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Abstract:  
 

Automatic modulation recognition (AMR) is a fundamental task in communication 

systems. Feature extraction (FE) is an essential part in the recognition system,the proper 

selection of FE will enhance the recognition accuracy, and reduce the complexity of the 

system. In this paper, Reverse Biorthogonal wavelet (RBW), andDiscrete Meyer 

Wavelet (DMW), followed by standard deviation are used for FE. They are used to 

reduce the FE sets, and complexity of the recognition system.Adaptive Neuro Fuzzy 

Inference system is used as a classifier, to classify the,M-ary Pulse Amplitude 

Modulation (PAM) signals (i.e.4PAM, 8PAM, 16PAM, 32PAM, 64PAM, 

and128PAM), in a wide range of signal to noise ratio (SNR). MATLAB programs were 

used to fulfill all the requested tasks.The results show that the recognition system of M-

ary (PAM) signals exhibits a satisfactory level under low SNR, and the system can 

achieve success rates over 98% in SNR  ( from -2 to 12) dB. 

 

1. Introduction 

 
Automatic modulation recognition (AMR), a 

system that can detect automatically  the 

modulation scheme from a received modulated 

signals without a priori information of the received 

signals parameters [1], AMR is important to 

recognize the transmitted modulated signal and, 

then determine the appropriate demodulation 

method to recover the transmitted signals correctly 

and accurately [2]. It is widely used in military, and 

civilian applications, and commercial scenarios [3], 

IOT [4], and spatial cognitive communication 

systems [5].It can be split into likelihood-based 

AMR (LB-AMR), and relies upon feature based 

AMR (FB-AMR), the (LB-AMR) exploits the 

recognition of a combination of hypothesis and 

testing problems, it suffers from hardness to 

implementation, high computational complexity, 

and lack of robustness [6]. In (FB-AMR), the 

recognition based on feature extraction (FE) and 

classifier [7], review of signal features and 

classifiers are demonstrated in [8- 10]. Selection of 

FE is a big challenge in the recognition of the 

modulated signals.There is a trade of number of 

extracted features and complexity of the 

recognition system, increasing the numbers of 

extracted features improve the accuracy of the 

system, but increase the complexity of the system, 

thus will increase the recognition time (training and 

classification times), that is very important in 

signals recognition [11], the AMR is useless if the 

recognition time is more than the signal period. In 

order to tackle these matters, Discrete Meyer 

wavelet (DMW) transform and reverse 

biorthogonal wavelet (RBW) followed by standard 

deviation for dimensionality reduction were used in 

this paper as features extraction. In [12], 

Continuous WT, Haar type was employed to 

classify the signals 4QAM, 8QAM, 16QAM, 

2PSK, 4PSK, 8PSK, 2FSK, 4FSK, 8FSK, the 

percentage of recognition is more than 65% at 

(SNR) less than 5dB, the algorithm presents low 

computational complexity and small calculation 

amount. The authors in [13] use continuous WT to 

extract features for analyzing and classifying the 

signals BFSK, QFSK, 8FSK, 2ASK, 4ASK, 8ASK, 

QPSK, 8PSK, 16QAM, 32QAM, 64QAM.Binary 

digital modulation signals were analyzed in the 

presence of additive white Gaussian noise (AWGN) 

using Haar wavelet, the results show a high average 
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accuracy of classification especially at low SNR 

[14]. In [15], discrete WT was used and 4th, 6th, 

8th order moment for FE to identify MFSK signals. 

Continuous WT was used to analyze the parameters 

of signal characteristic in the AMR system, the 

proposed system grants high recognition rate to 

identify eight kinds of signals including MPSK, 

MASK, MFSK, and MQAM [16]. This paper 

reduces the complexity of the system by applying 

the standard deviation to the DWT and RBW, as 

well as improving the recognition efficiency 

especially at low SNR. While reducing the 

complexity and getting a high recognition ratio at 

low SNR were difficulties in previous researches. 

 The proposed classifier sub system is adaptive 

neuro fuzzy inference system [17] for training and 

decision- making. The proposed AMR can detect 

the type of modulation scheme automatically. The 

proposed algorithm is evaluated on M-ary pulse 

amplitude modulation (MPAM) types: 4PAM, 

8PAM, 16PAM, 32PAM, 64PAM, 128PAM. 

