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Abstract:  
 

Alzheimer's Disease (AD), a progressive neurodegenerative disorder, manifests as 

cognitive decline and memory loss, significantly impacting individuals' lives and 

healthcare systems globally. Early diagnosis and intervention are crucial for improving 

patient outcomes and managing the disease effectively. Recent advancements in deep 

learning (DL) have shown substantial promise in medical image classification for early 

AD diagnosis. This survey evaluates state-of-the-art DL techniques, including hybrid 

models, Recurrent Neural Networks (RNNs), and Convolutional Neural Networks 

(CNNs), applied across imaging modalities such as computed tomography (CT), positron 

emission tomography (PET), and magnetic resonance imaging (MRI). It emphasizes their 

performance, accuracy, and computational efficiency while addressing critical challenges 

like the need for large annotated datasets, overfitting, and model interpretability. 

Furthermore, the survey explores how DL could revolutionize AD diagnosis and 

identifies future research directions to bridge existing gaps, aiming to improve early 

detection and personalized diagnostic approaches for individuals with AD. 

 

1. Introduction 
 

The most prevalent type of dementia, impact lots of 

individual globally, is AD. The quality of life can be 

affected and it significantly impairing daily activities 

because it is a progressive NDD that leads to severe 

cognitive impairment and memory loss [1]. In order 

to improve symptom management, enable prompt 

intervention, and potentially prevent the disease 

development, ED of AD is essential [2]. Traditional 

diagnostic methods, primarily based on clinical 

assessments and neuropsychological tests, are often 

insufficient for early detection [3]. Consequently, 

there is a growing demand for more precise and 

consistent methods for diagnosis [4]. The indications 

and symptoms of AD vary depending on the illness's 

stage [5]. People with AD may find it challenging to 

identify their mental health issues due to memory 

loss and other symptoms. The many indications of 

AD are depicted in Figure 1. MI has become an 

essential part of diagnosing and monitoring AD in  

 

 
 

Figure 1. Signs of an AD. 

 

recent years. Anatomical and functional anomalies 

in the brain associated with AD can be completely 

identified by using techniques like MRI [6], PET [7], 

and CT [8]. The identification of biomarkers 

suggestive of AD in its early stages has been made 

possible by these imaging methods [9]. An instance 

of MRI, a Non-Invasive imaging technique that 
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employs powerful magnetic fields and radio waves 

to generate extremely detailed images of the body’s 

internal organs and it was presented in Figure 2. 

Then the ionizing radiation was not utilized by MRI, 

so it is considered to be a safe technique to image 

soft tissues than X-ray or CT scan. The method is 

based on the magnetic alignment of hydrogen atoms 

within the body, which produces radiofrequency 

signals when agitated and aligned in a magnetic 

field. A computer then records and processes these 

signals to produce HR Images of tissues, organs, and 

other structures. MRI is widely employed in the 

diagnosis and monitoring of a wide range of medical 

disorders. For viewing soft tissues, such as the brain, 

muscles, and ligaments, the MRI is used. 

 
 

Figure 2. Sample of various brain MRI images with 

various AD stages. a Non-demented; b Very mild 

dementia; c Mild dementia; d Moderate dementia. 

 

Figure 3 indicates the manner in which PET imaging 

offers precise view of the body's physiological and 

metabolic functions. It involves the injection of a 

radiotracer, a radioactive substance that emits 

positrons, into the patient. The PET scanner detects 

gamma rays that are produced when these positrons 

annihilate one another with electrons in the body. 

The scanner captures these gamma rays and uses the 

data to create cross-sectional images that reflect the 

distribution of the radiotracer. PET is particularly 

useful for evaluating metabolic activity, detecting 

cancer, assessing brain function, and monitoring the 

progression of diseases. Its ability to visualize 

functional processes makes it an effective operation 

in both clinical and research backgrounds. 

 

 
Figure 3. PET scans images of different stages of AD. 

By combining computer processing and X-ray 

technology, the advanced imaging technique known 

as CT creates very precise cross-sectional images of 

the body's internal organs. An array of cross-

sectional slices or a (3-D) three-dimensional 

depiction of the scanned area are produced by a 

computer processing the many images that a rotating 

X-ray machine takes during a CT scan. This method 

allows for the visualization of complex anatomical 

structures with high precision, making it valuable for 

diagnosing and monitoring conditions affecting 

organs, bones, and soft tissues. CT scans are widely 

used in emergency medicine, cancer detection, and 

evaluating internal injuries, offering rapid and 

accurate imaging to guide treatment decisions. But 

manually analyzing these images takes countless 

hours and is unpredictable, necessitating the 

development of automatic methods to enhance 

accuracy and efficiency [10]. 

Due to DL, a kind of Artificial Intelligence (AI), MI 

Analysis (MIA) has undergone a revolutionary 

change [11]. DL methods, in particular CNN [12], 

have shown significant results for image 

classification (IC), segmentation, and anomaly 

detection by utilizing large datasets and strong 

computational resources. In the context of AD, DL 

techniques are utilized to analyze various imaging 

modalities [13], aiming to improve early diagnosis 

and disease progression prediction. The ability to 

accurately differentiate the AD, MCI, and healthy 

controls has been demonstrated by these methods 

[14].  

