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Abstract:  
 

As the adoption of credit cards continues to expand alongside advancements in e-

commerce, the frequency and complexity of fraudulent activities have also grown, posing 

significant challenges for the financial sector. Detecting fraudulent transactions within 

highly imbalanced datasets remains a critical issue in ensuring secure banking operations. 

This study explores a robust approach RF_SGO to credit card fraud detection by 

combining pre-processing techniques such as Synthetic Minority Oversampling 

Technique (SMOTE) and class weight adjustment with Random Forest (RF) models 

optimized using the Social Group Optimization (SGO) algorithm. Additionally, the study 

utilizes Random Forest's feature importance mechanism to identify the most influential 

features contributing to fraud detection, enhancing interpretability and decision-making. 

Our methodology evaluates RF_SGO across three datasets: the original European 

cardholders' imbalanced dataset, a class-weight-adjusted dataset, and a SMOTE-

enhanced dataset. Model performance is measured using key metrics, including 

Accuracy, Precision, Recall, F1-Score, and ROC-AUC. The RF_SGO model 

demonstrated superior performance, with the SMOTE-enhanced variant achieving the 

highest ROC-AUC (0.98) and Recall (0.88), effectively balancing sensitivity and 

specificity. The class-weighted RF_SGO achieved the highest Precision (0.96), making 

it ideal for minimizing false positives. Furthermore, the feature importance analysis 

identified key predictors of fraudulent behavior, providing actionable insights for 

financial institutions. Comparisons with traditional machine learning algorithms (e.g., 

Logistic Regression, Decision Trees, and SVM) and advanced models (e.g., XGBoost, 

CatBoost, and deep learning) highlight RF_SGO's ability to outperform in precision-

recall trade-offs and overall classification effectiveness. This study underscores the 

significance of incorporating hyperparameter tuning, feature importance analysis, and 

data balancing strategies to improve fraud detection. The proposed RF_SGO framework 

offers a scalable and efficient solution for financial institutions to mitigate fraud, ensuring 

more reliable and secure transaction systems. 

 

1. Introduction 
 

Credit card fraud detection is a critical area of 

research in financial security, driven by the rapid 

growth of online transactions and the escalating 

sophistication of fraudulent activities. The rise of 

digital payment methods and global e-commerce 

platforms has made transactions more convenient 

but also more vulnerable to exploitation. Fraudulent 

activities not only lead to financial losses but also 

erode customer trust in financial systems. According 

to industry reports, global credit card fraud losses 

have reached unprecedented levels, prompting a 

need for advanced and scalable fraud prevention 

systems. Financial institutions are under immense 

pressure to balance security with customer 

experience, as overly stringent measures can hinder 

legitimate transactions. Thus, designing effective 

fraud detection systems has become a strategic 

priority [1-2]. The detection of fraudulent 
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transactions poses unique challenges due to the 

imbalanced nature of credit card datasets, where 

legitimate transactions far outnumber fraudulent 

ones. This imbalance often causes traditional 

machine learning models to favor the majority class, 

leading to poor performance in detecting fraudulent 

transactions. Furthermore, fraud patterns evolve 

rapidly as attackers employ sophisticated techniques 

such as identity theft, skimming, and phishing to 

bypass existing security measures. Models must not 

only detect known fraud patterns but also generalize 

well to emerging, unseen behaviors. Another critical 

challenge is minimizing false positives, as 

incorrectly flagging legitimate transactions can 

disrupt the customer experience and lead to loss of 

business. This necessitates the development of fraud 

detection systems that achieve a fine balance 

between precision and recall. 

Machine learning techniques have emerged as 

powerful tools for identifying anomalous patterns in 

transaction data, enabling real-time fraud detection 

and prevention. Unlike rule-based systems, machine 

learning models can automatically learn from data, 

adapting to new fraud patterns with minimal human 

intervention [3]. Supervised learning algorithms, 

such as logistic regression, support vector machines, 

and ensemble methods like Random Forest, have 

demonstrated significant promise in fraud detection 

tasks. Additionally, advanced deep learning 

architectures, such as neural networks and 

autoencoders, offer opportunities to model complex 

relationships in high-dimensional data [4]. 

Unsupervised methods and anomaly detection 

algorithms are also gaining traction, especially for 

identifying previously unseen fraud scenarios. 

Combining these techniques with domain-specific 

knowledge can enhance the robustness of fraud 

detection systems [5]. 

This paper investigates novel approaches to 

enhancing fraud detection accuracy, with a particular 

emphasis on addressing class imbalance and 

reducing false positives. The study focuses on 

employing advanced machine learning algorithms 

and evolutionary optimization techniques to develop 

scalable models suitable for real-world applications. 

We propose an efficient credit card fraud detection 

framework, evaluated on publicly available 

European cardholders dataset [6], incorporating 

machine learning algorithms such as Random Forest 

(RF) and optimization methods like Social Group 

Optimization (SGO)[7], alongside hyperparameter 

tuning strategies. The SGO algorithm offers several 

benefits for hyperparameter selection in machine 

learning models, making it an effective choice for 

this purpose. SGO possesses a good optimality-

finding ability and is used in various fields [8-18].  

An effective fraud detection system must accurately 

identify fraudulent transactions while maintaining 

high precision, ensuring customer trust in financial 

institutions and minimizing losses from incorrect 

detections. The primary contributions of this paper 

are summarized as follows: 

 Addressing Imbalanced Data: To mitigate the 

class imbalance issue in credit card fraud 

datasets, we employ Synthetic Minority 

Oversampling Technique (SMOTE) and 

class_weight-tuning of hyperparameters as 

preprocessing steps. 

 Fraud Detection Algorithm: We adopt Random 

Forest as the base machine learning algorithm for 

detecting fraudulent transactions. 

 Feature Importance Analysis: Using Random 

Forest, we analyze feature importance to quantify 

the contribution of each feature to the model’s 

predictions, enabling better interpretability and 

feature selection. 

 Optimization Using SGO: We utilize the Social 

Group Optimization (SGO) algorithm to fine-

tune the hyperparameters of the Random Forest 

model, improving its predictive performance. 

 Comprehensive Evaluation: To validate the 

proposed approach, we conduct extensive 

experiments on publicly available real-world 

datasets. The performance of the model is 

evaluated using metrics such as accuracy, 

precision, recall, F1-score, and ROC-AUC. The 

results demonstrate that the proposed methods 

outperform existing baseline approaches in 

detecting credit card fraud effectively. 

This study highlights the potential of combining 

machine learning algorithms with evolutionary 

optimization techniques to build robust and efficient 

fraud detection systems, ensuring practical 

applicability in financial domains. 

The remainder of this paper is organized as follows: 

Section 2 reviews the existing literature on credit 

card fraud detection methods and their limitations. 

Section 3 discusses SGO algorithm Section 4 

outlines the methodology employed in this research. 

