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Abstract:  
 

Deepfake technology has emerged as a significant challenge to the authenticity of digital 

media, necessitating innovative detection methods. This paper introduces TrueSync, an 

advanced application for detecting deepfake videos by integrating two critical detection 

features: lip-sync analysis and blink rate monitoring. Leveraging a hybrid approach 

combining CNN-LSTM and SyncNet models, TrueSync processes visual and temporal 

features to identify anomalies in lip movement synchronization and eye blinking patterns. 

The application utilizes a modular pipeline to analyse these features independently and 

then fuses the results for a comprehensive detection score. This approach enhances 

detection accuracy and provides users with reliable tools to combat sophisticated 

manipulations. By proposing this scalable solution, TrueSync addresses the increasing 

difficulty in distinguishing authentic videos from manipulated content, fostering trust in 

digital media. 

 

1. Introduction 
 

Deepfake technology has rapidly advanced, utilizing 

artificial intelligence to manipulate video, audio, and 

images, creating highly realistic yet fabricated 

media. While these advancements have proven 

beneficial in areas such as accessibility for 

individuals with speech impairments, they also 

present significant societal risks. The malicious use 

of deepfakes for deception purposes such as identity 

theft, and misinformation, has raised serious 

concerns about the integrity of digital content and its 

implications for privacy and security. A particularly 

dangerous subset of deepfakes includes those that 

alter lip movements to match altered audio, a form 

of manipulation known as lip-sync deepfakes. These 

videos are challenging to detect due to their subtlety, 

as the imperfections are localized primarily to the lip 

region, making it easier to produce convincing fakes. 

Similarly, inconsistencies in blinking patterns, 

which can deviate from natural human behavior, are 

another key indicator of deepfake manipulation. The 

difficulty of identifying these anomalies emphasizes 

the need for more robust detection systems capable 

of recognizing both lip-sync and blink rate 

inconsistencies. This paper introduces TrueSync, an 

innovative deepfake detection application that 

combines two core features: visual lip-sync analysis 

and blink rate monitoring. Using advanced machine 

learning models, including CNN-LSTM for blink 

rate detection and SyncNet for lip-sync analysis, 

TrueSync addresses the challenge of detecting 

deepfakes by analyzing both spatial and temporal 

features of the video. The CNN-LSTM model tracks 

the blink rate by evaluating eye states (open or 

closed), while the SyncNet model assesses the 

synchronization between lip movements and audio. 

This hybrid approach improves detection accuracy 

and provides a scalable solution for identifying 

manipulated content. The following sections explore 
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the current landscape of deepfake detection, the 

design and functionality of the TrueSync 

application, its integration of the CNN-LSTM and 

SyncNet models, and the results demonstrating its 

effectiveness. The paper concludes by evaluating 

TrueSync's potential to enhance trust and credibility 

in digital media and its future applicability in 

combating evolving deepfake technologies. 

 

1.2. Problem Statement  

 

Identifying whether a video is authentic or 

manipulated has become increasingly difficult. 

Deepfake technology can produce highly convincing 

videos with seemingly accurate lip-syncing and eye-

blink patterns, making them appear legitimate. This 

creates significant challenges for individuals trying 

to distinguish real content from fake. 

 

1.3. Goal  

 

The goal is to develop a user-friendly platform that 

enables non-experts to upload videos for deepfake 

detection. By combining two advanced models—

visual lip-sync matching and blink rate analysis—

into a single, accessible interface, the platform aims 

to enhance detection accuracy. 

 

1.4. Objectives  
 

- To enhance detection: Improve the accuracy of 

distinguishing between real and deepfake videos by 

utilizing lip-sync and blink rate analysis.   

- To reduce false positives: Minimize the 

misidentification of real content, thereby protecting 

individuals’ reputations and avoiding unnecessary 

alarms over authentic videos. 

- To mitigate false negatives: Prevent instances 

where the system fails to identify a video as fake, 

ensuring reliable detection. 

- To analyze natural blink rate and lip-sync: Examine 

blink rate and visual lip-sync patterns to derive 

insights that refine detection techniques 

- To create a deepfake detection application: 

Develop an application that integrates visual lip-

sync analysis and blink rate monitoring, providing 

detection results as a percentage. 

 

2. Literature Review  
 

Deepfake technology, powered by advanced 

machine learning algorithms, has raised significant 

concerns about the authenticity of digital media. As 

the capability to produce highly realistic fake videos 

grows, the need for robust detection methods 

becomes increasingly critical. This review focuses 

on two innovative approaches for deepfake 

detection: visual lip-sync matching and eye-blink 

rate detection. Blinking, the rapid opening and 

closing of the eyelids, is an involuntary action 

regulated by the pre-motor area of the brainstem. 