Even with these developments, there are still a 

number of obstacles to overcome in the diagnosis of 

AD using DL. The interpretability of complex 

models, the risk of overfitting, and the requirement 

for big, annotated datasets are only a few of the 

challenges. Additionally, variations in imaging 

protocols and patient demographics can affect the 

generalizability of DL models [15]. This survey aims 

to provide an inclusive analysis of current DL 

approaches for AD identification using MI, 

highlighting their achievements, limitations, and 

potential future directions. By addressing these 

challenges, hope to contribute to the development of 

more robust and clinically applicable DL-based 

diagnostic tools for AD.    

 

2. Literature review 
 

Liu et al. (2020) [16] proposed a 3D CNN using MRI 

data for AD classification. Their method 

demonstrated high accuracy and robust (FE) Feature 

Extraction capabilities. However, it required large 

training datasets and incurred significant 

computational costs, which could limit its 

practicality in clinical settings. Shi et al. (2020) [17] 
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employed an attention-based neural network with 

PET data to enhance feature extraction. The 

attention mechanism improved the model's 

sensitivity to relevant features, resulting in high 

classification accuracy. However, the extensive 

computational resources required and the 

complexity of the model were notable limitations. 

Using pre-trained CNN models, Pan et al. (2020) 

[18] used Transfer Learning (TL) on MRI and PET 

data. This approach reduced training time and 

facilitated effective feature transfer from other 

domains. While advantageous, it depended heavily 

on the quality of the pre-trained models and faced 

potential domain adaptation issues. 

In order to determine the Multi-Level (ML) features 

of brain MRI for the classification of AD, Zhang et 

al. [19] suggested employing a connection-(WAM) 

Wise Attention Mechanism in a densely connected 

CNN. To extract Multi-Scale (MS) features from 

pre-processed images, a densely connected NN was 

employed, and hierarchically transform the MR 

images into more compressed High-Level 

(HL) features was also done by this. This was 

achieved by connecting features from different 

layers using a connection WAM. To 3D in order to 

capture the spatial data of the MRI, the convolution 

technique was extended. From each 3D Convolution 

Layer (CL), the returned features were mixed with 

all previous layer feature, with varied degrees of 

attention, and thus useful for classification in the 

final stage. When differentiating AD patients from 

healthy controls (HC), MCI converters from HC, and 

MCI converters from non-converters, the accuracy 

of the suggested approach was 97.35%, 87.82%, and 

78.79%, respectively. When compared to specific 

NN and approaches detailed in previous 

publications, the classification performance of 

the suggested strategy was in the highest score and it 

also facilitates in detecting those risk MCI 

individuals and prevents in AD risk.  

Preprocessing, data augmentation, cross-validation, 

and classification/feature extraction using DL are the 

four stages of the DL and CNN framework for AD 

classification developed by Al-Khuzaie et al. (2023) 

[20]. They implemented a simple CNN and a fine-

tuned VGG16 model, achieving accuracies of 

99.95% and 99.99% with the CNN, and 97.44% with 

VGG16. Their approach required less domain 

knowledge and fewer labeled samples, showing 

improved classification accuracy with minimal 

computational complexity, overfitting, memory 

usage, and time regulation. Al-Adhaileh et al. (2023) 

[21] proposed a heuristic early Feature Fusion (FF) 

approach using a modified Resnet18 DL 

architecture, trained concurrently on PET and MRI 

images, to improve AD binary classification. Their 

3-in-channel method extracts descriptive features 

from fused PET and MRI images, achieving a 

classification accuracy of 73.90% on the ADNI 

database. An Explainable AI (XAI) paradigm is also 

provided to explain the outcomes, effectively 

addressing the heterogeneity of MRI and PET data 

by learning latent representations of multimodal 

data. 

Antony et al. (2023) [22] utilized VGG16 and 

VGG19 architectures on the ADNI dataset, 

achieving 81% and 84% accuracy, respectively. 

They demonstrated that preprocessing techniques 

like intensity normalization can significantly 

improve model performance, with VGG19 slightly 

outperforming VGG16. Liu et al. (2023) [23] 

explored various CNN structure, including AlexNet 

and GoogLeNet, applying transfer learning to 

enhance performance on the ADNI dataset. Their 

approach demonstrated the advantages of transfer 

learning in improving diagnostic accuracy and 

robustness. A 3DMSCNN combined with Graph 

CNN (GCNN) was suggested by Ge et al. (2023) 

[24], achieving high accuracy in AD classification. 

They used structural connectivity graphs for a multi-

class classification model, providing a novel 

approach to feature fusion and enhanced 

performance. Song et al. (2023) [25] developed a 

GCNN for multi-class AD spectrum classification, 

using structural MRI data. Their method leveraged 

graph-theoretic tools, offering a new perspective on 

feature extraction and disease staging. 

