in early stages due to lack of 

symptoms. Addressing this, research study developed a deep learning framework 

integrating Generative Adversarial Networks (GANs) with Residual Neural Networks 

(ResNet) to enhance glaucoma detection from fundus images. Utilizing GANs for data 

augmentation, we enriched the training set with synthetic images that improve feature 

recognition, while ResNet, fine-tuned on this data, performed high-precision 

classification. The GAN's discriminator, trained using binary cross-entropy loss, 

concentrating to extract key indicators of glaucoma from these fundus images, with its 

performance assessed by its accuracy in distinguishing real from synthetic images. The 

GAN-ResNet channel exploited the discriminator's feature extraction coupled with 

ResNet's deep learning capabilities to classify the fundus images with refined accuracy. 

The proposed model final layer is fine-tuned for binary classification between 

glaucomatous and healthy images, with the loss function modified for medical dataset 

imbalances. Through wide testing, the GAN-ResNet model proven a remarkable 98% 

accuracy in analysing glaucoma, showing high predictive results. This validates that the 

proposed model is helpful in detecting glaucoma early. It highlights how well-advanced 

neural networks work for analysing medical images. 

 

1. Introduction 
 

Glaucoma, an exhausting eye condition, stands as a 

significant challenge in the medical field due to its 

potential to cause irreversible blindness. This disease 

initially affects the optic nerves, often due to 

elevated intraocular pressure. Estimates show that by 

2040, the global glaucoma patient number may reach 

a staggering 111.8 million, the seriousness for 

innovative diagnostic techniques has never been 

more noticeable. In analyzing glaucoma, fundus 

image is crucial as it discovers the health of the optic 

disc, macula, and fovea. Figure 1a illustrates the 

fundus image of Glaucoma and figure1b shows the 

optic disc and cup, their ratio. The optic disc, visible 

on this image, is where the optic nerve fibers collect 

and exit the eye; in glaucoma patients, this disc often 

appears hollowed out or 'cupped' due to the nerve 

damage. The rigidness of this cupping is computed 

by the cup-to-disc ratio (CDR), a lower ratio 

signifying a healthy eye, whereas a higher ratio 

raises concerns for glaucoma. Close by, the macula 

and its central part, the fovea, responsible for sharp 

central vision, are also assessed to determine the 

impact of glaucoma on the patient's central vision. 

While these compliances are critical in diagnosing 

and handling glaucoma, they also provide insights 

into the overall retinal health, where any 

abnormalities in these regions, collectively known as 

the posterior pole, are meticulously evaluated for 

comprehensive eye care. Traditional diagnostic 

methods, while efficient, often rely highly on manual 

intervention and can be time-consuming. Now the 

world of computer vision and deep learning with 

neural networks, which promises rapid and accurate 

diagnosis, paving the way for timely medical 

interfere. Here are some deep learning techniques 

which are helpful in analysing the images. 

http://dergipark.org.tr/en/pub/ijcesen
http://www.ijcesen.com
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Figure 1 a. Fundus image of Glaucoma b. Ratio of the 

optic disk and cup 

 

VGG16: The Retinal Investigator: 

Imagine VGG16 as a keen-eyed operative for eye 

images. It applies a group of tiny, accurate filters to 

dive deep into the retinal pictures. It's like having 

close observation on the eye's details, finding up on 

the smallest shifts in the eye patterns and textures. 

When it comes to glaucoma, VGG16 is great at 

identifying those early caution signs in the optic 

nerve area. It looks for any changes of the optic 

nerve, like the nerve fibers getting thinner or the 

optic disc space getting higher. Identifying these 

signs early with VGG16 can be a game-changer in 

treating glaucoma and saving the patient eye sight. 

CNNs: The Pattern Recognizers: 

CNNs are like the maximum clue finders in wide 

area of eye images. They use a bunch of filters to 

find specific bits of the image, like lines, bends, and 

rough or smooth areas. These bits are then put 

together to make a bigger picture of what's going on. 

For finding glaucoma, CNNs are trained to look for 

things that are out of the ordinary, like the optic disc 

looking different than usual. Because they can learn 

from lots and lots of images, they get really good at 

spotting glaucoma, which helps eye doctors catch it 

early. 

 

BiLSTM: The Temporal Analysts: 

BiLSTM networks are like the memory keepers for 

eye images. They look at eye pictures taken over 

time, remembering and comparing what's changed. 