Spontaneous blinking ensures the maintenance of an 

adequate tear film on the cornea, supporting eye 

health and visual function. However, blinking serves 

additional functions beyond corneal protection, as 

demonstrated by the differences in blinking rates 

among adults and infants. Blinking patterns also 

vary based on activities and external factors. For 

instance, blinking frequency increases during 

activities like reading aloud or rehearsing visual 

information but decreases during tasks requiring 

intense visual focus, such as silent reading. 

Blink rates are influenced by multiple factors, 

including physical well-being, cognitive task 

complexity, physiological conditions, and an 

individual’s capacity for processing information. By 

gathering and statistically analyzing this 

information, it is possible to predict the frequency 

and variability of eye blinks to a certain degree. In 

contrast, deepfake videos often show an absence or 

irregularity in blinking, which serves as a key 

indicator of manipulation. Deepfake detection also 

involves analyzing inconsistencies between mouth 

shape dynamics—visemes—and the phonemes 

being spoken. This approach differentiates between 

open and closed eye states while incorporating 

temporal information to detect anomalies. 

Evaluations using benchmarks from eye-blinking 

detection datasets have shown promising results, 

demonstrating the method’s effectiveness in 

identifying videos generated through Deepfake 

technology. The integration of visual lip-sync 

matching and blink rate detection enhances current 

tools for multimedia authentication. This dual 

approach contributes to the security and 

dependability of multimedia content, addressing the 

growing challenges posed by Deepfake 

manipulation in the digital era. 

The visual lip-sync match detection process includes 

various components for enhanced clarification, such 

as phoneme-viseme correlation, which examines the 

relationship between sound units (phonemes) and lip 

shapes (visemes) for detection. As our solution is 

based on machine learning (ML), the research 

primarily focuses on SyncNet models, with 

comparisons to alternative models for broader 

analysis. Additionally, the approach incorporates 

imitation-based visual lip-sync detection, aiming to 

achieve a high detection accuracy score. Phoneme 

recognition involves converting audio into text, 

which is processed by a model. Cropped audio 

segments are used to apply a transition model, 

denoted as ϕstt. The transmitted text tktk and audio 

xkxk are integrated using forced alignment, 
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represented by ϕfa, to align the text with spoken 

audio. Moreover, PaPa represents the phoneme units 

in the spoken audio, and sPtsPt shows the timing of 

each phoneme. Finally, the phonemes are filtered 

and extracted based on a predefined set of languages, 

as illustrated in the figure 1. This method enables 

precise timing calculations for every sound in the 

audio. It also generates an array of phonemes in the 

International Phonetic Alphabet (IPA) format, along 

with corresponding timestamps in the audio data. 

The IPA system further facilitates cross-linguistic 

comparison, revealing how sounds are perceived 

across different languages [1]. The lip-syncing 

process relies on the relationship between phonemes 

(basic sound units) and visemes (lip shapes). This 

coupling is instrumental in detecting lip-sync errors 

in videos and functions across multiple languages, 

making PhoVis an adaptable system for a variety of 

linguistic contexts. Phonemes, the smallest units of 

speech sounds, correspond to visemes, the visual 

representations of lip shapes during speech. Studies 

indicate that multiple phonemes can correspond to 

the same viseme [1]. For instance, the word "pet" 

contains the phoneme /P/, while “bell” includes the 

phoneme /B/. Although these phonemes differ, they 

appear visually similar when spoken because they 

are mapped to the same viseme. When phoneme 

alignment is consistent between the original and 

dubbed audio, it becomes possible to adjust a 

speaker’s lip movements in the video to match these 

sounds [1]. Is phoneme recognition possible by 

listening to the audio and using a model to convert it 

into text? If so, would a "forced aligner" tool then 

match the phonemes in the audio with words in the 

sentence, as shown in Figure 2 [1]. 
 

 
 

Figure 1. Algorithm for phoneme extraction from given 

audio. 

 

The evaluation of lip-sync accuracy in multimedia 

applications involves focusing on phonemes that can 

be matched to the visemes of the target language. 

This approach is applicable to languages such as 

English, French, Italian, German, and Spanish. A 2D 

key-point representation is utilized to depict lip 

shapes during speech. These coordinates act as 

invisible points on the lips, capturing their 

movements in real-time. The process incorporates 

Spherical Geometric Anchor LIP and Expected Lip, 

which correspond to vertex shapes on a plane. Only 

distances calculated along the lip track are measured 

and matched to key points. This analysis determines 

which lip movements correspond to each syllable of 

the audio. These calculated distances, captured 

frame by frame, are then provided as input to a 

Machine Learning (ML) model, which trains the 

system for dyadic alignment of lip movements, 

enabling precise lip recognition [2]. 

The primary focus of this research is on the SyncNet 

model, which is designed to analyze audio and video 

by encoding short sequences into a shared space. The 

model reduces the distance between synchronized 

pairs while keeping unsynchronized pairs far apart. 