Section 5 discussed in detail  about our proposed 

RF_SGO model. Section 6 presents the results and 

compares the performance of the proposed method 

with existing approaches. Discusses the findings, 

and their implications. Finally, Section 7 concludes 

the paper, summarizing the contributions and future 

research. 

2. Related works 

In reference [19], the authors designed a credit card 

fraud detection system utilizing various machine 

learning techniques, such as Logistic Regression 

(LR), Decision Tree (DT), Support Vector Machine 
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(SVM), and Random Forest (RF). These models 

were tested on a dataset containing transaction data 

from European cardholders in 2013. Due to the 

highly imbalanced nature of the dataset, the ratio of 

non-fraudulent to fraudulent transactions posed a 

significant challenge. The performance of the 

models was assessed based on classification 

accuracy, with LR, DT, SVM, and RF achieving 

scores of 97.70%, 95.50%, 97.50%, and 98.60%, 

respectively. While these results were promising, the 

authors suggested incorporating advanced data 

preprocessing methods to potentially enhance 

classifier performance further. 

Varmedja et al. [20] proposed a method for detecting 

credit card fraud using machine learning, applying a 

dataset obtained from Kaggle [6]. This dataset, 

comprising transactions recorded over two days 

from European cardholders, exhibited a significant 

class imbalance. To address this, the authors utilized 

the Synthetic Minority Oversampling Technique 

(SMOTE). The models tested included RF, Naïve 

Bayes (NB), and Multilayer Perceptron (MLP). 

Their findings highlighted RF as the most effective, 

achieving an accuracy of 99.96%, while NB and 

MLP scored 99.23% and 99.93%, respectively. The 

study concluded by suggesting that incorporating 

feature selection methods could further enhance the 

accuracy of other models. 

In [21], Khatri et al. evaluated the performance of 

various ML techniques, including DT, k-Nearest 

Neighbors (KNN), LR, RF, and NB, for credit card 

fraud detection. Using a highly imbalanced dataset 

sourced from European transactions, the models 

were evaluated primarily on precision. The study 

reported precision values of 85.11%, 91.11%, 

87.5%, 89.77%, and 6.52% for DT, KNN, LR, RF, 

and NB, respectively. 

Awoyemi et al. [22] conducted a comparative study 

of ML methods applied to fraud detection using the 

European cardholder dataset. The researchers 

addressed class imbalance through a hybrid 

sampling approach. Models tested included NB, 

KNN, and LR, and their evaluation was conducted 

using accuracy as the primary metric. The study 

reported accuracy scores of 97.92%, 54.86%, and 

97.69% for NB, LR, and KNN, respectively. The 

authors noted the potential for improved results by 

incorporating feature selection techniques. 

In [23], the authors investigated the use of several 

machine learning approaches to tackle credit card 

fraud detection, applying the European cardholder 

dataset. To manage the imbalance in the dataset, they 

employed SMOTE. Models like DT, LR, and 

Isolation Forest (IF) were evaluated using accuracy, 

with scores of 97.08%, 97.18%, and 58.83%, 

respectively. 

Manjeevan et al. [24] presented a fraud detection 

framework that leveraged Genetic Algorithms (GA) 

for feature selection and aggregation. The study 

evaluated multiple machine learning models to 

assess the effectiveness of their approach. Results 

indicated that GA-RF achieved an accuracy of 

77.95%, GA-ANN reached 81.82%, and GA-DT 

attained 81.97%. Khalilia et al. [25] investigated 

Decision Tree (DT), Logistic Regression (LR), 

Support Vector Machine (SVM), and Local Outlier 

Factor (LOF) methodologies using the same dataset. 

The study reported accuracy values of 97.08% for 

DT, 97.18% for LR, 95.12% for SVM, and 99% for 

LOF, with LOF achieving a precision of only 5%. 

Rtayli et al. [26] explored the performance of SVM, 

LOF, and Isolation Forest (iForest) models. The 

results showed that iForest achieved an accuracy of 

99% with a precision of 34%, while DT reached 99% 

accuracy but suffered from zero precision. Ileberi et 

al. [27] employed SVM, Random Forest (RF), and 

DT for fraud detection on the European cardholders 

dataset. The results showed that SVM achieved an 

accuracy of 97.50%, RF achieved 98.60%, while DT 

had a precision score of 85.11%. Khan et al. [28] 

evaluated multiple models, including DT, k-NN, LR, 

RF, and NB, emphasizing precision as a key metric. 

The results showed that DT, k-NN, LR, RF, and NB 

achieved precision scores of 85.11%, 91.11%, 

87.5%, 89.77%, and 6.52%, respectively. 

Agarwal et al. [29] utilized LOF, iForest, DT, and 

XGBoost, as well as an XGBoost variant with 

Random Oversampling, to address fraud detection. 

LOF achieved an accuracy of 99.60% with a 

precision of 5%, while iForest scored 99.70% 

accuracy with 34% precision. DT achieved 99.80% 

accuracy with zero precision, and XGBoost achieved 

an accuracy of 99.96% with precision, recall, and 

F1-score values of 97.73%, 82.69%, and 89.58%, 

respectively. The XGBoost with Random 

Oversampling variant performed similarly, with 

precision, recall, and F1-score values of 96.63%, 

82.69%, and 89.12%. 

Noviandy et al. [30] applied XGBoost with various 

data balancing techniques, such as SMOTE, 

SMOTE-Tomek, SMOTE-ENN, and ADASYN. 

XGBoost with SMOTE achieved 99.95% accuracy, 

89.69% precision, 83.65% recall, and an F1-score of 

86.57%. With SMOTE-Tomek, it achieved 99.95% 

accuracy, 87.00% precision, 83.65% recall, and an 

F1-score of 85.29%. Using SMOTE-ENN, the 

results were 99.95% accuracy, 86.27% precision, 

84.62% recall, and an F1-score of 85.44%. The 

ADASYN variant achieved 99.94% accuracy, 

85.29% precision, 83.65% recall, and an F1-score of 

84.47%. 
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Sinap [31] compared DT, LR, k-NN, RF, XGBoost, 

NB, and SVM. The results showed DT achieved 

96% accuracy, 94% precision, 95% recall, and an 

F1-score of 95%. LR achieved 95% accuracy, 97% 

precision, 87% recall, and an F1-score of 92%. k-NN 

scored 97% accuracy, 96% precision, 96% recall, 

and an F1-score of 96%. RF achieved 97% accuracy, 

99% precision, 94% recall, and an F1-score of 96%. 

XGBoost scored 96% accuracy, 98% precision, 91% 

recall, and an F1-score of 94%. NB achieved 94% 

accuracy, 96% precision, 86% recall, and an F1-

score of 96%. Lastly, SVM scored 95% accuracy, 

98% precision, 88% recall, and an F1-score of 93%. 