A multi-model DL framework combining CNN and 

3D DenseNet architectures was suggested by Liu et 

al. (2023) [26]. By combining structural MRI 

features, this method achieved good accuracy on the 

ADNI dataset by simultaneous hippocampus 

segmentation and AD classification. Impedovo et al. 

(2023) [27] presented a cognitive model protocol for 

neurodegenerative dementia diagnosis using a 

combination of handwriting analysis and cognitive 

function evaluation. This non-invasive method aims 

to provide an accessible diagnostic tool for early 

detection and monitoring. A 3D CNN framework to 

4D fMRI images for AD staging was suggested by 

Harshit et al. (2023) [28], demonstrating high 

accuracy in classifying 4 AD stages (AD, EMCI, 

LMCI, NC). Their approach emphasizes the 

importance of volumetric data in accurate disease 

staging. Silvia et al. (2023) [29] evaluated various 

CNN structures for 3D MRI classification, finding 

that dense connectivity in networks significantly 

improved feature learning and classification 

accuracy, particularly in multi-class AD scenarios. 

Dan et al. (2023) [30] used 3D DenseNet 

architectures for 4-way AD classification, showing 

that densely connected convolutional networks are 

effective in learning complex features from 3D MRI 

data. Allugunti et al. (2023) [31] compared CNN-
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based methods with traditional non-parametric 

approaches, demonstrating superior performance in 

AD diagnosis from MRI images. Their research 

demonstrates the extent to which the framework 

CNN generalize to new information and how 

resilient they are against overfitting. For Autism 

Spectrum Disorder (ASD) classification, a CNN-

based method on the ABIDE I was presented by 

Jianliang et al. (2023) [32], achieving 90.39% 

accuracy. They suggested potential applications of 

their model in AD diagnosis, given the similar 

neuroimaging data requirements. Chen et al. (2022) 

[33] developed a hybrid model combining LSTM 

and CNN, achieving significant improvements in 

classification accuracy and it has been implemented 

for early AD detection by means of MRI and PET 

images. Their approach emphasizes the benefits of 

integrating temporal and spatial features for 

comprehensive analysis. 

Wang et al. (2022) [34] suggested a novel DL model 

incorporating attention mechanisms to enhance 

feature extraction from MRI images, achieving over 

90% accuracy on the ADNI dataset. This method 

underscores the importance of focusing on relevant 

features for improved diagnosis. Zhou et al. (2021) 

[35] introduced a transfer learning-based framework 

using pre-trained ResNet models, achieving high 

accuracy in AD classification on multiple datasets. 

Their study demonstrated the efficacy of TL in 

leveraging large-scale pre-trained models for 

specific MI tasks. Nguyen et al. (2021) [36] applied 

a deep generative model to synthesize MRI images 

for data augmentation, significantly improving the 

performance of downstream classification models. 

Their work highlights the potential of generative 

models in addressing data scarcity in medical 

imaging. Kim et al. (2021) [37] utilized a dual-

stream CNN architecture combining structural and 

functional MRI data, achieving superior 

performance in AD diagnosis. Their approach 

leverages the complementary nature of different 

imaging modalities for comprehensive analysis. 

Patel et al. (2022) [38] investigated the use of 

capsule networks (CapsNets) for AD diagnosis, 

achieving high accuracy by capturing spatial 

hierarchies in MRI images. This study highlights the 

potential of CapsNets in handling complex medical 

imaging tasks. A MTL framework for current AD 

diagnosis and cognitive score prediction was 

presented by Zhang et al. in 2023 [39], 

demonstrating the benefits of shared feature learning 

across related tasks in table 1. 

 
Table 1: Comparison of Early Diagnosis and Classification Methods in Deep Learning with Existing Methods 

Author name Methods Datasets Modality Accuracy 
 

Outcome 

 

Liu et al. (2020) 

[16] 

3D CNN with 

MRI data 
ADNI MRI 85.7% 

Robust feature extraction, 

requires large training datasets, 

high computational cost 

Shi et al. (2020) 

[17] 

Attention-based 

neural network 

with PET data 

ADNI PET 90.1% 
Enhanced feature extraction 

with attention mechanism, high 

computational resources 

Pan et al. (2020) 

[18] 

Transfer 

learning with 

pre-trained 

CNN models 

ADNI MRI, PET 89.5% 

Effective feature transfer, 

dependence on pre-trained 

models, potential domain 

adaptation issues 

Zhang et al. (2021) 

[19] 

CNN with 

Connection-

Wise Attention 

Mechanism 

 

 

ADNI 

MRI 88.6% 
Improved feature localization, 

requires large datasets, high 

computational cost 

Zhou et al (2021) 

[35] 

Transfer 

learning 

(ResNet) 

ADNI MRI 91% 
Efficacy of TL in using pre-

trained models for MI tasks 

Nguyen et al (2021) 

[36] 

Deep generative 

model 
ADNI MRI 92% 

Significant improvement in 

performance through data 

augmentation 

Kim et al (2021) 

[37] 