SyncNet finds a global shift across all frames by 

calculating the loss, improving its accuracy in 

detecting lip-sync discrepancies. SyncNet has 

demonstrated significant improvements in detection 

accuracy, increasing from approximately 76% to 

nearly 95% on a specific, small-scale dataset, as 

illustrated in Figure 2. These steps also include 

modifications to the training approaches used in 

machine learning models, such as redefining the lip-

sync problem as a classification task. Additionally, 

more complex structures, such as transformers, are 

employed to evaluate the synchronization between 

audio and video [3, 4, 5]. 

 

 
Figure 2. Lip-sync Detection Accuracy Improvement. 

 

Novel approaches in this realm focus on 

understanding the relationship between video and 

audio through attention mechanisms. Audio-visual 

streams emphasize extracting and analyzing the 

information necessary to recognize the 

synchronization between speech and the visual 

appearance of lip movements. For instance, dividing 

a screen into smaller segments can help establish the 

relationship between sounds and videos. This 

approach is more complex and is visually 

represented by violin plots, as shown in Figure 2. 

These plots are highly effective for displaying error 

data, revealing that SyncNet’s estimation errors are 

significantly smaller compared to other systems. 

This ensures a high level of accuracy across varying 
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signal sampling rates. An alternative option, 

involving fixed-size window techniques, also 

demonstrates SyncNet’s ability to handle signals of 

different lengths without compromising accuracy 

[5]. Additionally, the MSFC (Mel-Spectrogram Fed 

ConvNet) is a type of neural network trained to use 

the visual representation of sound (referred to as an 

electogram) as input. The GCC-PHAT (Generalized 

Cross-Correlation with Phase Transform) method is 

employed for estimating time delays. This technique 

accounts for the phase of signals, further improving 

accuracy. The training of these methods utilized 

three datasets—MTic, Librispeech, and MBeat—for 

evaluating SyncNet’s performance. Results, as 

shown in Figure 3, demonstrate that SyncNet 

achieves superior accuracy and robustness compared 

to other methods [5]. 

SyncNet’s performance is illustrated in Figure 3, 

showcasing the absolute error for SyncNet, MfCN, 

and GCC-PHAT across three datasets. A vertically 

lower distribution in the violin plots signifies 

superior performance. These results emphasize 

SyncNet’s enhanced accuracy and robustness in 

estimating lip-sync errors when compared to other 

methods, as demonstrated by the visual clarity of the 

violin plots. Alternative methods for deepfake 

detection include RNN (Recurrent Neural Network) 

and TCN (Temporal Convolutional Network) 

models. TCN is particularly efficient for processing 

long data sequences because it avoids the looping 

mechanisms inherent in RNNs. This structural 

difference eliminates challenges such as the 'gradient 

exploding' problem, allowing smoother learning 

signals and improved data processing. Both RNN 

and TCN are effective for sequential data analysis; 

however, TCN’s architecture often gives it a 

performance advantage over RNN [6]. LSTM (Long 

Short-Term Memory) models are highly effective 

for detecting lip-sync disparities due to their memory 

units' ability to process changing signals and 

recognize complex relationships in time-series data. 

They also provide clearer feedback by tracing how 

different inputs influence the output. This capability 

enhances the model's ability to learn sequential data, 

making it easier to extract features from speech. 

Moreover, LSTMs can merge lip movements across 

multiple languages other than English, enabling the 

exploration of interactions between visual lip 

movements and speech sounds (phonemes) in 

various linguistic contexts [7-9]. Similarly, GRU 

(Gated Recurrent Unit) models share functional 

similarities with RNNs but excel in determining 

which information to retain or discard and deciding 

how much past information to forget. Both GRUs 

and LSTMs are better suited than standard RNNs for 

handling sequences, as they can recall not only 

immediate past but also distant information, which 

is crucial for understanding the context. These 

models are particularly valuable for lip-reading, 

where understanding meaning from movements over 

time is necessary [10,11]. To enhance detection 

accuracy, the 3DCNN (Deep Convolutional Neural 

Network) model is applied to extract lip motion 

features by incorporating word boundary 

information and improving feature extraction 

techniques. Additionally, researchers are exploring 

methods to enhance lip-reading capabilities for 

previously unseen speakers. This involves the 

integration of audio-visual cues using CNN 

(Convolutional Neural Network) models and 

standard lip shapes, which help reduce variations 

across different speakers [11, 12]. Wang and Zang 

developed a system integrating RNN (Recurrent 

Neural Network) and CNN to implement the CRNN 

(Convolutional Recurrent Neural Network) model, 

resulting in an improved performance [12]. The 

CRNN model combines the spatial feature extraction 

strengths of CNN with the temporal dependency 

capabilities of RNN, making it especially effective 

for sequential data processing. This hybrid model 

improves the detection of features such as speech 

frames by sorting the movement of speech signals 

and reducing background noise [13, 14]. Table 1. 