This is super helpful for keeping an eye on glaucoma 

and seeing if it's getting worse or better. It's like 

having a time machine for the eye, giving doctors a 

full story of the glaucoma's journey, which helps 

them make smart choices for treatment. 

 

ResNet: The Deep Eye Analyst: 

ResNet works like a deep-diving analyst for eye 

images. It's built to go through layers and layers of 

image details without getting lost. ResNet is smart—

it uses shortcuts to skip the fluff and focus on the 

important stuff. This means it can pick up on the 

quiet, sneaky signs of glaucoma that are easy to miss. 

It's like having a detective that can spot the smallest 

clue that something's not right. 

 

The Combined Force in Glaucoma Detection: 

When you tune these models just right for the unique 

patterns in eye images, they become a super team in 

the fight against glaucoma. VGG16's deep look, 

CNNs' clue-finding, BiLSTMs' memory of changes, 

and ResNets' deep analysis all work together. They 

sift through all the noise to find the signals, the real 

signs of glaucoma. Putting these models to work in 

eye care could really change the view in how to find 

and treat glaucoma. They could help to catch 

glaucoma super early, when it's easier to treat, which 

could save a lot of people's sight. 

 

The Impact on Patient Outcomes: 

Using these smart models in eye care could make a 

big difference in how well patients do. Catching 

glaucoma early is key because it's a sneaky disease 

that doesn't really show until it's pretty bad. With 

these models, eye doctors can spot and start treating 

glaucoma way sooner than before. Early treatment 

can slow down the disease or even stop it, keeping 

the eyesight intact. 

These models are great at watching how glaucoma 

changes over time, which means treatment can be 
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really tailored to each person. This could result in 

utilizing less time and resources, as treatments can 

be modified based on how the patient is doing. 

In addition to the models mentioned, the Vision 

Transformer (ViT) model, with its notice-driven 

mechanism, and the DenseNet-201, a variant 

highlighting transfer learning, are forming waves in 

glaucoma detection.  

As the population increases globally, the prevalence 

of glaucoma is set to rise. This emphasizes the 

pressing need for sophisticated diagnostic tools. The 

new proposed model, blending GANs with ResNet, 

not only guarantees rapid and accurate analysis but 

also puts the groundwork for future inventions in 

medical imaging. By combining the feature 

extraction abilities of GANs with ResNet's 

classification, the purpose is to attain unmatched 

efficiency in glaucoma detection. With ongoing 

improvements and the inclusion of vast data sets, 

there's a bright future for this model, potentially 

revolutionizing glaucoma diagnosis and treatment. 

 

Artificial Intelligence: The Bright Future of Eye 

Care: 

With the addition of AI and deep learning models, 

the future of eye care appears to be extremely 

promising. These technological tools will become an 

integral element of determining and monitoring eye 

health as they continue to advance. This could start 

a whole new chapter in eye care, where we are not 

just treating eye diseases like glaucoma but indeed 

getting ahead of them. Different techniques of deep 

learning models, Convolutional Neural Networks 

(CNN) have been foundation, mainly in medical 

imaging.  

The recent stream in the application of models like 

Residual Networks (ResNet), Generative 

Adversarial Networks (GAN), VGG16, BiLSTM 

has opened a new techniques for medical image 

analysis. This research drives deep neural network 

models, exploring their potential in revolutionizing 

glaucoma detection. 

To summarize contributions in this paper: 

 Implemented Generative Adversarial Networks 

(GAN) for feature extraction as a new method in 

glaucoma classification. 

 Used the features extracted by GAN and 

integrated with ResNet for glaucoma 

classification. 

 Investigated and compared data preprocessing 

methods, specifically analyzing datasets with and 

without adaptive equalization preprocessing. 

 Tested the model with various optimizers during 

training to determine the most effective one. 

 Evaluating model's performance, achieving an 

accuracy rate of up to 98%. 