Following this introduction, section 2, discusses the 

mathematical model. section 3 gives the proposed 

AMR system, section 4, presents the simulation 

results and analysis. section 5 the conclusion is 

drawn. 

 

2. Mathematical Model 

 
2.1 Signal Modulation Recognition Model 

 

This article specifies the modulation signal briefly 

namely M-ary Amplitude pulse modulation 

(MPAM). MPAM is a kind of modulation scheme 

that controls the different amplitude of carrier to 

attain the digitally modulated signal. MPAM is a 

good candidate for use in orthogonal frequency 

division multiplexing, it's minimum subcarrier 

frequency separation is 1/2T instead of 1/T for 

QAM, or MPSK, where T is symbol duration, then 

MASK is considered for bandwidth efficient 

applications [18]. 

The general mathematical expression of digital 

MPAM signal waveforms can be expressed as: 

 

𝑥(𝑡) = �̃�(𝑡)𝑒𝑗(𝜔𝑐+𝜃𝑐)                       0 ≤ 𝑡 ≤ 𝑇       (1) 
 

Where 

x(t) is the modulated MPAM signal, �̃� is the 

envelope, 𝜔𝑐 and 𝜃𝑐 are the carrier frequency and 

carrier phase respectively. 

 

�̃�(𝑡) =  ∑𝐴𝑖ℎ𝑇(𝑡 − 𝑖𝑇)

𝑀

𝑖=1

 

 
𝐴𝑖 = 2𝑖 − 1 − 𝑀          𝑖 = 1,2, … . ,𝑀         

𝐴𝑖represents the signal amplitude, and M= 2k, k 

refers to number of bits for each symbol.ℎ𝑇 is the 

standard unit pulse with duration T [19]. 

The mathematical expression of the received signal 

can be written as: 

 
𝑦(𝑡) = 𝑥(𝑡) + 𝑛(𝑡)            (2) 

 

Where 𝑛(𝑡) is AWGN. 

 

2.2 Discrete Meyer and Reverse Biorthogonal 

WT 

 

Both continuous and discrete WT are powerful 

techniques with the ability to analyze and filter non 

stationary signals. Continuous WT is the basis of 

wavelet analysis. In case of discrete WT, digital 

filtering techniques are used to analyze the signals, 

the input signal is filtering by a high pass filter and 

low pass filter. The two filters compose the analysis 

filter bank, while the inverse discrete WT can 

reconstruct the original signal by a synthesis filter 

[20]. Meyer wavelet (MW) has many advantages 

like smoothness, derivation infinitely, its spectrum 

is finite, and attenuates fast, thus it is valuable to 

numerical calculation.MW spectrum is given by: 

 

�̂�(𝑊) =

{
 
 

 
 𝑒𝑗

𝑊

2 𝑠𝑖𝑛 (
𝜋

2
𝜗 (

3|𝑊|

2𝜋
− 1))

2𝜋

3
≤ |𝑊| ≤

4𝜋

3

𝑒𝑗
𝑊

2 𝑐𝑜𝑠 (
𝜋

2
𝜗 (

3|𝑊|
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3
≤ |𝑊| ≤

8𝜋

3

0                            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

    

(3) 
 

𝜗(𝑦) = {

0   𝑖𝑓       𝑦 < 0
𝑦   𝑖𝑓 0 ≤ 𝑦 ≤ 1

1   𝑖𝑓        𝑦 > 1
 

 

Where 𝜗(𝑦) is a smooth function [21], [22]. 

Biorthogonal wavelet (BW), shows the property of 

linear phase, two sets of symmetric wavelets are 

required, 𝜑𝐿,𝑀 and its dual �̃�𝐿,𝑀, one set is utilized 

for analysis of the signal and the other to 

reconstruct it [23]. Reverse biorthogonal wavelet 

(RBW) family is got from BW. BW fulfills the 

biorthogonality condition 

 

∫ 𝜑𝐿,𝑀
∞

−∞
,�̃�𝐿′,𝑀′(t) dt={

1     𝑖𝑓 𝐿 = 𝐿′  𝑎𝑛𝑑 𝑀 = 𝑀′

0                         𝑜𝑡ℎ𝑒𝑟 𝑤𝑖𝑠𝑒
   (4) 

 

The number which follows the BW and RBW 

symbolize the number of vanishing moment [24]. 