The analysis of the related works on credit card fraud 

detection for the European cardholder dataset 

reveals certain limitations: Many studies highlight 

the inherent challenge of imbalanced datasets, where 

fraudulent transactions are significantly fewer than 

non-fraudulent ones. Techniques like SMOTE, 

hybrid sampling, and ADASYN have been applied 

to balance the dataset, but they might not generalize 

well for highly skewed datasets. These methods may 

lead to overfitting by oversampling the minority 

class, which does not fully address the complexity of 

distinguishing between fraud and non-fraud. Most 

works, such as those employing Random Forest (RF) 

or Decision Trees (DT), rely on fixed or empirically 

determined hyperparameters. Suboptimal 

hyperparameters can lead to degraded model 

performance in terms of accuracy, precision, recall, 

and F1-score. A heavy reliance on accuracy as the 

primary evaluation metric was observed in many 

studies. Accuracy can be misleading in imbalanced 

datasets as it may favor the majority class. 

Insufficient focus on metrics like precision, recall, 

and F1-score, which better reflect the performance 

on the minority class (fraudulent transactions). 

Feature selection or feature optimization techniques 

were not consistently applied or integrated into the 

detection models, as seen in some studies employing 

Genetic Algorithms (GA). Suboptimal feature 

selection can lead to noise in the model, reducing 

prediction performance.  

How RF_SGO Can Address These: RF_SGO 

dynamically optimizes key hyperparameters of the 

Random Forest model, such as the number of trees, 

max depth, and split criteria, using the SGO 

algorithm. This approach ensures the selection of 

near-optimal hyperparameters tailored to the specific 

dataset, improving model performance. RF_SGO 

incorporates the optimized RF model, which 

inherently handles class imbalance better than other 

algorithms due to its ensemble approach. It can also 

be paired with advanced sampling techniques to 

further enhance balance. This minimizes the risk of 

overfitting while improving recall and precision for 

the minority class. RF_SGO evaluates fitness using 

a composite function (e.g., 1-accuracy) and 

optimizes for metrics like recall, precision, and F1-

score rather than solely accuracy. This ensures that 

the model performs well across all metrics, 

addressing fraud detection challenges 

effectively.While RF_SGO primarily focuses on 

hyperparameter tuning, it can be extended to include 

feature selection during optimization, eliminating 

irrelevant or noisy features. This leads to more 

efficient and interpretable models, improving 

prediction accuracy and robustness. 1. Social 

Group Optimization (SGO) algorithm 

The SGO algorithm is a population-based 

metaheuristic optimization technique inspired by the 

social behavior and decision-making patterns of 

human groups. It was first proposed as a novel 

approach to solve complex optimization problems 

by mimicking the way individuals in a group 

interact, share information, and collectively find 

solutions to achieve common objectives. 

Key Concepts and Mechanisms 

1.Population Representation:  

In SGO, a population of solutions represents 

individuals in a social group. Each individual 

corresponds to a candidate solution for the 

optimization problem, characterized by specific 

parameters and a fitness value. 

2.Social Interaction Phases: 

The algorithm divides the optimization process into 

distinct phases, simulating real-world social 

dynamics: 

•Improving Phase: Individuals evaluate their current 

position and adjust based on personal experience or 

local optimization strategies. This phase allows for 

exploration of the search space. 

•Acquiring Phase: Individuals share information 

with others in the group, promoting collaboration 

and mutual learning. This interaction often leads to 

convergence towards optimal regions of the solution 

space. 

3.Learning and Adaptation: 

SGO incorporates learning mechanisms where 

individuals adapt based on the influence of better-

performing solutions within the group. This 

mechanism enhances the algorithm’s exploitation 

capability. 

4.Balance of Exploration and Exploitation: 

By combining individual introspection and group 

interaction, SGO strikes a balance between 

exploration (searching new areas of the solution 

space) and exploitation (refining existing promising 

solutions). 

Advantages of SGO 
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•Simplicity: The algorithm is straightforward to 

implement with minimal parameter tuning 

requirements. 

•Scalability: SGO can handle high-dimensional and 

complex optimization problems effectively. 

•Adaptability: It is versatile and can be applied 

across diverse domains, from engineering design to 

machine learning. 

•Global Search Capability: SGO reduces the 

likelihood of getting trapped in local optima due to 

its collaborative exploration strategies. 

SGO in This Study 

In this research, the SGO algorithm has been 

employed to optimize the hyperparameters of the 

Random Forest (RF) model for credit card fraud 

detection. By effectively fine-tuning the model, 

SGO enhances classification performance, ensuring 

a superior balance between precision, recall, and 

overall accuracy. 

The adaptability and efficiency of SGO make it an 

excellent choice for solving optimization problems 

in highly imbalanced datasets, as demonstrated in 

the context of fraud detection. This reinforces its 

potential for widespread use in real-world 

applications requiring robust and scalable solutions. 

 

Here is the detailed algorithmic framework for the 

SGO algorithm: 

1. Initialization 
 Define the optimization problem: min F(x) 

or max F(x), where 𝑥 is the decision 

variable and F(x) is the fitness function. 

 Initialize a population of N individuals 

(solutions), 𝑥𝑖 for 𝑖=1,2,...,N, within the 

predefined search space. 

 Randomly assign initial positions for all 

individuals and calculate their fitness 

values 𝐹(𝑥𝑖) 
 Set parameters like the maximum number of 

iterations (maxIter), population size (N), and 

other control parameters. 

2. Iterative Process 
Repeat the following steps until the stopping 

condition (e.g., reaching maxIter) is met: 

2.1. Improving Phase 
 Each individual evaluates its current 

position using its fitness value 𝐹(𝑥𝑖) 
 Update the individual's position using: 

𝑥𝑖
𝑛𝑒𝑤 = 𝑥𝑖 + 𝛼. 𝑟1. (𝑥𝑏𝑒𝑠𝑡 − 𝑥𝑖),             (1) 

Where 𝛼 is a self-introspection parameter. 

𝑟1 is a random number in [0, 1]. 𝑥𝑏𝑒𝑠𝑡 is the 

best solution found so far. 

This step allows individuals to exploit their 

knowledge of the best solution. 

2.2. Acquiring Phase 

 Each individual interacts with a randomly 

chosen group member 𝑥𝑖, encouraging 

exploration : 

 𝑥𝑖
𝑛𝑒𝑤 = 

{
𝑥𝑖 + 𝑟2. (𝑥𝑖 − 𝑥𝑘) + 𝑟3. (𝑥𝑏𝑒𝑠𝑡 − 𝑥𝑖)   𝑖𝑓 𝑓(𝑥𝑖) < 𝑓(𝑥𝑘)

𝑥𝑖 + 𝑟2. (𝑥𝑘 − 𝑥𝑖) + 𝑟3. (𝑥𝑏𝑒𝑠𝑡 − 𝑥𝑖)     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒           
      

        (2) 

Where 𝑟2 and 𝑟3 are random numbers 

between 0 and 1, which help to introduce 

diversity and exploration in the search 

process This interaction enables the 

population to explore different regions of 

the search space. 