shows comparison between each model. The 

synchronization between spoken audio and lip 

movements is referred to as lip-syncing. While 

integrating audio input with lip movement enhances 

detection accuracy and increases scoring precision, 

several limitations exist. Limitation-based deepfakes 

are techniques that often rely on manipulating a 

person's voice in a sound recording to mimic another 

person’s modified voice. This method is designed to 

secure the immunity of the original speaker. For 

example, applying algorithms such as the Efficient 

Wavelet Mask (EWM) on a recording of a person, 

can change it. This process involves obtaining two 

voices: the original speaker's voice and a target 

speaker's voice. The algorithm modifies the original 

sound to resemble the target sound. The final output 

is often so realistic that distinguishing between the 

original and altered voices becomes challenging, 

thereby creating a credible privacy boundary that 

conceals the original speaker's identity [15]. The 

process of detecting deepfakes often relies on the 

characteristics of the datasets used to train or 

evaluate fake algorithms. Researchers examine the 

distribution and accuracy of training datasets, as 

deepfake algorithms often fail to capture the full 

complexity and diversity of real-world data. 

Additionally, reverse-engineering techniques can be 

applied to deepfake models to identify artifacts or 

signatures that reveal their real identity [16]. Preeti 

et al. [17] conducted a study titled "Methods to 

Create Deepfakes Using GAN," which utilized a  
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Figure 3. Violin plots showing the absolute error for SyncNet, MfCN, and GCC-PHAT across all three datasets. A 

distribution that is lower vertically denotes superior performance. 

 
 

 Table 1. Comparison between each model. 

Model  Key Features  Strengths  Weaknesses  

 

SyncNet  -Analyze the video and audio  

-Uses share spaces encoding  

-Learns to minimize distance 

between synchronized pairs  

-High accuracy in lip-sync 

detection up to 95%  

  

-Global shift calculation   

-Relatively new, and may need 

further validation in diverse 

scenarios  

RNN  -Recurrent connection to remember 

past information 

-Good for sequential data  -Struggle with long-term 

dependencies  

 -Faces exploding gradient issues 

TCN  -No recurrent connection  

-Efficient processing of long 

sequences  

-Better gradient flow  

 -Handl long-term patterns 

quickly  

-May require more computational 

power  

LSTM  -Memory call for handling changing 

data  

-Good for complex time 

series relationships  

 -Provide insight into data 

influence  

-More complex than simpler 

models  

GRU  - Keeps or eliminates information 

depending on its significant.  

-Efficient like LSTM but 

simpler  

-Retains information from 

both the present and past  

-Still share some limitations of 

RNN  

CNN  -Capute features of lip movement at 

the edges of words  

-Enhanced feature 

extraction for lip motion  

-Require extensive training data 

and may be complex to implement  

CRNN  -Combines CNN for spatial features 

and RNN for temporal 

dependencies  

-Improved performance in 

sequential data tasks  

 -Reduce background noise 

in speech detection  

-Complexity in integrating Both 

CNN and RNN  
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combination of Convolutional Neural Networks 

(CNNs) to generate high-quality results even with 

small and limited datasets. Human blinking is a 

fundamental, involuntary action crucial for eye 

health and supporting visual function. 

Blink rates and patterns vary due to factors such as 

gender, environmental conditions, emotional states, 

activities, and levels of concentration. For instance, 

people tend to blink less frequently during tasks that 

require focus, such as reading or working on a 

computer, while blink rates increase when they feel 

tired or anxious. Because blinking is both unique to 

each person and naturally consistent, it serves as a 

reliable measure for deepfake detection. By 

analyzing blink rates, researchers can identify 

unusual blinking patterns that may indicate 

manipulated or fake content. Deepfake algorithms 

often fail to replicate natural blinking rhythms, 

making blink rate detection a powerful tool for 

distinguishing authentic videos from AI-generated 

fakes.  

Another crucial aspect in this research is the blink 

rate detection. Blinking rate/pattern has become a 

vital factor in the evolution of deepfake detection, 

emerging as a key indicator of video authenticity. 

Blinking is a natural, unconscious action that occurs 

continuously, with frequency variations influenced 

by factors such as individual’s activity level, fatigue, 

and more. Typically, human blink rates range from 

17 to 22 blinks per minute, though these rates can 

vary due to external factors such as age, gender, and 

time of the day [18]. In contrast, deepfake videos 

often exhibit blink anomalies due to the difficulty in 

replicating natural human behavior. Such anomalies 

may include extended periods without blinking, 

abnormally frequent blinking, or inconsistent blink 

durations, making them critical markers for 

detection. Deepfake algorithms face significant 

challenges in mimicking the unconscious variability 

inherent in human blinks. While Generative 

Adversarial Networks (GANs) have significantly 

advanced in simulating facial features, replicating 

involuntary actions like blinking remains a challenge 

[18]. Table 2 highlights how human blinks differs 

depending on in the individual’s blinks. Moreover, 

the differences between natural and deepfake 

blinking patterns are summarized in Table 3. These 

findings, based on research [18], highlight the 

distinct characteristics of human versus 

algorithmically generated blinking behaviors. The 

selected Blink Rate Detection model leverages a 

hybrid architecture combining Convolutional Neural 

Network (CNN) and Long Short-Term Memory 

(LSTM). This hybrid structure integrates the CNN's 

feature extraction capabilities with 

 

Table 2. How Human Blinks differs depending on the 

activities. 