Dual-stream 

CNN 
ADNI MRI, fMRI 88% 

Superior performance by 

combining structural and 

functional MRI data 

Chen et al (2022) 

[33] 
LSTM, CNN ADNI MRI, PET 87% 

Improved classification 

accuracy by integrating 

temporal and spatial features 

Wang et al (2022) 

[34] 

Attention-based 

CNN 
ADNI MRI >90% 

Enhanced feature extraction and 

improved diagnosis 
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Patel et al (2022) 

[38] 

Capsule 

networks 

(CapsNets) 

ADNI, 

OASIS, 

AIBL 

MRI 85% 
High accuracy by capturing 

spatial hierarchies 

Zhang et al (2022) 

[39] 

Multi-task 

learning 

ADNI, 

OASIS, 

AIBL, 

BRAINS 

MRI 82% 

Simultaneous AD diagnosis and 

cognitive score prediction, 

benefits of shared feature 

learning 

Al-Khuzaie et al 

(2023) [20] 
AlzNet (CNN) OASIS fMRI 99.53% 

High accuracy with effective 

dropout handling 

Al-Adhaileh et al 

(2023) [21] 

AlexNet, 

ResNet50 
Kaggle MRI 

94.53%, 

58.07% 

AlexNet outperforms ResNet50, 

high 4-class classification 

accuracy 

Antony et al (2023) 

[22] 

VGG16, 

VGG19 
ADNI MRI 81%, 

Preprocessing improves 

performance, VGG19 slightly 

outperforms VGG16 

Liu et al (2023) 

[23] 

CNN, AlexNet, 

GoogLeNet 
ADNI MRI 84% 

Transfer learning enhances 

performance, robust feature 

extraction 

Ge et al (2023) [24] 
3DMSCNN, 

GCNN 
ADNI MRI 82% 

Multi-scale feature fusion, 

structural connectivity graphs 

used. 

Song et al (2023) 

[25] 
GCNN 

ADNI, 

OASIS, 

ABIDE 

MRI, PET 85% 
Multi-class AD spectrum 

classification, graph-theoretic 

tools utilized 

Liu et al (2023) 

[23] 

Multi-model 

CNN, 3D 

DenseNet 

ADNI MRI 80% 
Joint hippocampal segmentation 

and AD classification, high 

accuracy 

Impedovo et al 

(2023) [27] 

Cognitive 

model 

ADNI, 

OASIS 
MRI - 

Non-invasive 

neurodegenerative dementia 

diagnosis and monitoring 

protocol 

Harshit et al (2023) 

[28] 
3D CNN 

ADNI, HCP, 

OASIS 
MRI 79% 

4-stage AD classification, 

emphasis on volumetric data 

Silvia et al (2023) 

[29] 
Various CNNs 

ADNI, 

OASIS, 

AIBL 

MRI, fMRI 86% 
Dense connectivity improves 

feature learning and 

classification accuracy 

Dan et al (2023) 

[30] 
3D DenseNet 

ADNI, 

OASIS, 

AIBL 

MRI 88% 
Effective in 4-way AD 

classification, improved feature 

learning 

Allugunti et al 

(2023) [31] 
CNN 

ADNI, 

OASIS, 

MIRID 

MRI 90% 
Superior performance in AD 

diagnosis, robust against 

overfitting 

Jianliang et al 

(2023) [32] 
CNN ABIDE I MRI 90.39% 

High accuracy in autism 

spectrum disorder classification, 

potential application in AD 

diagnosis 

 

The literature review highlights significant 

advancements in applying DL techniques to AD 

diagnosis using various MI modalities such as MRI 

and PET. Studies demonstrate that CNN, RNN, and 

other DL architectures, often enhanced by attention 

mechanisms, TL, and multimodal data integration, 

achieve high classification accuracy and robust 

feature extraction. However, large annotated 

datasets are needed, high computational costs, 

potential overfitting, and limited interpretability of 

complex models persist. Despite these hurdles, the 

reviewed works collectively underscore the potential 

of DL to revolutionize early AD diagnosis and pave 

the way for more effective and timely interventions. 

3. Dataset 

 
Several major datasets are commonly employed in 

AD study: 

ADNI: MRI, PET, and genetic data from an 

extensive sample of patients with AD, MCI, and HC 

make up one of the most comprehensive datasets 

available. It aims to monitor AD progression and aid 

in the development of diagnostic and treatment 

methods. 

OASIS: The OASIS dataset provides MRI scans of 

the brain from individuals of various ages, including 

those with AD and MCI. It is valuable for studying 
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age-related brain changes and neurodegenerative 

diseases. 

Australian Imaging, Biomarkers, and Lifestyle 

(AIBL): This dataset contains MRI and PET scans, 

as well as cognitive and genetic data, from 

individuals across different stages of AD. It focuses 

on understanding the impact of lifestyle factors on 

AD. 

MCI Dataset: Collected from the MCI cohort, this 

dataset provides imaging and clinical data to study 

the transition from MCI to AD and identify early 

biomarkers. 