2.3. Boundary Checking 

       Ensure that the updated positions of individuals 

do not exceed the defined search space  

       bounds. Adjust any out-of-bound solutions 

accordingly. 

2.4. Fitness Evaluation 
       Compute the fitness value F(xi)F(xi) for each 

updated individual. 

2.5. Update Best Solution 
       If any individual achieves a better fitness value 

than 𝑥𝑏𝑒𝑠𝑡, update 𝑥𝑏𝑒𝑠𝑡. 
3. Termination 
    Stop the algorithm when the maximum number of 

iterations is reached or the solution   

    converges to an acceptable threshold. 

4. Return the Optimal Solution 

    Output the best solution 𝑥𝑏𝑒𝑠𝑡 and its 

corresponding fitness value F(𝑥𝑏𝑒𝑠𝑡). 
 

Algorithm 1 Pseudocode of SGO 

1. Initialize population size (N), maximum 

iterations (maxIter), and other parameters. 

2. Generate initial population of solutions within 

the search space. 

3. Evaluate fitness of each solution and find the 

initial best solution (𝑥𝑏𝑒𝑠𝑡). 
4. For iter = 1 to maxIter: 

     a. Introspection Phase: 

         For each individual i: 

             Update position using equation (1) 

     b. Interaction Phase: 

         For each individual i: 

             Interact with random individual j: 

             Update position using equation (2) 

     c. Boundary Checking: 

         Ensure all solutions remain within the search 

space. 

     d. Fitness Evaluation: 

         Recalculate fitness values for updated 

positions. 

     e. Update Best Solution: 

         If a better solution is found, update 𝑥𝑏𝑒𝑠𝑡. 
5. End For 
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6. Return 𝑥𝑏𝑒𝑠𝑡 and  F(𝑥𝑏𝑒𝑠𝑡) 
 

3. Methodology 
 

The proposed method follows a structured approach 

to identify an efficient and accurate algorithm for 

detecting credit card fraud, as illustrated in figure 1. 

Given the highly imbalanced nature of the credit 

card fraud dataset, we addressed this issue using two 

independent techniques: the Synthetic Minority 

Oversampling Technique (SMOTE) [32,33] and 

class weight tuning [34] as a hyperparameter 

adjustment. Additionally, we conducted experiments 

without these techniques to analyze their impact on 

fraud detection. To enhance model performance, we 

employed a Random Forest (RF) classifier and 

optimized its hyperparameters using the Social 

Group Optimization (SGO) metaheuristic algorithm. 

This optimization aimed to identify the optimal 

parameter set to improve the model's accuracy on 

imbalanced fraud data. 

 

The methodology begins with data acquisition, 

followed by preprocessing, which includes three 

critical steps: data cleaning, balancing the dataset, 

and feature selection. We utilized RF's feature 

importance mechanism to identify the most 

significant features, ensuring that only essential 

attributes were retained for building the predictive 

model. 

The pre-processed data was then used to train RF 

models designed to detect fraudulent transactions 

effectively. Before model training, the 

hyperparameters of RF were fine-tuned using the 

SGO algorithm to achieve an optimal configuration. 

The dataset was divided into 80% for training and 

20% for testing using the train_test_split method. 

The model was trained on the training subset and 

subsequently evaluated on the test subset to measure 

its predictive accuracy. To comprehensively assess 

the model's performance, we generated a confusion 

matrix and calculated various evaluation metrics, 

including accuracy, precision, recall, F1 score, and 

ROC-AUC score. These metrics provided a 

thorough evaluation of the model’s effectiveness in 

detecting credit card fraud. 

 

3.1 Feature Importance using Random Forest 

 

Feature importance in the Random Forest (RF) 

algorithm [35] is a technique used to quantify the 

contribution of individual features to the model's 

predictions. This metric provides valuable insights 

into the dataset, helping identify which features are 

most influential in making decisions within the RF 

model. 

 
 

 

Figure 1. The proposed architecture for credit card fraud detection 

 



Sudhirvarma Sagiraju, Jnyana Ranjan Mohanty, Anima Naik/ IJCESEN 11-1(2025)616-641 

 

622 

 

It serves as an essential tool in enhancing model 

performance and interpretability. 

 

Mechanism of Feature Importance 

Random Forest is an ensemble learning method that 

builds multiple decision trees during training. 

Feature importance is calculated based on the extent 

to which a feature reduces the impurity (e.g., Gini 

impurity or entropy) across all trees in the forest. The 

importance score for each feature is derived from: 

 Impurity Reduction: Evaluating how much the 

inclusion of a feature decreases impurity 

(improves the split quality) across all splits in all 

trees. 

 Permutation Importance: Measuring the drop 

in model accuracy when a specific feature's 

values are randomly shuffled, thereby disrupting 

its relationship with the target variable. 

 Mean Decrease in Accuracy: Estimating the 

reduction in accuracy if a feature is removed, 

aggregated across all trees. 

 

Significance in Fraud Detection 

In creditcard fraud detection, feature importance 

plays a critical role in identifying the most predictive 

attributes, such as transaction amounts, timestamps, 

locations, and user behaviour patterns. By focusing 

on these features, the model can be fine-tuned to 

enhance its precision and recall, ensuring more 

accurate detection of fraudulent transactions. 

 

Advantages 

 Dimensionality Reduction:  
Feature importance helps reduce the number of input 

variables by retaining only the most significant 

ones, thereby simplifying the model and reducing 

the risk of overfitting. 

 Model Interpretability:  
It provides a clear understanding of how different 

features influence the model's predictions, aiding 

in decision-making and validating the model’s 

logic. 

 Optimized Feature Selection: 
It guides researchers in selecting the most relevant 

features, saving computational resources and 

improving model efficiency. 

Implementation in this research 

In this research, RF's feature importance was utilized 

to identify the critical features in the creditcard fraud 

detection dataset. This allowed us to prioritize 

influential features and exclude irrelevant ones 

during model training. The feature importance 

scores were computed using RF's built-in 

mechanism, and the results informed the 

preprocessing and model development phases. 

By employing this technique, the proposed method 

achieved a refined feature set, enabling the RF 

classifier to deliver improved performance metrics 

in terms of accuracy, precision, recall, F1 score, and 

ROC-AUC. The insights derived from feature 

importance also contributed to the interpretability 

and reliability of the developed fraud detection 

system. 
 

3.2 Performance metrics: Confusion matrix, and 

Evaluation Metrics 

 

The confusion matrix[36] is a 2×2 matrix used to 

evaluate classification model performance, 

consisting of four elements: True Negative (TN), 

False Positive (FP), False Negative (FN), and True 

Positive (TP), arranged at positions (1,1), (1,2), 

(2,1), and (2,2), respectively. This matrix divides the 

predicted outcomes of a classification model into 

four categories: 

 

 True Negative (TN): Correctly classified 

negative cases. 