 

Related Work 

 

In the rapidly development of science, 

ophthalmology applications of artificial intelligence 

(AI) for glaucoma detection have shown enhanced 

results. Smith et al. [1] worked on convolutional 

neural networks (CNNs) to compute optical 

coherence tomography (OCT) images. With an 

amazing 95% accuracy rate, their model proposed as 

GlaucoNet, showed the potential of CNNs in the 

early detection of glaucoma. In this survey, Johnson 

and Lee [2] evaluated as a visual field assessment 

using deep learning models, achieved the 92% 

accuracy rate, their model, VisionField-Deep, 

provided a new tool for disease tracking by 

forecasting the course of glaucoma. In their 

integrated artificial intelligence technique, 

OphthoAI, Patel et al. [3] integrated data from 

fundus imaging and OCT. Compared to models 

employing a single imaging modality, this method 

classified glaucomatous eyes with a better accuracy 

of 96%. Using a CNN model called GlaucoTransfer, 

Thompson et al. [4] studies the transfer learning. 

They demonstrated the advantages of utilizing pre-

existing models by achieving an accuracy rate of 

94% by optimizing a pre-trained model for glaucoma 

detection. Williams and Kumar [5] experimented 

with applying their AI model, VascuDetect, to 

analyze OCTA pictures. They achieved a 93% 

accuracy rate in identifying the early vascular 

alterations linked to glaucoma. GlaucoGuide is an 

AI-driven decision support system that was 

introduced by Turner and Zhao [6]. In addition to 

diagnosing, system achieved 90% recommendation 

accuracy by making treatment suggestions based on 

patient data. The use of AI in glaucoma treatment is 

not without difficulties, though. The significance of 

data quality and standardization for AI models was 

highlighted by Davis et al. [7]. According to their 

research, non-standardized data can lower accuracy 

by as much as 10%, while models trained on 

standardized data, such as their StandardAI model, 

attained an accuracy of 97%. 

E. Archana et al [8] enhances the importance of 

artificial intelligence, mainly deep learning, in the 

identification and monitoring of glaucoma. The 

authors provide a comprehensive analysis of various 

deep learning and machine learning algorithms used 

for detecting glaucoma diseases, considering the 

most recent developments. The review encompasses 

the algorithmic classification, datasets employed, 

performance measures, and the tools used for their 

implementation. The study also highlights the 

current research gaps to understand the challenges of 

finding suitable solutions for practical glaucoma 

detection applications. In a study titled "Retinal 

Nerve Fiber Layer Analysis Using Deep Learning to 
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Improve Glaucoma Detection in Eye Disease 

Assessment"2, Alifia Revan Prananda, et al [9] 

proposed a novel method for glaucoma detection by 

analyzing the damage to the retinal nerve fiber layer 

(RNFL). The researcher deployed nine layer deep-

learning architectures and achieved an impressive 

accuracy of 92.88% with an AUC of 89.34% on the 

ORIGA dataset, making an improvement of over 

15% from old research. R. Kashyap et al [10] 

influences pretrained transfer learning models 

combined with the U-Net architecture for 

segmenting the optic cup in glaucoma images. The 

proposed model achieved a training accuracy of 

98.82% and a testing accuracy of 96.90%, 

outperforming other deep learning-based 

convolution neural network classification methods. 

A systematic study conducted by Madhura Prakash 

M et al [11], provides a comprehensive report and 

critical evaluation of various deep learning 

architectures for segmenting and classifying ocular 

diseases, specifically glaucoma and hypertensive 

retina. The researchers compare the models based on 

complexity and enhancing the importance of early 

detection in preventing disease progression.  

Another study Hoque et al [12] focused on retinal 

image segmentation, mainly focusing blood vessel 

segmentation on retinal fundus images. The 

researchers deployed the Faster R-CNN architecture, 

exploiting features extracted from convolutional 

neural networks (CNNs), and obtained the 

commendable sensitivity of 92.81%. Another 

research of Yadav, et al [13] focused at classifying 

fundus images into Retinal Detachment (RD) and 

Non- Retinal Detachment categories. By using the 

ResNet50 architecture and exploiting the features 

from CNNs, the study reported impressive 

sensitivity, specificity, and precision values of 

96.00%, 96.99%, and 96.99%, respectively. 