 Male Female 

Baseline 9 (12) 20(16) 

Tablet 4(6) 8(14) 

PC100 5(8) 10(13) 

PC330 7(8) 16(13) 

Text (pasted 

over display) 

3(5) 10(15) 

Text (book 

position) 

4(3) 8(14) 

Text (book 

position) 

2(7) 6(10) 

 

Table 3. Comparison between Normal and Deepfake Eye 

blinking. 

Feature  Natural 

Human 

Blinking  

Deepfake 

Blinking 

Blink Rate (per 

minute)  
17-22 

Less than 5 in many 

cases  

Blink Duration  
Varies based on 

activity  

Often uniform, 

consistent across 

frames  

Naturalness  
Spontaneous, 

irregular  

Algorithmically 

generated, 

predictable  

Reaction to 

Cognitive Load 

or Fatigue  

Changes with 

mental focus or 

fatigue  

Often lacks such 

correlation  

Periodicity  Irregular  
Periodic or 

completely absent 

 

LSTM's temporal sequence modeling strengths, 

making it highly effective for detecting blink 

patterns in video data. In this architecture, CNN 

processes video frames individually to capture 

spatial features relevant to blinking. These features 

include the state of the eye (open or closed), eyelid 

position, and pixel intensity variations across the eye 

region. Once these spatial features are extracted, 

they are passed to the LSTM layer, which tracks 

blink sequences and timings across frames. This 

enables the model to identify natural blinking rates 

and detect anomalies that might indicate deepfake 

content. 

The CNN-LSTM hybrid model is highly effective 

because it leverages CNN's proficiency in detecting 

detailed image features and LSTM's ability to track 

temporal sequences. This combination is critical for 

distinguishing normal blinking patterns from 

irregularities often found in deepfake videos [19]. As 

illustrated in Figure 4, the CNN-LSTM structure 

processes video data in two stages: CNN layers 

extract frame-level spatial features, such as the eye's 

state (open or closed), while LSTM layers analyze 

these features as a time series. This allows the model 

to track changes across consecutive frames,  
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Figure 4. CNN-LSTM model (Taşdelen, A., & Sen, B. 

2021). 

 

accurately capturing blink frequency and duration. 

By integrating spatial and temporal dependencies, 

the CNN-LSTM model effectively monitors blink 

rates, detecting unusual patterns that may signal 

synthetic or manipulated content.The modular 

architecture of the CNN-LSTM model enables it to 

adapt to various facial dynamics, making it an 

effective tool in multi-feature deepfake detection 

tasks. Recent studies support the use of this hybrid 

model as they highlight its strong performance in 

detecting blink patterns, and its potential for 

integration into broader detection frameworks. This 

adaptability enhances the model’s robustness against 

synthetic content [20]. 

Deepfake algorithms face significant challenges in 

accurately replicating human blink behaviour. 

Blinking is a complex and involuntary action 

influenced by factors such as cognitive load, fatigue, 

and mental health. Research indicates that 

individuals tend to blink more frequently during 

conversations and less during high-focus tasks such 

as reading or complex problem-solving. Such subtle 

variations are difficult for deepfake algorithms to 

replicate, often resulting in unnatural blink patterns 

[18]. The absence or irregularity of blinking 

frequency in deepfake videos serves as a critical red 

flag for detection algorithms. For instance, many 

deepfake videos either omit blinks entirely or 

simulate them at a rate far below or above normal 

human behaviour [19]. 

A hybrid system integrates two or more different 

features to provide a more effective and efficient 

solution. These systems are designed to address 

diverse requirements, such as improving detection 

capabilities or enhancing performance in fields such 

as electronics and automobiles. Hybrid systems are 

widely adopted in industries like automotive 

engineering to develop more efficient and 

sustainable solutions.   

A hybrid deepfake detection method incorporates 

detecting both the appearance (facial impressions) 

and the behavior of an individual. Appearance 

detection identifies visual inconsistencies, such as 

mismatched facial features or improper lighting, 

which may initially appear legitimate to users. 

Behavioral detection and analysis examines 

anomalies like facial expression mismatches, 

abnormal eye movements, or irregular blinking. It 

also evaluates the synchronization between lip 

movements and speech, enabling users or 

investigators to detect behavioral inconsistencies 

[21]. 