 False Positive (FP): Incorrectly classified 

positive cases. 

 False Negative (FN): Incorrectly classified 

negative cases. 

 True Positive (TP): Correctly classified positive 

cases. 

. 

Evaluation Metrics 

Accuracy 

Accuracy measures the proportion of all correct 

predictions relative to the total predictions made. 

Accuracy= 
TP+TN

TP+TN+FP+FN
 

 

Precision 

Precision, also known as positive predictive value, 

measures the proportion of predicted positive cases 

that are actually positive. It indicates the accuracy of 

positive predictions. 

Precision =
TP

TP + FP
 

 

Recall 

Recall, also referred to as sensitivity or true positive 

rate, represents the proportion of actual positive 

cases that are correctly predicted by the model. 

           Recall(Sensitivity) =
TP

TP+FN
 

 

Specificity 
Specificity measures the proportion of actual 

negative cases that are correctly identified by the 

model. It is also known as the true negative rate. 

                           Specificity=
𝑇𝑁

𝑇𝑁+𝐹𝑃
 

 

F1 Score 
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The F1 Score is the harmonic mean of precision and 

recall, providing a single metric that balances both. 

It is especially useful when there is an uneven class 

distribution or when both precision and recall are 

important. 

F1 score =2
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙
 

 

ROC-AUC Score: Evaluation Metric for 

Classification Models 

The ROC-AUC (Receiver Operating Characteristic - 

Area Under the Curve) score[37] is a comprehensive 

and widely recognized metric for evaluating the 

performance of classification models, particularly in 

scenarios involving imbalanced datasets, such as 

creditcard fraud detection. The ROC-AUC score 

reflects the model’s ability to distinguish between 

the positive and negative classes effectively across 

different thresholds. 

ROC Curve 

The ROC curve is a graphical representation that 

illustrates the trade-off between two critical metrics: 

 True Positive Rate (TPR) or Sensitivity: 

                TPR=
𝑇𝑃

𝑇𝑃+𝐹𝑁
 

            This metric measures the proportion of actual 

positive cases correctly identified by the   

            model. 

 False Positive Rate (FPR): 

               FPR=
𝐹𝑃

𝐹𝑃+𝑇𝑁
 

            This metric quantifies the proportion of 

actual negative cases incorrectly classified as  

            positive by the model. 

 

AUC (Area Under the Curve) 

The AUC value represents the area under the ROC 

curve and provides a single scalar measurement of 

the model's performance: 

 An AUC value of 1 indicates perfect 

classification. 

 An AUC value of 0.5 indicates performance 

equivalent to random guessing. 

In this study, the ROC-AUC score was used as a key 

performance metric to evaluate the proposed 

creditcard fraud detection model. By summarizing 

the model's ability to distinguish between fraudulent 

and legitimate transactions across various 

thresholds, the ROC-AUC score ensured a 

comprehensive assessment of its predictive 

capabilities. The high ROC-AUC scores obtained in 

the experiments demonstrate the robustness and 

reliability of the model in identifying fraudulent 

transactions effectively. 
 

4. Proposed RF_SGO model 

To employ SGO algorithm for optimizing Random 

Forest (RF) model hyperparameters, it is essential to 

identify the most critical hyperparameters that 

influence RF's performance. The key 

hyperparameters considered in this study include: 

 Number of Trees (n_estimators): Defines the 

number of decision trees in the forest. Range: [10, 

1000]. 

 Maximum Depth of Trees (max_depth): Limits 

the depth of the tree to control overfitting. Range: 

[5, 50]. 

 Minimum Samples Split (min_samples_split): 

Specifies the minimum number of samples 

required to split an internal node. Range: [2, 10]. 

 Minimum Samples per Leaf 

(min_samples_leaf): Determines the minimum 

number of samples required to form a leaf node. 

Range: [1, maximum features]. 

 Maximum Features (max_features): Indicates 

the number of features to consider for the best 

split. Range: [1, total features in the dataset]. 

 Bootstrap Sampling (bootstrap): Indicates 

whether bootstrap samples are used when 

building trees. Values: True or False. 

 Criterion: Specifies the function to measure the 

quality of a split. Values: entropy or gini. 

 

In this study, each RF model is represented as 

a decision vector or population of seven 

dimensions (one per hyperparameter).  

5. Experimental Design, Results Analysis and 

discussions 
 

Machine learning library  
The experiments on the ML techniques discussed in 

this study were conducted using Python, and the 

Scikit-learn library, commonly known as sklearn, 

which is a free package for machine learning [38]. 

This study also utilized various scientific computing 

libraries, including Scikit-learn [39], NumPy [40], 

matplotlib [41], pandas [42], and seaborn [43], to 

support the analysis and implementation. 

Datasets  
In this study, we utilize a real-world dataset to ensure 

the practical applicability of the proposed algorithm. 

The dataset, named “creditcard,” comprises 284,807 

transaction records collected over two days in 

September 2013. Of these, 492 transactions are 

identified as fraudulent, while the remainder are 

legitimate. The fraudulent transactions represent 

only 0.172% of the total, making this dataset highly 

imbalanced. This dataset is publicly accessible 

through Kaggle. 

The dataset consists exclusively of numerical input 

variables derived from a Principal Component 

Analysis (PCA) transformation, as the original 

features and contextual details are unavailable due to 

confidentiality and privacy constraints. The PCA 

transformation produced components labelled V1 to  
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Algorithm to Decode a Decision Vector 

The decision vector uses real-value encoding, which is decoded into discrete hyperparameter values during 

optimization. Algorithm 2 details the decoding process, as follows: 

 

Algorithm 2: Decode a Decision Vector to RF Model 

Input: Decision vector 𝑉 = [𝑣1, 𝑣2, …… , 𝑣7] where  𝑑=7. 

Output: Optimized RF model. 

Steps: 

1. Map Bootstrap and Criterion: 

 For bootstrap, round 𝑣6: 

 ROUND(𝑣6)=0: Set True. 

 ROUND(𝑣6)=1: Set False. 

 For criterion, round 𝑣7: 

 ROUND(𝑣7)=0: Set entropy. 

 ROUND(𝑣7)=1: Set gini. 