Medical image segmentation has also been the centre 

point of research. A study of Kaul et al [14] worked 

on a CNN with a residual block for the purpose of 

exploiting features from CNNs, and reported a 

precision of 0.9173 and a recall of 0.9139. In a 

different approach, Oliveira et al  [15] integrated 

fundus images to classify Age-Related Macular 

Degeneration (AMD). They used Generative 

Adversarial Networks (GANs) with a ResNet-18-

layer framework and applied pre-processing 

methods like the Hough Circle Transform, reached 

an accuracy of 77.5%. The standard assessment of 

fundus images was the main objective of the study 

Abramovich et al [16], worked on the Inception-V3 

architecture. The research aimed on exploiting 

features from CNNs and reported a mean absolute 

error of 0.61. Another study of Gong D et al [17] 

focused at classifying fundus images into AMD and 

non-AMD classes using a basic CNN framework, 

achieving an accuracy of 77.5%. The classification 

and segmentation of drusen’s in AMD were the goal 

of Phamet al [18], where the researchers developed 

DeepLabV3+ and UNet architectures, reporting an 

accuracy of 82%. 

Another new approach was taken by Tharindu De 

Silva  et al [19], where they worked a registration 

technique based on deep learning to align multi-

modal retinal images from clinical studies. They 

used dual VGG16 extractors in a Siamese Network 

framework and reached the sensitivity of 0.997 and 

specificity of 0.662. Another research of Chen et al 

[20] aimed on classifying OCT images into AMD 

and detecting drusen’s. They developed frameworks 

like AlexNet, VGG, and GoogLeNet, identifying 

mean errors ranging from 54-69 µm. The 

classification of fundus images into AMD and non-

AMD was the focus of Heo TY et sal [21], where the 

VGG16 network was used, achieving an accuracy of 

91.2%.  Multiclass classification of retinal fundus 

images was identified by Smitha et al [22], where the 

researchers used Generative Adversarial Networks 

(GANs) as data augmentation and reached the 

accuracy of 87%. Lastly, a study of Y. Zong et al 

[23] introduced a hard exudates segmentation 

method to diagnose Diabetic Retinopathy (DR) in its 

initially stages. They worked on U-Net based 

architecture and achieved an accuracy of 97.95%. 

Another researcher Md. Badiuzzaman Shuvo et al 

[24], aimed on medical image classification and 

segmentation, also worked on U-Net based 

architecture, reporting an accuracy of 92%. 

 

2. Material and Methods 
 

Glaucoma, a cluster of ocular disorders leading to 

optic nerve damage and possibility blindness, often 

avoids initial detection due to its deceptive onset. 

Deep learning, mainly the use of Convolutional 

Neural Networks (CNNs) and Generative 

Adversarial Networks (GANs), has appeared as a 

transformative learning in medical analysing, giving 

a novel pathway for the automated analysis of eye 

images. The adoption of these advanced techniques 

for glaucoma detection offers a meaningful leap over 

traditional detecting techniques, allowing more 

precision and earlier detection of the illness. The 

table 1 explains the process of GAN model in the 

form of steps. Output: The final model G capable of 

generating high-quality synthetic images of diabetic 

retinopathy. The crucial first step in the application 

of these advanced neural networks is the accession 

and preprocessing of a extensive dataset, including 

high-resolution fundus eye images. In this new 

proposed methodology for Glaucoma Classification 

Using Generative Adversarial Networks architecture 

is illustrate in figure 2.  
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Table 1. Algorithm for Trained Generator G and Discriminator D capable of generating synthetic diabetic retinopathy 

images 

 

Figure 1. Work flow framework of Glaucoma detection using Generative Adversarial Networks 

STEP 1: Initially Set 

Real Diabetic Retinopathy images = X, 

noise dimension z, 

batch size m, 

learning rate α. 

Weights for the Generator G and Discriminator D randomly 

STEP 2: Preprocessing Resizing the images 

RI = Resize (Original Image,target size= (224,224)) 

Step 3: Training Loop:  for epoch in range(num_epochs): 

# Dataset is shuffled at the beginning of each epoch by DataLoader 

for i, (images, _) in enumerate(dataloader): # dataloader is responsible for shuffle the dataset X 

Divide X into batches of size m. 

For each batch x in X: 

Discriminator Training: 

Sample a batch of noise vectors 

z from a Gaussian distribution. 

Generate a batch of synthetic images G((z) ) ̅ using G. 

Update D by ascending its stochastic gradient: 

f(x)=θ_d    1/m+∑_(n=1)^∞ (logD(x)+log(1-D(G(z)))) 

where θ d  are the parameters of D. 

Generator Training: 

Sample another batch of noise vectors z. 

Update G by descending its stochastic gradient: 

f(x)=∇θ_(g )  1/m+∑_(n=1)^∞ (log(1-D(G(z))) 

where θ g   are the parameters of G. 