A hybrid detection method leverages the 

incorporation of machine learning mechanisms such 

as Long Short-Term Memory Networks (LSTM) and 

Multilayer Perceptrons (MLP) to detect deepfake 

images and videos. These methods have 

demonstrated high accuracy in distinguishing 

between real and fake media. The algorithms used 

for training these models involve datasets containing 

a large number of real and manipulated faces, 

publicly available on platforms like Kaggle. This 

dataset comprises approximately 60,000 images 

sourced from two different sources: the first is 

FlickrFaces-HQ, which features real faces, and the 

second is Deepfake Detection Challenge dataset, 

which includes deepfake faces generated using 

Generative Adversarial Networks (GANs). The 

integration of a Convolutional Neural Network 

(CNN) and a Multilayer Perceptron (MLP) provides 

an effective detection layer for accurately 

identifying deepfake videos. CNNs automatically 

extract key visual features and patterns from video 

frames, helping to discern real content from 

manipulated footage. Concurrently, MLPs focus on 

analyzing specific facial features such as eyes, nose, 

mouth, eye blinks, and lip size. Capturing such 

details is critical, as deepfake videos often fail to 

replicate these features accurately. Hybrid 

Optimized Deep Feature Fusion-based Deepfake 

Detection (HODFF-DD) is a novel technique 

designed for identifying deepfake videos, notable for 

integrating the strengths of both Inception and 

Residual Network architectures [22]. It combines the 

capabilities of two advanced deep learning models: 

InceptionResNetV1 and InceptionResNetV2. These 

models are recognized for their proficiency in 

analyzing image patterns and distinguishing 

between authentic and manipulated videos. The 

technique’s effectiveness lies in the integration of 

strengths from Inception and Residual Network 

(ResNet) architectures [22]. The Inception 

component enables the model to analyze both small 

and large details in each video frame, identifying. 
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Table 4. Comparison between each model. 
Hybrid 

Deepfake 

Detection 

Method  

Detection Data  Strengths   Weaknesses  

Appearance and 

Behavior 

Detection  

Focuses on detecting visual 

facial and eye or lip 

inconsistency   

Its ability to analyze and detect 

both behavior and the physical 

facial expressions     

It has limitations in detection and may fail 

to identify a fake video if the video is 

crafted with high accuracy and realism.  

LSTM and MLP 

Detection  

It focuses on detecting the 

facial and pattern behavior 

inconsistency  

Its ability to detect and analyze 

both images and videos 

accurately    

Performance might be affected due to the 

video resolution  

CNN and MLP 

Detection    

It focuses on detecting 

eyeblink and lip 

inconsistency 

It detects facial expression with 

high accuracy 

Performance might be affected due to the 

video resolution and lighting 

Reaction to 

Cognitive Load or 

Fatigue  

It focuses on in detecting 

image patterns and facial 

inconsistency  

Its ability to detect even with 

low video resolution 

It is expensive to implement  

HODFF-DD      

 

subtle inconsistencies that may signify 

manipulation. Simultaneously, ResNet incorporates 

"shortcut" connections that simplify the learning 

process and enhance the retention of critical features, 

even in deeper networks. By merging these two 

approaches, HODFF-DD effectively detects and 

classifies deepfakes, even under challenging 

conditions such as variable lighting and appearances 

[23-28]. Table 4 shows comparison between each 

modelTrueSync is an application designed for 

deepfake video detection, focusing on two main 

features: abnormal blink rates and visual lip-sync 

mismatches. The application analyzes videos 

featuring a single individual to determine the video's 

authenticity. The detection process begins by 

analyzing the individual’s blink rate using a hybrid 

Convolutional Neural Network with Long Short-

Term Memory (CNN-LSTM) architecture. This 

hybrid architecture is chosen for its proven ability to 

enhance detection accuracy by effectively capturing 

both spatial and temporal features. After completing 

the blink rate analysis, TrueSync transitions to 

analyzing the individual’s lip-sync movements using 

the SyncNet model. Renowned for its reliability and 

accuracy, SyncNet delivers robust results in 

detecting inconsistencies between lip movements 

and audio. By integrating these two detection 

methods, TrueSync ensures trustworthy and precise 

outcomes, making it a reliable tool for deepfake 

video identification. 

The TrueSync application focuses on two core 

detection features: lip-sync analysis and blink rate 

monitoring. These approaches are chosen to ensure 

high detection accuracy and reliable results. 

The SyncNet module will be used for lip-syncing 

analysis. After extracting data from each video 

frame, features related to phonemes and visemes will 

be processed and trained to detect inconsistencies. 

For blink rate monitoring, the process will follow a 

similar pipeline but will concentrate on blink 

frequency. It will capture features such as the 

appearance of open or closed eyes, eyelid position, 

and pixel intensity variations across the eye region. 