 

2.3 Standard Deviation 

 

The sample standard deviation (SSD) can be 

expressed as: 
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𝑆𝑆𝐷 = √
1

𝑁−1
∑ (𝑥𝑖 − �̅�)

2𝑁
𝑖=1            (5) 

Where: 

 

�̅� =
1

𝑛
∑𝑥𝑖

𝑁

𝑖=1

 

 

N is the sample size.𝑥𝑖 is the ith point in the data 

set. �̅� is the mean [25]. 

 

3. Proposed AMR System 

 
A developed AMR was designed to recognize the 

MPAM signals, 4PAM, 8PAM, 16PAM, 32PAM, 

64PAM, and 128PAM. The signals are corrupted 

with noise through AWGN channel. DMW and 

RBW were utilized followed by standard deviation, 

the selection of FE reduces the complexity of the 

system, and enhance the performance of the 

classifier. The features extraction were arranged as 

matrices for classification process. Classification 

sub system is based on adaptive neuro fuzzy 

inference system. Figure 1shows the proposed 

system. MATLAB programs were designed to 

produce each stage in the system.  

 

Figure 1. Proposed AMR system. 

 

4. Simulation Results and Analysis 

 
The AMR proposed system was simulated in 

MATLAB. The simulation was performed for 

recognition of MPAM signals. The results were 

obtained with 1680 bits for each modulation type at 

each signal to noise ratio (SNR), and AWGN was 

added according to specified SNR. Features of 

signals were extracted using approximation 

coefficients of DMW, and RBW, followed by 

standard deviation for each to decrease the 

computational complexity of the AMR, Figure 2 

and 3 demonstrate the FE for each MPAM signal 

with specified SNR using DMW, and RBW 

respectively. The figures shows a high 

discriminating facilities of the FE of the system, 

thus improve the efficiency of the classifier. 

Adaptive neuro fuzzy inference system was utilized 

as a classifier.The input member ship function type 

is generalized bell, a number of member ship 

function =3, the output member ship function is 

linear, and the hybrid (gradient descent and least 

square) learning algorithm. After 1000 epochs the 

training error was =0.014912. Table 1 shows the 

classifier parameters, which were generated and 

copied from MATLAB program through 

recognition processes. The FEs are arranged as a 

matrices to train and test the classifier using 

MATLAB programs, The first two numbers of each 

row represents the input and 

 
Table 1. Classifier parameters. 

Classifier Parameters Numbers 

Nodes  35 

 Linear parameters 27 

 Nonlinear parameters 18 

Total parameters 45 

Training data pairs 48 

 Fuzzy rules 9 

 

 
Figure 2. FE of the modulated signals using discrete 

MW. 

 
Figure 3. FE of the modulated signals using RBW. 
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the last number represent the output. Choice of the 

signal scheme type was represented by a numeric 

value; table 2 shows these choices. The program 

was run 1000 iteration for each test. The system 

encounters all the types of the MPAM signals, if 

the choice number and the decision numbers had 

the same value, then the classification was correct,  

Table 2 the output numbers of classifier represent 

the signals 

 
Choice Number Modulation Type 

1 4PAM 

2 8PAM 

3 16PAM 

4 32PAM 

5 64PAM 

6 128PAM 

 

However, if the choice and classifier decision were 

not the same, then the results represent incorrect 

classification. Figure 3 demonstrate the output of 

AMR system. From the results the system offers 

high recognition ratio close to 98.5%, robust and 

low complexity. Figure 4 shows classification of 

MPAM signals. 

 

 
Figure 4. Classification of MPAM signals. 

 

5. Conclusion 

 
MPAM schemes are proposed to identify 

modulated signals in the presence of AWGN 

channel. DMW and RBW were used for FEs 

followed by standard deviation to reduce the 

complexity of the system, and classifier training 

time. The classifier is based on neuro fuzzy 

inference system. The structure of the system is 

robust against AWGN of channel, as well as high 

recognition ratio. The simulation results exhibits 

the high performance of the proposed AMR system. 

Applying the proposed recognition system for other 

digitally modulated signals are suggested for future 

work. IoT applied in different works as reported in 

literature [26-37]. 
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