2. Define RF Model Parameters:  
Decode other hyperparameters as follows: 

𝑅𝐹 = 𝑅𝑎𝑛𝑑𝑜𝑚𝐹𝑜𝑟𝑒𝑠𝑡𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟(

{
 
 
 

 
 
 

𝑛_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 = 𝑅𝑂𝑈𝑁𝐷(𝑣1)

max _𝑑𝑒𝑝𝑡ℎ = 𝑅𝑂𝑈𝑁𝐷(𝑣2)

min _𝑠𝑎𝑚𝑝𝑙𝑒𝑠_𝑠𝑝𝑙𝑖𝑡 = 𝑅𝑂𝑈𝑁𝐷(𝑣3)

min _𝑠𝑎𝑚𝑝𝑙𝑒𝑠_𝑙𝑒𝑎𝑓 = 𝑅𝑂𝑈𝑁𝐷(𝑣4)

max _𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 = 𝑅𝑂𝑈𝑁𝐷(𝑣5)

𝑏𝑜𝑜𝑡𝑠𝑡𝑟𝑎𝑝 = 𝐷𝑒𝑐𝑜𝑑𝑒𝑑 𝐵𝑜𝑜𝑡𝑠𝑡𝑟𝑎𝑝
𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 = 𝐷𝑒𝑐𝑜𝑑𝑒𝑑 𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛

 

3. Evaluate Fitness: 
Train the RF model on the training dataset and evaluate its accuracy on the test dataset. Calculate 

the fitness value: 

𝑓(𝑉) = 1 − 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 

 

Decoded values correspond to: 

RF: n_estimators=747,max_depth=14,min_samples_split=2,min_samples_leaf=1,max_features=5,bootstr

ap="True",criterion="entropy". 

 
SGO Procedure for RF Optimization 

 

Algorithm 3: RF_SGO Model Optimization 

 

Input: Dataset features (X), target labels (y).  

Output: Optimized RF model with near-optimal hyperparameters. 

 
Steps: 

1. Initialization: 
 Define SGO parameters: population size (P), introspection parameter (c), decision vector 

dimension (d=7), maximum iterations (max_gen), and bounds for each hyperparameter. 

 Split the dataset into training and testing sets. 

 Randomly initialize the population, with decision vectors sampled uniformly within the bounds. 

2. Fitness Evaluation: 
 Decode each decision vector using Algorithm 2 to create an RF model. 

 Compute the fitness 𝑓(𝑉) = 1 − 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦. 
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3. Global Best Search: 
 Identify the decision vector with the minimum fitness value (best accuracy). 

 

4. Iteration (Optimization Loop): 

 Repeat until termination criteria (e.g., max_gen) are met: 

 Perform Improving Phase: Update each decision vector based on self-introspection and the global 

best solution. 

 Perform Acquiring Phase: Interact with other vectors to explore the solution space. 

 Evaluate new decision vectors and retain the better solutions. 

5. Final Model: 
 Select the best decision vector from the final population. 

 Decode it into an optimized RF model using Algorithm 2. 

 
Optimization Objective 

The SGO algorithm aims to minimize the fitness function f(V): 

min
𝑉𝑖
𝑓(𝑉𝑖), subject to 𝐿𝑗 ≤ 𝑉𝑖,𝑗 ≤ 𝑈𝑗 

Where: 

 𝐿𝑗 𝑎𝑛𝑑 𝑈𝑗 are the lower and upper bounds of the j-th hyperparameter. 

 𝑓(𝑉𝑖) is computed as 1−Accuracy. 

 

This process iteratively enhances the performance of the RF model by fine-tuning its hyperparameters. 

Figure 2 presents a graphical abstract of the proposed RF_SGO framework. 
 

 

Table 1. The feature of creditcard fraud dataset that is used in this paper 

Features name Description  Type  Resources  

𝑉1, 𝑉2, 𝑉3, ……., 𝑉28 Transaction feature after PCA 

transformation 

Integer  https://www.kaggle.com/mlg-

ulb/ 

creditcardfraud. Time  Seconds elapsed between each Transaction  Integer  

Amount Transaction value Integer  

Class  Legitimate or Fraudulent 0 to 1 

 

 

Table 2 The transaction label distribution in the "creditcard" dataset. This unbalanced data is expected in real-life 

datasets. 

Operation No of 

Transactions 

No. of 

legitimate 

Transaction 

No. of 

fraudulent 

Transactions 

Legitimate 

(%) 

Fraudulent 

(%) 

Before train_test_split:80% for training, 20% for testing 

Original  284,807 284,315 492 99.83% 0.17% 

Dataset after 

SMOTE operation 

483459 284315 199144 58.81% 41.19% 

Dataset with 

class_weight 

operation 

284,807 284,315 492 99.83% 0.17% 

After train_test_split:80% for training, 20% for testing 

Original : Training   199364 199008 356 99.82% 0.18% 

Original : Testing  85443 85307 

 

136 99.84 0.16% 

Dataset after 

SMOTE operation: 

Training 

398016 199008 

 

199008 

 

50% 50% 
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Dataset after 

SMOTE operation: 

Testing  

85443 85307 

 

136 99.84 0.16% 

Dataset with 

class_weight 

operation : 

Training 

199364 199008 356 99.82% 0.18% 

Dataset with 

class_weight 

operation : Testing 

85443 85307 

 

136 99.84 0.16% 

 

 

 

 

 
Figure. 2 Graphical abstract of proposed RF_SGO Model 
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Table 3. Performance Metrics of the Proposed Model with Numbers of Selected Features (5-17) for original credit 

card dataset 

No. of 

selecte

d 

feature

s 

5 6 7 8 9 10 11 12 13 14 15 16 17 

Accura

cy 
0.999579 0.999555 0.999602 0.999602 0.999579 0.999625 0.999602 0.999637 0.999637 0.999649 0.999661 0.999625 0.999649 

Precisio

n 
0.91 0.91 0.93 0.94 0.93 0.95 0.94 0.95 0.96 0.96 0.96 0.94 0.96 

Recall  0.82 0.80 0.81 0.80 0.79 0.81 0.80 0.82 0.81 0.82 0.82 0.82 0.81 

F1-

score 
0.86 0.85 0.87 0.87 0.86 0.87 0.87 0.88 0.88 0.88 0.89 0.87 0.88 

ROC-

AUC 
0.94 0.94 0.95 0.95 0.95 0.96 0.95 0.96 0.96 0.95 0.95 0.96 0.96 

Macro 

avg 

precisio

n  

0.95 0.95 0.97 0.97 0.97 0.97 0.97 0.97 0.98 0.98 0.98 0.97 0.98 

Macro 

avg 

Recall  

0.91 0.90 0.90 0.90 0.90 0.90 0.90 0.91 0.90 0.91 0.91 0.91 0.90 

Macro 

avg 

F1-

score 

0.93 0.93 0.93 0.93 0.93 0.94 0.93 0.94 0.94 0.94 0.94 0.94 0.94 

Weight

ed avg 

precisio

n  

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Weight

ed  avg 

Recall  

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Weight

ed  avg 

F1-

score 

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

TN 85296 85296 85299 85300 85299 85301 85300 85301 85302 85302 85302 85300 85303 

FP 11 11 8 7 8 6 7 6 5 5 5 7 4 

FN 25 27 26 27 28 26 27 25 26 25 24 25 26 

TP 111 109 110 109 108 110 109 111 110 111 112 111 110 

 