This data will then be processed using the CNN-

LSTM model. The application will analyze lip-sync 

and blink rate data separately. Both datasets will be 

trained using CNN-LSTM and SyncNet models. 

TrueSync will start with blink rate analysis, as facial 

features typically begin with the eyes, followed by 

lip-sync evaluation. This sequencing ensures both 

efficiency and accuracy in detection. To integrate 

these processes, a Fusion module will combine the 

outputs from the CNN-LSTM model and SyncNet. 

By combining these two models, the application 

enhances detection capabilities, providing users with 

high-accuracy results. By proposing this innovative 

approach, TrueSync addresses the challenges posed 

by increasingly sophisticated deepfake 

manipulations. It offers a robust and scalable 

solution, grounded in this research, to improve the 

credibility and reliability of digital content. The 

implementation of this application is guided by 

Equation 2.4, as illustrated in Figure 4. The process 

more clearly in equation 1. 

 

𝐿𝑖𝑝 − 𝑆𝑦𝑛𝑐𝐴𝑡ℎ𝑒𝑛𝑡𝑖𝑐𝑎𝑡𝑖𝑐𝑡𝑦𝑆𝑐𝑜𝑟𝑒(𝐿𝐴𝑆) = 

(1 − 𝛼) ∙ (1 −
𝐴𝑉𝑆𝐷

𝑇𝑚𝑎𝑥
) +  𝛼 ∙ (1 −

|𝐵𝐹𝐷|

𝑅𝑚𝑎𝑥
) ∙ 𝐵𝑇𝐶 (1) 

 

The first variable, α, represents the weight assigned 

to the blink factors, typically expressed as either 0 or 

1, summarizing the impact of blink behavior. Tmax 

denotes the maximum deviation (in milliseconds) of 

the audio-visual (AV) sync, which measures the 

difference between lip movements and 

corresponding audio. The Audio-Visual Sync 

Deviation (AVSD) quantifies how closely the lip 

movements align with the audio, indicating the 

precision of synchronization. For blink rate analysis, 

Rmax represents the maximum natural frequency of 

blinking in a typical individual, while the Blink 
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Frequency Deviation (BFD) reflects how much the 

individual's blink rate deviates from this natural 

frequency. If a person blinks faster or slower than 

usual, the BFD will capture this variance. This 

equation is crucial for the TrueSync application, as 

it helps accurately assess the degree of 

synchronization and provides a high detection score 

based on lip-sync and blink rate data. The visual lip-

sync matching based on SyncNet is shown in 

equation 2. 

𝑆𝑦𝑛𝑐𝑁𝑒𝑡 =  
1

𝑁
 ∑ sin (𝑉𝑖 , 𝐴𝐼)𝑁

𝑖=1     (2) 

This equation computes the similarity between lip 

movements (visual features) and speech (audio 

features). The SyncNets variable represents the 

overall score, which is related to the video 

segmentation. The function sim (Vi, Ai) defines the 

similarity between visual features (Vi, lip 

embeddings) and audio features (Ai, audio 

embeddings) at each frame. N denotes the total 

number of frames in the video. To clarify further, 

audio and visual features (specifically from the lip 

region) are extracted for each frame. SyncNet then 

computes feature embeddings to measure the 

similarity between these audio and visual 

embeddings. Finally, the average of the similarity 

scores across all frames is used to generate the final 

score. The blink rate detection is expressed in 

equation 3. 

𝑅𝑏𝑙𝑖𝑛𝑘 =
1

𝑇
 ∑ 𝜎(𝑓𝐿𝑆𝑇𝑀(𝐸𝑡))𝑇

1    (3)  

This equation is used for blink rate detection, where 

RBlink represents the average blink rate per second, 

as discussed earlier in the introduction and the blink 

rate section of this article. T stands for the total 

duration of blinks, while Et represents eye features, 

indicating whether the eye is open or closed, as 

determined by a Convolutional Neural Network 

(CNN). The Long Short-Term Memory (LSTM) 

network is responsible for identifying and detecting 

eye blinks within a specified time frame (σ). The 

value of σ indicates whether the LSTM output 

corresponds to a blink event. CNN is essential for 

detecting eye states (open or closed) and collaborates 

with the LSTM and temporal modules to identify 

anomalies that may suggest manipulation, such as 

deepfake videos or other deceptive content. The 

TrueSync-B is given by equation 4. 