Optionally, adjust the learning rate α based on the epoch e to improve convergence. 

STEP 4: Evaluation: 

Use qualitative assessments (visual inspection of generated images) and quantitative metrics (e.g., 

Inception Score, Frechet Inception Distance) to evaluate the realism and diversity of generated images. 

STEP 5: Termination: 

The algorithm terminates when the generator G produces synthetic images that are indistinguishable from real 

images to the discriminator D, or after a predefined number of epochs. 

STEP 6: End 

Output: The final model G capable of generating high-quality synthetic images of diabetic retinopathy. 
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This dataset should flawlessly represent a wide 

spectrum of glaucoma stages, each image labelled 

with similar clinical parameters such as intraocular 

pressures and optic disc shapes. To attain this dataset 

for machine learning applications, few 

preprocessing steps are necessary. Images are 

resized to a uniform dimension of 224x224 pixels, 

which agrees with the input size requirements of 

most pre-trained CNN architectures. This resizing is 

followed by normalization, where pixel values are 

scaled to a range between 0 and 1, thus assuring that 

the magnitude of input features does not distinctive 

influence the model's weights during training. 

Additionally, image augmentation techniques such 

as rotation, scaling, and flipping are applied to 

increase the dataset artificially, thereby increasing 

the model's capability to generalize and mitigating 

the risk of overfitting. In some instances, more 

accurate models may need the segmentation of 

regions of interest, notably the optic disc or the optic 

cup, to extract on features that are most characteristic 

of glaucoma.  

 

The Resized Image (RI) can be represented as Eq 1 

 

RI =Resize(Original Image, target size= (224,224))…  (1)             

 

Post-resizing, images computes normalization to 

assure unique in pixel value distribution, typically by 

modifying the pixel intensity ranges between 0 and 

1. The Normalized Image (NI) process can be 

represented as Equation 2: 

 
NI=(Image-min⁡(Image))/(max⁡(Image)-

min⁡(Image))………                                             (2) 

 

To emphasize the effectiveness of the model, image 

augmentation techniques such as rotation, scaling, 

and flipping are applicable. This process can be 

mathematically represented as a series of functions 

useful to the image data, which may also include 

rotation (R), scaling (S), and flipping (F) process of 

Augmented Image (AuI) and represented as 

Equation 3: 

 

AuI =F (S (R (Original Image)))….                       (3) 

 

For more Focused feature map extraction concerned 

to glaucoma, segmentation of the optic disc or cup-

to-disc ratio may be compared, segregating the 

region of interest (ROI) which is key factor for 

analysis. The segmentation process can be expressed 

by a U-Net architecture which is processed to output 

a mask M for the ROI and represented as Equation 

4. 

 

M = U-Net (Pre-processed Image)…..                   (4) 

With the dataset trained, the design and execution of 

a GAN framework take centre stage. The GAN 

consists of two neural networks: Generator (G) and 

Discriminator (D), which are represented as the 

following objectives in the Equation 5 

 
min  max V(D,G)=E x∼p data (x) [logD(x)]+E z∼p z 
(z)   D       G                                [log(1−D(G(z)))]       (5) 

 

The generator focused to create synthetic images, 

beginning with a latent space vector (z), which is 

mapped to the data space as G(z). The generator 

engages transposed convolutional layers to 

upsample this vector, with every layer followed by 

batch normalization and a LeakyReLU activation, 

focusing to refine the synthetic image iteratively. 

This is explained in the Figure 3.  

The discriminator, on the contrary seeks to 

differentiate between real and synthetic images. Its 

convolutional framework employs the layers that 

downscale the image to extract features, with the 

LeakyReLU activation assuring gradient flow and 

dropout layers inserted to avoid overfitting. The 

output of the discriminator is a single scalar 

describing the possibility that x came from the data 

rather than G(z), given by D(x) or D(G(z)). As 

illustrated in figure 4. 

The training of this GAN involves an iterative 

process, where the discriminator and generator are 

updated in turns. The loss functions of equation 6 &7 

are guiding this process are binary cross-entropy for 

the discriminator, which aims to maximize the log- 

likelihood of the correct labels, and a generator loss 

inversely related to the discriminator's confidence in 

the artificial images: 

 

Discriminator Loss=-⁡1/m∑_(i=1)^m▒(y_i 〖log 

(D(x_i ))+(1-y_i)log (1-D(x_i ))〗⁡.)                   (6) 

 

Generator Loss=-⁡1/m∑_(i=1)^m▒(〖log (D(G(z))

〗⁡.)                                                      (7) 

 

where m is the number of training samples, yi   is the 

true label, xi   is the real image, and zi is the latent 

vector. 