Table 4. Performance Metrics of the Proposed Model with Numbers of Selected Features (8-30) for original credit 

card dataset 

No. of 

selected 

features 

18 19 20 21 22 23 24 25 26 27 28 29 30 

Accurac

y 
0.999614 0.999649 0.999590 0.999625 0.999625 0.999649 0.999602 0.999672 0.999590 0.999614 0.999637 0.999625 0.999614 

Precisio

n 
0.95 0.96 0.93 0.95 0.94 0.96 0.93 0.96 0.93 0.93 0.96 0.96 0.95 

Recall  0.80 0.82 0.80 0.81 0.79 0.82 0.81 0.83 0.80 0.82 0.81 0.79 0.80 

F1-

score 
0.87 0.88 0.86 0.87 0.86 0.88 0.87 0.89 0.86 0.87 0.88 0.87 0.87 

ROC-

AUC 
0.95 0.95 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.97 0.96  

Macro 

avg 
0.97 0.98 0.97 0.97 0.97 0.98 0.97 0.98 0.97 0.97 0.98 0.98 0.97 
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precisio

n  

Macro 

avg 

Recall  

0.90 0.91 0.90 0.90 0.90 0.91 0.90 0.92 0.90 0.91 0.90 0.90 0.90 

Macro 

avg 

F1-

score 

0.93 0.94 0.93 0.94 0.93 0.94 0.93 0.94 0.93 0.94 0.94 0.94 0.93 

Weighte

d  avg 

precisio

n  

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Weighte

d  avg 

Recall  

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Weighte

d  avg 

F1-

score 

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

TN 85301 85302 85299 85301 85300 85302 85299 85302 85299 85299 85302 85303 85301 

FP 6 5 8 6 7 5 8 5 8 8 5 4 6 

FN 27 25 27 26 28 25 26 23 27 25 26 28 27 

TP 109 111 109 110 108 111 110 113 109 111 110 108 109 

 

Table 5 Performance Metrics of the Proposed Model with Numbers of Selected Features (5-17) using SMOTE oversampling 

technique on credit card dataset 

No. of 

selected 

features 

5 6 7 8 9 10 11 12 13 14 15 16 17 

Accurac

y 
0.997612 0.998514 0.998841 0.999204 0.999251 0.999309 0.999356 0.999391 0.999403 0.999462 0.999462 0.999520 0.999544 

Precisio

n 
0.39 0.52 0.59 0.70 0.71 0.73 0.76 0.77 0.78 0.80 0.80 0.82 0.84 

Recall  0.89 0.88 0.88 0.88 0.89 0.89 0.88 0.88 0.88 0.88 0.89 0.89 0.88 

F1-

score 
0.54 0.65 0.71 0.78 0.79 0.80 0.81 0.82 0.82 0.84 0.84 0.86 0.86 

ROC-

AUC 
0.97 0.98 0.97 0.97 0.97 0.97 0.97 0.97 0.98 0.98 0.97 0.98 0.98 

Macro 

avg 

precisio

n  

0.70 0.76 0.80 0.85 0.86 0.87 0.88 0.89 0.89 0.90 0.90 0.91 0.92 

Macro 

avg 

Recall  

0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 

Macro 

avg 

F1-

score 

0.77 0.83 0.85 0.89 0.90 0.90 0.91 0.91 0.91 0.92 0.92 0.93 0.93 

Weighte

d  avg 

precisio

n  

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Weighte

d  avg 

Recall  

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Weighte

d  avg 
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
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F1-

score 

TN 85118 85196 85224 85255 85258 85263 85269 85272 85273 85278 85276 85281 85284 

FP 189 111 83 52 49 44 38 35 34 29 31 26 23 

FN 15 16 16 16 15 15 17 17 17 17 15 15 16 

TP 121 120 120 120 121 121 119 119 119 119 121 121 120 

 

 

Table 6. Performance Metrics of the Proposed Model with Numbers of Selected Features (8-30) using SMOTE 

oversampling technique on credit card dataset 

No. of 

selected 

features 

18 19 20 21 22 23 24 25 26 27 28 29 30 

Accuracy 0.999508 0.99954 0.999520 0.999508 0.999544 0.999508 0.999497 0.999497 0.999497 0.999497 0.999508 0.999520  

Precision 0.82 0.84 0.83 0.82 0.84 0.83 0.83 0.83 0.82 0.82 0.83 0.84  

Recall  0.88 0.88 0.88 0.88 0.88 0.88 0.87 0.87 0.88 0.88 0.88 0.87  

F1-score 0.85 0.86 0.85 0.85 0.86 0.85 0.85 0.85 0.85 0.85 0.85 0.85  

ROC-

AUC 
0.97 0.97 0.97 0.98 0.97 0.97 0.98 0.97 0.98 0.97 0.98 0.97  

Macro 

avg 

precision  

0.91 0.92 0.91 0.91 0.92 0.91 0.91 0.91 0.91 0.91 0.91 0.92  

Macro 

avg 

Recall  

0.94 0.94 0.94 0.94 0.94 0.94 0.93 0.93 0.94 0.94 0.94 0.93  

Macro 

avg 

F1-score 

0.93 0.93 0.93 0.93 0.93 0.92 0.92 0.92 0.92 0.92 0.92 0.93  

Weighted  

avg 

precision  

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

Weighted  

avg 

Recall  

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

Weighted  

avg 

F1-score 

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

TN 85281 85284 85282 85281 85285 85282 85282 85282 85281 85281 85282 85284  

FP 26 23 25 26 22 25 25 25 26 26 25 23  

FN 16 16 16 16 17 17 18 18 17 17 17 18  

TP 120 120 120 120 119 119 118 118 119 119 119 118  

 

Table 7. Performance Metrics of the Proposed Model with Numbers of Selected Features (5-17) using class_weight 

technique on credit card dataset 

No. of 

selected 

feature

s 

5 6 7 8 9 10 11 12 13 14 15 16 17 

Accurac

y 
0.999602 0.999590 0.999637 0.999614 0.999602 0.999625 0.999625 0.999625 0.999625 0.999590 0.999602 0.999614 0.999579 

Precisio

n 
0.92 0.93 0.96 0.96 0.95 0.97 0.97 0.97 0.96 0.96 0.96 0.96 0.95 

Recall  0.82 0.80 0.81 0.79 0.79 0.79 0.79 0.79 0.79 0.77 0.79 0.79 0.77 

F1-

score 
0.87 0.86 0.88 0.87 0.86 0.87 0.87 0.87 0.87 0.86 0.86 0.87 0.85 

ROC-

AUC 
0.94 0.94 0.95 0.96 0.96 0.96 0.96 0.96 0.95 0.95 0.96 0.96 0.95 

Macro 

avg 
0.96 0.97 0.98 0.98 0.97 0.99 0.99 0.99 0.98 0.98 0.98 0.98 0.98 
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precisio

n  

Macro 

avg 

Recall  

0.91 0.90 0.90 0.90 0.90 0.89 0.89 0.89 0.90 0.89 0.89 0.89 0.89 

Macro 

avg 

F1-

score 

0.93 0.93 0.94 0.93 0.93 0.93 0.93 0.93 0.94 0.93 0.93 0.93 0.93 

Weight

ed  avg 

precisio

n  

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

Weight

ed  avg 

Recall  

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

Weight

ed  avg 

F1-

score 

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

TN 85297 85299 85302 85302 85301 85304 85304 85304 85303 85303 85302 85303 85302 

FP 10 8 5 5 6 3 3 3 4 4 5 4 5 

FN 24 27 26 28 28 29 29 29 28 31 29 29 31 

TP 112 109 110 108 108 107 107 107 108 105 107 107 105 

 