 
TrueSync − B =  β ∗ SSyncNet + (1 − β) ∗ (1 −

|
Rblink−Rexpected

Rexpected
|) (4) 

This equation integrates two key components: the 

visual lip-sync score (SsyncNet) and blink rate 

deviation, to assess both audio-visual 

synchronization and natural eye-blinking behavior, 

helping to determine whether the video is authentic 

or manipulated. The visual lip-sync score, calculated 

using the SyncNet method, ranges from 0 to 1, where 

higher scores indicate better alignment between 

speech and lip movement. For the blink rate, the 

component compares the observed blink rate 

(RBlink) to the expected rate (Rexpected), reflecting 

typical human behavior, which may vary depending 

on the individual’s activity. As with the lip-sync 

score, a value close to 1 for the blink rate represents 

a realistic blink pattern. A weighting factor (β) 

allows the model to prioritize either lip-sync 

accuracy or blink naturalness, based on the 

application. By combining these two components, 

TrueSync-B generates a balanced, normalized score 

between 0 and 1. Higher scores reflect superior 

synchronization and realism, making the application 

suitable for deepfake detection and audiovisual 

content evaluation.  

Instead of creating a single method, multi-modal 

methods are more resistant when it comes to 

detecting deepfake. 

As there are plenty of models to be integrated, it 

achieves the concept of scalability.  

The high robustness of multi-modal methods can 

foster the user’s trust in detection systems.  
 

3. Material and Methods 

 
The TrueSync application processes user-input 

video data through advanced techniques to detect 

deepfake content. The process begins with video 

preprocessing, where the system utilizes SyncNet 

and CNN-LSTM to extract and analyze relevant 

features. The results are then generated as a 

percentage score, reflecting the possibility of the 

video being authentic or manipulated. If no 

abnormalities or deepfake indicators are detected, 

the system reprocesses the video through an iterative 

preprocessing stage to ensure accuracy and thorough 

detection. Figure 5 is visual Lip-sync Matching 

Flowchart and figure 6 is blink rate Flowchart. 
TrueSync Flowchart is shown in figure 7. For visual 

lip-sync detection in the TrueSync application, 

features related to the alignment of lip movements 

with corresponding sound are extracted from each 

video frame. These extracted features are trained and 

processed using the SyncNet model, which evaluates 

the results by comparing them to a dataset of normal 

lip movement behaviours. The evaluation results are 

then combined with blink rate data to calculate the 

final score percentage, determining the likelihood of 

the video being authentic or manipulated. For the 

blink rate model in the TrueSync application, a 

hybrid approach combines Convolutional Neural 

Network (CNN) and Long Short-Term Memory 

(LSTM) models. The CNN layer applies filters, 

introducing non-linearity, and reducing spatial 

dimensions. 
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Additionally, it converts two-dimensional (2D) 

image data into a one-dimensional (1D) format, 

making it suitable for sequential learning and feature 

classification. The processed output from the CNN 

serves as input to the LSTM layer, which then 

analyzes these features. The LSTM layer focuses on 

identifying and evaluating blink events and their 

rates, ensuring accurate and reliable detection for 

distinguishing authentic videos from deepfake 

content. 

In the TrueSync application, visual lip-sync 

detection begins by extracting features from each 

video frame that correspond to lip movements and 

associated audio. This data is processed and trained 

using the SyncNet model, which evaluates the 

results by comparing them to a dataset of normal lip 

movement behaviors. The evaluation results from 

the SyncNet model are then combined with blink 

rate data to calculate the final score percentage. This 

score determines the likelihood of the video being 

authentic or manipulated, providing a 

comprehensive analysis by integrating both visual 

lip-sync and blink rate features. 

 
Figure 5. Visual Lip-sync Matching Flowchart. 
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Figure 6. Blink rate Flowchart. 

 
Figure 7. TrueSync Flowchart. 

 



Homam El-Taj, Fatima Alammari, Joud Alkhowaiter, Layal Bogari, Renad Essa / IJCESEN 11-1(2025)886-1898 

 

897 

 

4. Results and Discussions 
 

The TrueSync application demonstrates its 

effectiveness in detecting video manipulation by 

analyzing two critical features: lip-sync and blink 

rate.The application provides users with a score 

percentage, indicating the likelihood of a video 

being authentic or manipulated. This functionality 

serves as a valuable mitigation tool, enhancing the 

credibility of digital content.Given the increasing 

difficulty in distinguishing between authentic and 

manipulated videos, TrueSync addresses this 

challenge by offering a user-friendly platform that 

allows non-technical users to upload videos for 

deepfake detection. The application integrates two 

advanced detection models—visual lip-sync 

matching and blink rate analysis—within a single, 

accessible interface. By focusing on these two key 

features, TrueSync achieves not only high 

percentage score but also accurate and reliable 

results, ensuring robust performance and usability 

for a wide range of users. 

 

5. Conclusions 
 

This project introduces TrueSync, a robust and user-

friendly application designed to help non-expert 

users detect deepfake videos. By integrating multi-

modal detection techniques—visual lip-sync 

matching and blink rate monitoring—TrueSync 

enhances detection accuracy and resilience against 

adversarial attacks. This combination ensures 

scalability, adapting to future advancements in 

deepfake technology. Ultimately, TrueSync 

contributes to fostering trust and security in digital 

media, offering an accessible and reliable tool for 

combating the growing challenges posed by 

deepfake content. 
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