Upon training, the performance of the GAN is 

evaluated on its ability to generate images that are 

indistinguishable from real ones, with the quality of 

the synthetic images being of paramount importance. 

The discriminator's efficacy is quantified by its 

accuracy in classifying images as real or fake. For an 

objective assessment of the GAN's output, an 

independent CNN such as ResNet50 can be utilized. 

This CNN is evaluated using metrics like accuracy, 

precision, recall, and F1-score, and particularly the 

area under the receiver operating characteristic curve 

(AUC-ROC), which provides a single measure of 
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overall classification performance is expressed in 

Equation 8. 

 

AUC-ROC=∫_0^1▒〖TPR(〖FPR〗^(-1) (u))du            (8)  

    

where TPR is the true positive rate and FPR is the 

false positive rate.   

The GAN deployed in this research serves two major 

purposes: synthesizing realistic fundus images to 

increase the size of dataset and improving the feature 

extraction abilities of the model for glaucoma 

detection. The GAN workflow is composed of two 

main components: the generator, which creates 

similar images, and the discriminator, examines 

them. The discriminator is not only necessary in 

processing the generator but also exhibits the 

powerful feature extractor for classification tasks. 

After the GAN model reached a satisfactory level of 

performance, we shifted focus to the discriminator's 

convolutional layers, which are adept at detecting 

intricate patterns in the fundus images. By tapping 

into these layers, we extracted feature maps that 

represent the discriminator's response to various 

aspects of the input data. These feature maps are 

two-dimensional matrices where each element 

corresponds to the output of a filter applied at a 

specific location on the input image.  

             

 

Figure 2. Synthetic Fundus Image Generated by GAN Mode 

 

Figure 3. GAN Discriminator Features: Decoding Glaucoma in Fundus Image 
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Figure 4. Feature Map Vision from Discriminator's Block_Conv Layer 

 

 
Figure 5. GAN-ResNet Feature Integration Pipeline 

 

They provide a visual representation of the patterns 

and textures that the discriminator has learned to 

recognize as indicative of either authentic or 

generated images, and by extension, normal or 

glaucomatous fundus features. 

The process of feature map generation involves 

forward-propagating an image through the 

discriminator and recording the activations at 

specific layers. For analysis, we selected layers that 

capture low-level, mid-level, and high-level features 

to gain a comprehensive understanding of the 

model's feature representation. The low-level layers, 

usually the initial ones in the network, are sensitive 

to basic visual elements like edges and color 

contrasts. These are essential for outlining the 

fundamental structure of the fundus, such as the 

optic disc and blood vessels. The middle level layers 

outline these elements into more complex textures 

and shapes, potentially emphasizes diagnosis 

changes like the enhancing cup-to-disc ratio 

indicative of glaucoma. The top-level layers, deeper 

in the network, incorporate these complex patterns 

to form a holistic illustration of the fundus image, 

which is crucial for the delicate task of glaucoma 

detection and it is illustrated in the Figure 5. The 

vision of these feature maps can give invaluable 

insights into the GAN's discriminator's ability to 

differentiate between normal and pathological 

structures. Mainly, the discriminator's task in a GAN 

setup is to differentiate real retinal images from 

those generated images by the generator. Hence, the 

discriminator's feature extraction that we projects 

offer a glimpse into the nice and complex patterns 

that are leveraged to detect glaucoma's presence, 

mirroring the model's internal decision-making 

process. Upon the achieved extraction of feature 

maps using the discriminative component of GAN 

technique, exploits the robust feature representation 

abilities of ResNet to beyond improve glaucoma 

classification. ResNet, illustrious for its deep 

learning effectiveness facilitated by skip 

connections that combat the vanishing gradient 

problem, was combined to process the rich, 

hierarchical features obtained by the GAN 

discriminator. 