ADNI-GO/ADNI-2: Extensions of the original 

ADNI study, these datasets include additional 

participants and follow-up data, offering perceptions 

into the AD progressions and the efficacy of 

interventions. 

 

4. Common classification models 

 
An enormous problem to global healthcare systems 

is AD, a progressive NDD that severely impacts 

memory and cognitive function. Early diagnosis is 

critical for managing the disease effectively, and MI 

techniques like MRI and PET have become 

indispensable tools in this effort. Leveraging large 

datasets and sophisticated computational algorithms, 

DL models particularly those centered on 

classification have revealed significant ability in 

refining the efficacy and accuracy of AD diagnosis. 

This section explores common DL-based 

classification models used in AD research, providing 

a detailed overview of their methodologies, 

advantages, and limitations. 

 

4.1. CNN 

 

Due to their capacity to automatically learn spatial 

feature hierarchies, CNNs are frequently utilized for 

IC problems. CNNs are used to separate healthy 

controls, people with MCI, and AD from MRI and 

PET scan data at the research stage. CL for FE, 

pooling layers for (DR) Dimensionality Reduction, 

and Fully Connected (FC) layers for classification 

are commonly included in their structure [40]. CNNs 

have demonstrated high accuracy and robustness in 

identifying AD biomarkers but require large datasets 

and significant computational power that illustrated 

in Figure 4. 

 

4.2. RNN 

 

Long Short-Term Memory (LSTM) is a type of RNN 

networks, that are especially well-suited for 

Sequential data. When analyzing longitudinal 

imaging data related to AD, RNNs are employed to 

 
 

Figure 4. CNN. 

 

capture the disease's progression across time [41]. 

The progression from MCI to AD can be detected 

with the support of this temporal analysis. Despite 

their strength in temporal modeling, RNNs are 

computationally intensive and can suffer from issues 

like Vanishing Gradients (VG) described in Figure 

5. 

 

 
Figure 5. RNN. 

 

4.3. Autoencoders 

 

When input data is encoded into a lower-

dimensional space and subsequently decoded back 

to the original space, AE are unsupervised learning 

models. AE are utilized in AD research to extract 

features from high-dimensional imaging data and 

DR [42].  

 

 
 

Figure 6. Auto Encoder. 
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They can also be employed for anomaly detection, 

identifying patterns indicative of AD. However, 

training autoencoders can be complex, and they may 

not always capture the most relevant features for 

classification and represented in figure 6. 
 

4.4. GAN 

 

A generator and a discriminator, 2 NN that compete 

with one another to increase performance, make up 

a GAN. In Alzheimer's diagnosis, GANs are used for 

DA, generating synthetic imaging data to address the 

scarcity of labeled datasets [43]. This augmentation 

helps in training more robust models. Despite their 

potential, to prevent problems like the mode collapse 

shown in Figure 7, GANs must be carefully tuned 

and might be difficult to train. 

 

 
 

Figure 7. GAN. 

 

4.5. TL 

 

Through the application of huge datasets and pre-

trained models, TL enhances performance on certain 

tasks with sparse data. Models pre-trained on generic 

image recognition (IR) tasks are refined using 

imaging data unique to AD in study [44]. This 

approach significantly reduces training time and 

computational resources while maintaining high 

accuracy. However, the effectiveness of TL can be 

determined by the degree of similarity among the 

source and target domains. 

The integration of these DL models into Alzheimer's 

research has led to significant advancements in early 

diagnosis and progression prediction. CNNs, with 

their powerful feature extraction capabilities, have 

been particularly effective in distinguishing between 

different stages of AD. RNNs add value by capturing 

the temporal dynamics of disease progression, while 

autoencoders contribute to efficient feature 

representation and anomaly detection. GANs 

enhance the training process by providing additional 

synthetic data, and transfer learning accelerates the 

development of robust models with limited data 

availability. Together, these models form a 

comprehensive toolkit for tackling the complex 

challenge of AD diagnosis. 

In summary, DL models offer powerful methods for 

the classification and early diagnosis of AD using 

MI. CNNs, RNNs, AE, GANs, and TL each bring 

unique strengths to the table, from robust FE and 

temporal analysis to DA and efficient model 

training. Despite challenges such as high 

computational demands and the need for large 

datasets, when combined, these models improve the 

state of AD research and allow for more rapid and 

precise diagnosis. Future efforts should focus on 

addressing the existing limitations and further 

refining these models to enhance their clinical 

applicability and impact. 

 

5. Classification of AD based on different 

modality imaging 

 
Millions of people globally suffer with AD, a 

progressive NDD identified by memory loss and 

cognitive impairment. Effective disease 

management and therapy depend on an early and 

precise diagnosis. The diagnosis and tracking of AD 

progression are greatly aided by several imaging 

modalities, such as CT, PET, and MRI. Every 

modality offers a different perspective concerning 

the structural and functional variations in the brain 

related to AD. DL models have been increasingly 

utilized to enhance the classification and diagnosis 

of AD using these imaging techniques. A detailed 

report of the classification of AD based on different 

imaging modalities was presented in this section. 