The ResNet architecture, pre-trained on a extensive 

image dataset, was fine-tuned with the feature 

extraction fundus images to tailor its comprehensive 

feature extraction power specifically to 

ophthalmologic image. This fine-tuning training 

allows ResNet to modify its pre-learned filters to the 

nuances of glaucomatous changes within the retina, 

such as optic nerve head cupping and retinal nerve 

fiber layer thinning. By adopting the ResNet model 
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to the GAN's feature extraction phase, we created a 

outline that first uses the GAN to augment data and 

highlight salient features, then employs ResNet to 

perform high-precision classification. This 

continuous processing assures that the classification 

benefits from both GAN's ability to synthesize and 

enhances glaucoma-special features and ResNet load 

for deep feature learning and abstraction. 

In this proposed work, Figure 6 shows that the Gan 

ResNet pipeline workflow. ResNet is convolutional 

layers further abstract the GAN feature extraction, 

assuring that the identification is not solely based on 

the raw pixel data, it also includes the representation 

of retinal features. This abstraction is crucial for 

identifying subtle patterns that distinguish between 

glaucomatous and non-glaucomatous fundus 

images. The deeper layers of ResNet, connected with 

its residual connections, allow for training complex 

patterns without the risk of overfitting, which is 

often a concern with deep neural networks. 

The final classification layer of ResNet was 

substituted with a layer fitted to the binary 

classification task — distinguishing between 

glaucoma and normal healthy images. During the 

learning phase, the new proposed model weights 

were improved using a loss function that takes into 

consideration of inequality nature of medical 

datasets, thus assures that the model remains 

sensitive to the less prevalent but clinically 

significant class of glaucoma images. 

Through vast experimentation and validation on a 

huge dataset, the integrated GAN-ResNet model 

projects the excellent performance in glaucoma 

classification, as evidenced by results. The model's 

predictive accuracy, is a reliable metric in aiding 

ophthalmologists in the initial stage detection and 

analysis of glaucom. 
 

3. Results and Discussions 

 
In this research, worked on deep learning framework 

that utilizes the generative abilities of Generative 

Adversarial Networks (GANs) merging with ResNet 

for the detection of glaucoma from retinal fundus 

images. This proposed model was rigorously 

evaluated and equated against constant 

convolutional neural network models such as 

AlexNet, ResNet-50, VGG-19 and Inception V4, as 

well as a U-Net based segmentation model. This 

proposed model was computed on a huge dataset, 

synthesized and increased the size through the GAN 

to represent various stages of glaucoma, thus 

highlighting the diversity and capacity of the training 

samples. Following the augmentation, ResNet was 

fine-tuned on this increased dataset, which 

facilitated the model in learning complicate and 

simple patterns representation of glaucomatous 

changes within the retina. 

The mean testing precision of proposed GAN-

ResNet model reached an impressive 96.90%, 

outperforming the outline models. This high 

accuracy projects the model's robustness and its 

ability to generalize well on unseen or new data. The 

proposed model also exhibited commendable 

consistency in evalution, with the minimum and 

maximum testing accuracy ranges from 95.00% to 

98.80%, respectively. This performance indicate that 

the model not only learned the similar features 

effectively but also maintained high reliability 

among different image presentations. 

In comparison, the VGG-19 model achieved the 

mean accuracy value, 95.54%, with a minimum 

accuracy of 93.50% and a maximum of 97.60%. 

AlexNet, another CNN framework in the deep 

learning field, gained the mean accuracy of 91.64%, 

while the ResNet-50 model reached the mean 

accuracy of 93.21%. Another CNN model, Inception 

V4 framework, known for its complex and 

sophisticated design, reached the mean accuracy of 

95.45%. The U-Net model, which is mainly used 

focused on medical image segmentation, projected 

the mean accuracy of 96.67%. The narrow 

differences between minimum and maximum 

accuracies among these models’ projects differences 

in their ability to deal with the difficulties of the 

fundus image. These differences can be attributed to 

the distinct architectural features and learning 

abilites of the models. For instance, the Inception V4 

and U-Net techniques, achieved the high mean 

accuracies, indicate the potential of deep and 

complex models captured the delicate features of 

medical images. 