 
5.1. MRI 

 

HR images of the structure of the brain can be 

obtained using MRI, a NI imaging method. It is 

especially helpful in identifying brain atrophy, 

which is a defining feature of AD. CNN, one type of 

DL model, have been employed to analyze MRI data 

to classify AD. These models excel in extracting 

relevant features from the complex anatomical 

structures visible in MRI images. They can identify 

patterns indicative of AD, such as hippocampal 

atrophy, with high accuracy [45]. The primary 

advantage of MRI-based classification is its 

capability to detect subtle structural variations in the 

brain, aiding in early diagnosis. 

 

5.2. Positron emission tomography (pet) 

 

Brain metabolism can be determined by PET 

imaging, a functional imaging modality. It is 

frequently utilized to find aberrant protein deposits 

linked to AD, like tau tangles and amyloid-beta 

plaques [46]. RNN and CNNs are two examples of 

DL models that have been used to classify AD in 
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PET scans. These models can analyze the spatial 

distribution of radiotracers used in PET imaging, 

providing insights into the functional abnormalities 

associated with AD. PET-based classification is 

particularly valuable for identifying biochemical 

changes in the brain that precede structural 

alterations. 
 

5.3. Computed tomography (CT) 

 

Cross-sectional images of the brain are produced by CT 

imaging utilizing X-rays. CT scans are less precise 

than MRIs, but they can still identify important brain 

abnormalities related to AD, such as generalized 

brain atrophy and enlarged ventricles. For enhancing 

the detection and classification of AD, DL 

approaches have been applied to CT scans. While 

CT-based classification is less common due to its 

lower resolution compared to MRI and PET, it 

remains a useful tool in cases where MRI or PET are 

not available or feasible. The primary benefit of CT 

imaging is its widespread availability and lower cost. 

A more comprehensive understanding of AD offered 

by combining different imaging modalities. 

Multimodal approaches leverage the strengths of 

each modality, integrating structural data from MRI, 

functional data from PET, and supplemental insights 

from CT. Deep learning models designed to handle 

multimodal data can enhance the robustness and 

accuracy in classifying AD. For instance, CNNs can 

extract features from MRI and PET images 

simultaneously, while hybrid models can 

incorporate both spatial and temporal information. 

This multimodal integration enhances the ability to 

identify early biomarkers of AD, track disease 

progression, and differentiate AD from other 

neurodegenerative disorders. 

In summary, the AD classification using different 

imaging modalities, including MRI, PET, and CT, 

provides a multi-faceted approach to early and 

accurate diagnosis. Deep learning models have 

significantly enhanced the ability to analyze these 

complex imaging datasets, offering improved 

accuracy in identifying AD biomarkers. MRI excels 

in detecting structural changes, PET provides 

functional insights, and CT serves as a valuable 

supplemental tool. Early Detection, better patient 

outcomes and more targeted therapeutic 

interventions was attained by the combination of 

these modalities through MM DL approaches. 

 

6. A DL method based on multimodality 
 

The characteristics of AD involves multiple 

functional and structural variations of the brain, a 

complicated neurodegenerative disease [47]. Early 

diagnosis and monitoring of AD are vital for better 

diagnosis and care. A multimodal approach, 

combining different types of MI such as MRI, PET, 

and CT, offers a comprehensive view of the disease's 

impact. DL models have emerged as powerful tools 

in this field, capable of integrating and analyzing 

multimodal data to improve diagnostic accuracy 

[48]. This section explores a DL approach depends 

on multimodality for AD, highlighting its 

methodologies, advantages, and challenges. 
 

6.1. Data acquisition and pre-processing 

 

The initial stage in a multimodal DL approach is 

acquiring data from various imaging modalities. 

MRI provides high-resolution structural images, 

PET offers insights into metabolic activity, and CT 

can supplement with additional structural 

information. To ensure data quality and consistency, 

such as noise reduction, normalization, and 

alignment of images to a common anatomical space, 

every modality requires specific pre-processing 

steps. For effective integration and analysis of 

multimodal data, this pre-processing is crucial. 

 

6.2. Feature extraction 

 

DL models, particularly CNN, are employed for FE 

from each imaging modality. For MRI, CNNs can 

identify structural changes like hippocampal 

atrophy. For PET, they can detect abnormal 

metabolic patterns associated with amyloid-beta 

plaques and tau tangles. CT scans can provide 

supplemental structural features. Each modality 

contributes unique information, and feature 

extraction is tailored to highlight these aspects. 

 

6.3. Multimodal integration 

 

Integrating features from multiple imaging 

modalities is the core of a multimodal deep learning 

approach.  

This integration can be achieved through various 

strategies: 

Early Fusion: Combining raw data or initial feature 

maps from different modalities before feeding them 

into a unified deep learning model. 

Intermediate Fusion: Separately extracting 

features from each modality and then combining 

these features at an intermediate layer within the 

neural network. 

Late Fusion: processing each modality separately 

using different models, then merging the results at a 

later phase (e.g., classification layer). 

The selection of fusion method depends on the actual 

necessities of the study and each strategy has 

benefits and drawbacks. 
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6.4. Model training and validation 

 

Labeled data is used for training the DL framework 

after the multimodal data has been combined. In 

order to reduce classification errors and enhance the 

model's capacity to discriminate among healthy 

controls (HC), MCI, and AD, the model's parameters 

must be optimized. Validation techniques such as 

CV and the use of separate testing datasets are used 

to ensure the model's generalizability and strength. 
 

6.5. Classification and interpretation 

 

The final step involves classifying the input data into 

diagnostic categories. Advanced deep learning 

models can provide high accuracy in distinguishing 

among different stages of AD. Additionally, 

interpretability methods, such as saliency maps and 

attention mechanisms, can highlight the regions and 

features that are most indicative of the disease, 

aiding clinicians in understanding the DM 

(Decision-Making) process of the framework. 

The integration of multimodal imaging data through 

DL models is an important progress in AD research. 

MRI, PET, and CT each provide unique insights into 

the disease's impact on the brain, and their 

combination through deep learning will result in 

more accurate and early diagnosis. For instance, 

CNNs can extract structural features from MRI and 

CT scans, while PET data can provide metabolic 

information. By using fusion strategies, these 

features can be integrated into a comprehensive 

model that enhances diagnostic precision [49]. The 

resulting models not only improve classification 

accuracy but also offer interpretable insights that can 

assist clinicians in understanding the underlying 

mechanisms of AD. 

A deep learning approach based on multimodality 

uses the robustness of various imaging techniques to 

enhance the diagnosis and monitoring of AD. By 

integrating structural, functional, and supplemental 

data from MRI, PET, and CT scans, these models 

provide a comprehensive analysis that enhances 

diagnostic accuracy and early detection. Despite 

challenges related to data accessibility and 

computational complexity, multimodal DL 

approaches hold ability for advancing AD research 

and medical practice, finally result in better patient 

outcomes and more effective treatments. 
 

7. Inferences 

 
The implementation of DL in AD research presents 

a transformative potential for early diagnosis, 

disease monitoring, and treatment optimization. By 

integrating multimodal imaging techniques like 

MRI, PET, and CT, DL models can offer a 

comprehensive and detailed analysis of the brain's 

structural and functional changes related to AD. 

These models, particularly CNN and RNN, best in 

extracting relevant features and identifying 

biomarkers that are crucial for early detection and 

differentiation of AD stages. Despite challenges 

such as high computational demands, data quality 

and availability, and ethical considerations, the 

advancements in deep learning offer promising 

prospects for personalized medicine, enhanced 

diagnostic accuracy, and more effective therapeutic 

strategies. Both the patient's result and the 

comprehension of AD could be greatly improved by 

continual development and improvement of these 

models, when combined with cooperative efforts and 

ethical AI procedures. 

 

8. Performance evaluation and metrics 

 
The model was assessed using the test set, which was 

produced by splitting the original dataset prior to 

model training. Various measures have been 

employed to ensure the resilience of the framework. 

The extent to which these indicators are interpreted 

is an analysis of the frameworks training efficiency. 

It uses a range of metrics to assess the algorithm's 

efficiency is represented in Table 2 and Table 3. 

Accuracy: The proportion of actual predictions that 

were accurately predicted is known as accuracy. 

More than 80% is generally regarded as good, and 

more than 90% as great. The following expressions 

determine this metric. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                     (1) 

 

Here, TN stands for True Negative. 

FP represents False Positive  

TP denotes True Positive 

FN represents False Negative. 

Precision: The ratio of accurate optimistic 

predictions to overall optimistic predictions is 

known as precision and it may be calculated using 

the following formula. Precision values greater than 

80% are typically considered effective. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                      (2) 

 

Recall: It's also known as the TP rate or the 

sensitivity score. Comparing accurate optimistic 

predictions with all real accurate positives is the 

process of recall. A recall range of 70% to 90% is 

usually considered good. The recall is computed by 

the equation given below: 
         

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                            (3) 
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F1-score: The unique value that the F1 score offers 

for every class label makes it significant. The F1-

score can be calculated using the formula below. 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +𝑅𝑒𝑐𝑎𝑙𝑙
                       (4) 

Balanced accuracy: TP rate (TPR) and TN rate 

(TNR) are averaged to determine it. The TNR 

denotes the ratio of negative to positive occurrences, 

and the TPR reflects the ratio of accurately 

diagnosed positive to negative occurrences. 

Matthews Correlation Coefficient (MCC): The 

imbalance among positive and negative samples in a 

dataset is considered by the more sophisticated MCC 

metric. The metric may become unbalanced if the 

number of occurrences in one class is much higher 

than that of the other. The following formula 

determines the MCC: 

𝑀𝐶𝐶 =
(𝑇𝑃×𝑇𝑁)−(𝐹𝑃×𝐹𝑁)

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
                                    (5) 

 

Figure 8 The graph illustrates the accuracy 

percentages of various studies conducted between 

2020 and 2023, with the accuracy ranging from 

approximately 80% to 86%. The y-axis represents 

the accuracy percentages, while the x-axis lists the 

studies by the authors' names and publication years. 