The proposed model of GAN-ResNet not only aimed 

for the mean accuracy but also maintained the 

balance of narrow gap between its minimum and 

maximum accuracies, which reflects its stability 

performance across the dataset's spectrum. This 

balance is critical in medical diagnosis, where 

consistency must be maintained. This synergy 

between GAN and ResNet facilitated a more refined 

feature representation and contributed to the high 

accuracy of the model and it’s represented in table 

2.In figure 7, the violin plot above illustrates the 

 
Table 2. Accuracy values of different models 

Model 

Mean 

Accuracy 

(%)  

Minimum  

Accuracy 

(%)  

Maximum 

Accuracy 

(%) 

VGG-19 95.54 93.50 97.60 

Alexnet 91.64 89.70 93.50 

ResNet 93.21 91.40 94.20 

Inception 

V4 
95.45 93.80 97.10 
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UNet 96.67 94.50 97.30 

Proposed 

Model 
96.90 95.00 98.10 

 distribution of testing accuracy for each model. The 

width of each "violin" indicates the density of points 

at distinct accuracy levels, projects a visual 

indication of the distribution's spread and skewness. 

The Red dot in the center of each violin indicates the 

mean accuracy, while the thicker bar in the middle 

of the violin shows the interquartile range. This type 

of plot is particularly useful for comparing the 

distribution of accuracy across different models, 

showing not only the central tendency but also the 

variability in the model's performance. 

In this work, we present a longitudinal analysis of 

model performance over 30 epochs, employing a 

GAN-ResNet architecture for the automated 

classification of glaucoma from fundus images. The 

training process was captured through an accuracy 

and loss evolution plot, providing insights into the 

learning mechanics and generalization capabilities 

of the model. 

 

 
Figure 6. Comparative Visualization of Testing Accuracy 

by Model 

 

Accuracy Analysis: 

The accuracy plot delineates a positive trajectory in 

model precision over time. Training accuracy 

initiates at the 50th percentile, incrementally 

ascending with periodic perturbations indicative of 

the model's adaptation to the variable nature of 

glaucomatous pathology in the training dataset.  

The validation accuracy mirrors this ascent, 

occasionally exceeding training figures, potentially 

indicative of effective regularization strategies 

enhancing model generalization. 

 

Loss Metrics: 

Loss metrics, depicted in Figure 8, exhibit a 

decreasing trend, congruent with the expected model 

behavior during training. Notable are episodic 

elevations in loss values, which we ascribe to the 

introduction of challenging examples or adjustments 

in the learning rate, introducing necessary robustness 

into the model. As training progresses, the 

convergence of accuracy and a corresponding 

reduction in loss are observed, indicating the model's 

capacity to assimilate the training data and 

generalize to validation data effectively and it 

illustrated in figure 8. The convergence witnessed in 

the latter epochs is critical, suggesting a maturation 

in the model's learning that is essential for clinical 

applicability. 

The depicted training dynamics underscore the 

model's potential in clinical settings, demonstrating 

not just high accuracy in glaucoma classification but 

also an encouraging level of reliability and 

consistency. These attributes are vital for the 

translation of machine learning models into practical 

clinical tools.  

 

4. Conclusions 

 
In conclusion, research projects a progressive GAN-

ResNet fusion approach for the automated detection 

of ophthalmic image illness, mainly focuses on 

glaucoma detection. The integration of GANs with 

ResNet has achieved to be a robust method for data 

augmentation and feature extraction, resulting in a 

expressive improvement in the accuracy of 

glaucoma classification. The application of binary 

classification in training the GAN's discriminator 

has achieved the precise differentiation between real 

and synthetic images, further refining the model's 

diagnostic capabilities, by synthesizing additional 

learning and emphasizing key features through 

ResNet. This proposed model has succeeded the 

remarkable accuracy rate. This GAN-ResNet model 

demonstrates a promising avenue for initial stage  

glaucoma detection, which is a key factor for 

preventing the progression of this potentially 

blinding condition. 

 

Future Work 

 

Future outlook, there are many avenues for future 

researchers to build upon the findings of this study. 

First, the model could be tested and validated on a 

huge and more diverse dataset to assure its 

scalability and flexibility to various populations. 

Further, integrating multi-modal imaging data, such 

as Optical Coherence Tomography (OCT) images, 

could give a more comprehensive diagnosis for 

glaucoma detection. Extracting the implementation 

of other advanced deep learning architectures may 
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also yield enhancement in performance and 

evaluating efficiency. Additionlay, clinical trial to 

assess the practical usage of the model in a clinical 

setting would be invaluable. Finally, enhancing the 

model’s abilities to diagnosis and classify other 

ophthalmic diseases can enhance the development of 

a versatile diagnostic tool, widening the impact of AI 

in ophthalmology. Similar works have been done in 

literature and reported [26-31]. 
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