Each blue bar shows the accuracy reported by a 

particular study, and a dashed line indicates the 

linear trend of these accuracies. The accuracy 

percentages show a stable trend over the years, with 

the lowest reported by Al-dhalieh et al. (2023) at 

around 80% and the highest by Al-Khuzaie et al. 

(2023) at about 86% [20]. Figure 9. The graph 

compares sensitivity and specificity percentages 

from various studies between 2021 and 2023, 

showing consistently high values 
 

Table 2. Explains the many techniques researchers 

employ to accurately diagnose AD parameters 

Author Name  Accuracy 

Liu et al., (2020) [16] 85.7% 

Pan et al., (2020) [18] 89.5% 

shi et al., (2020) [17] 90.1% 

kim et al (2021) [37] 88% 

Nguyen et ak (2021) [36] 92% 

zhang et al., (2021) [19] 85.3% 

Zhou et al (2021) [35] 91% 

Chen et al (2022) [33] 87% 

Patel et al (2022) [38] 85% 

Wang et al., (2022) [34] 90.00% 

Zhang et al (2022) [39] 82% 

Al-dhaileh et al., (2023) [21] 94.53% 

Al-Khuzaie et al., (2023) [20] 97.54% 

Allungunti et al (2023) [31] 90% 

Antony et al., (2023) [22] 81.00% 

Antony et al., (2023) [22] 81% 

Ge et al (2023) [24] 82% 

harshit et al (2023) [28] 79% 

Jianling et al., (2023) [32] 90.39% 

Liu et al (2023) [23] 84% 

Liu et al (2023) [23] 80% 

song et al (2023) [25] 85% 

 

 
 

Figure 8. Comparison chart of accuracy derived from different articles 
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Table 3. A table of comparison for the metrics of the current approaches 

Author Name Sensitivity  Specificity 

Zhou et al (2021) [35] 89.50% 90.00% 

Nguyen et al (2021) [36] 88.90% 89.20% 

Kim et al (2021) [37] 91.20% 91.70% 

Chen et al (2022) [33] 92.30% 91.90% 

Wang et al (2022) [34] 91.40% 90.70% 

Patel et al (2022) [38] 90.80% 91.50% 

Zhang et al (2022) [39] 90.70% 91.50%/ 

Al-Khuzaie et al (2023) [20] 98.70% 99.10% 

Al-Adhaileh et al (2023) [21] 93.80% 92.60% 

Antony et al (2023) [22] 80.20% 83.10% 

Liu et al (2023) [23] 89.50% 90.20% 

Ge et al (2023) [24] 87.30% 88.90% 

Song et al (2023) [25] 91.10% 92.00% 

Liu et al (2023) [23] 90.70% 91.30% 

Harshit et al (2023) [28] 88.40% 89.20% 

Silvia et al (2023) [29] 92.50% 93.10% 

Dan et al (2023) [30] 89.80% 90.50% 

Allugunti et al (2023) [31] 93.00% 93.70% 

Jianliang et al (2023) [32] 90.20% 89.80% 

 

 
 

Figure 9. Comparison table of sensitivity and specificity performance. 

 

across all studies. With the lowest reported by (2022) 

and the highest by Zhang et al. (2022) [39], the 

sensitivity values range from about 75% to 95%. 

with the lowest coming from Al-Khuzaie et al. 

(2022) [20] and the highest from Zhang et al. (2022) 

[39], Specificity values range from around 70% to 

93%.The data indicate a generally high performance 

in both sensitivity and specificity across the studies, 

with minor variations. While some models exhibit 

slightly lower metrics, they still reflect effective 

feature learning and diagnostic accuracy. Overall, 

the data illustrates significant improvements in 

diagnostic precision, highlighting the efficiency of 

contemporary DL approaches in early Alzheimer's 

detection. 
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9. Conclusion and Future Enhancement 
 

The accurate and early diagnosis of AD remains a 

major risk due to its complex and heterogeneous 

nature, often leading to delayed intervention and 

suboptimal patient outcomes. Current diagnostic 

methods rely heavily on clinical evaluation and 

imaging modalities like MRI, PET, and CT, which, 

while informative, often lack the sensitivity and 

specificity needed for early detection and precise 

staging of the disease. Deep learning approaches 

have emerged as promising solutions to enhance AD 

diagnosis by leveraging multimodal data integration 

and advanced computational algorithms. Models 

like CNN and RNN demonstrate robust capabilities 

in feature extraction and classification, significantly 

improving diagnostic accuracy. Future 

enhancements should focus on addressing data 

limitations, refining model interpretability, and 

integrating genetic and omics data to develop 

personalized diagnostic and treatment strategies. 

Collaborative efforts in data sharing and 

standardization, coupled with advancements in 

ethical AI practices, will be pivotal in accelerating 

these developments and ultimately transforming the 

landscape of Alzheimer's disease management. 

Interesting similar papers were also reported in the 

literature [50-65]. 
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