Table 8. Performance Metrics of the Proposed Model with Numbers of Selected Features (18-30) using 

class_weight technique on credit card dataset 

No. of 

selecte

d 

feature

s 

18 19 20 21 22 23 24 25 26 27 28 29 30 

Accura

cy 
0.999590 0.999579 0.999579 0.999602 0.999602 0.999625 0.999625 0.999625 0.999614 0.9996374 0.999614 0.9996374 0.999614 

Precisio

n 
0.96 0.95 0.96 0.96 0.96 0.97 0.97 0.96 0.96 0.97 0.97 0.97 0.96 

Recall  0.77 0.77 0.76 0.79 0.78 0.79 0.79 0.79 0.79 0.79 0.78 0.79 0.79 

F1-

score 
0.86 0.85 0.85 0.86 0.86 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 

ROC-

AUC 
0.95 0.96 0.96 0.95 0.97 0.96 0.97 0.96 0.96 0.96 0.95 0.96 0.97 

Macro 

avg 

precisio

n  

0.98 0.98 0.98 0.98 0.98 0.99 0.99 0.98 0.98 0.99 0.99 0.99 0.98 

Macro 

avg 

Recall  

0.89 0.89 0.88 0.89 0.89 0.89 0.89 0.90 0.89 0.90 0.89 0.90 0.89 

Macro 

avg 

F1-

score 

0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.94 0.93 0.94 0.93 0.94 0.93 

Weight

ed  avg 

precisio

n  

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

Weight

ed  avg 

Recall  

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
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Weight

ed  avg 

F1-

score 

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

0TN 85303 85302 85303 85302 85303 85304 85304 85303 85303 85304 85304 85304 85303 

FP 4 5 4 5 4 3 3 4 4 3 3 3 4 

FN 31 31 32 29 30 29 29 28 29 28 30 28 29 

TP 105 105 104 107 106 107 107 108 107 108 106 108 107 

 

 

 
Figure 3. Visual comparison of accuracy, precision, recall and F1score for original, SMOTE,and class_weight 

dataset 

 

 

Figure 4. Visual comparison ROC-AUC for original, SMOTE, and class_weight dataset 
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Table  9. Performance evaluation of Algorithms 

Model Accuracy Precision Recall F1score ROC-AUC score 

Logistic regression [46] 0.97477 0.0617 0.8730 0.1143 0.9578 

LGBM[46] 0.99919 0.7534 0.7990 0.7699 0.9472 

XGM[46] 0.99923 0.7862 0.7949 0.7830 0.9517 

CatBoost[46] 0.99880 0.6431 0.8096 0.7066 0.9390 

Vot_Lg,Xg,Ca[46] 0.99924 0.7720 0.8033 0.7825 0.9501 

Vot_Lg, Xg[46] 0.99927 0.7901 0.8012 0.7901 0.9522 

Vot_Xg, Ca[46] 0.99923 0.7681 0.8097 0.7823 0.9492 

Vot_Lg, Ca[46] 0.99912 0.7260 0.8075 0.7581 0.9459 

Deep learning model[46] 0.9994 0.8043 0.8222 0.8132 0.9401 

NB [22] 0.9792 − − − − 

LR [22] 0.5486 − − − − 

𝑘-NN [22] 0.9769 − − − − 

DT [25] 0.9708 − − − − 

LR [25] 0.9718 − − − − 

SVM[26] 0.9512 0.87 − − − 

LOF[26] 0.99 0.5 − − − 

iForest[26] 0.99 0.34 − − − 

DT[26] 0.99 0.00 − − − 

SVM[27] 0.9750 − − − − 

RF[27] 0.9860 − − − − 

DT27] 0.9550 − − − − 

LR[27] − 0.9770 − − − 

DT [28] − 0.8511 − − − 

k-NN[28] − 0.9111 − − − 

LR[28] − 0.875 − − − 

RF[28] − 0.8977 − − − 

NB[28] − 0.652 − − − 

LOF[29] 0.9960 0.5 − − − 

IForest[29] 0.9970 0.34 − − − 

DT[29] 0.9980 0.00 − − − 

XGBoost [30] 0.9996 0.9773 0.8269 0.8958 − 

XGBoost + Random 

Oversampling[30] 

0.9996 0.9663 0.8269 0.8912 − 

XGBoost + SMOTE[30] 0.9995 0.8969 0.8365 0.8657 − 

XGBoost + 

SMOTETomek[30] 

0.9995 0.8700 0.8365 0.8529 − 

XGBoost + 

SMOTEENN[30] 

0.9995 0.8627 0.8462 0.8544 − 

XGBoost + ADASYN[30] 0.9994 0.8529 0.8365 0.8447 − 

DT[31] 0.96 − − − − 

LR[31] 0.95 − − − − 

𝑘-NN[31] 0.97 − − − − 

RF[31] 0.97 − − − − 

XGBoost[31] 0.96 − − − − 

NB[31] 0.94 − − − − 

SVM[31] 0.95 − − − − 

RF_SGO on original 

dataset 

0.999672 0.96 0.83 0.89 0.96 

RF_SGO after SMOTE 0.999544 0.84 0.88 0.86 0.98 

RF_SGO with class_weight 0.999637 0.96 0.81 0.88 0.95 
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V28, along with two non-transformed features, 

“Time” and “Amount.” 

 The “Time” feature records the time in seconds 

between a transaction and the first transaction in 

the dataset. 

 The “Amount” feature represents the monetary 

value of the transaction. 

 The target variable, “Class” indicates the 

outcome of the transaction, where 1 represents a 

fraudulent transaction and 0 represents a 

legitimate one. 

A summary of the dataset's features and variables is 

provided in Table 1. 

Simulation results: Performance of RF_SGO 

model in predicting frauds on creditcard dataset 
To evaluate the performance of the proposed 

RF_SGO model, we utilized three variations of the 

original creditcard dataset: (1) the original creditcard 

dataset(unbalanced) (2) the dataset balanced using 

the SMOTE technique, and (3) the dataset with 

class_weight adjustments (unbalanced). Detailed 

descriptions of these datasets are provided in Table 

2. 

Performance of the RF_SGO model on original 

credit card dataset 
The performance metrics of the RF_SGO model 

were computed for varying numbers of selected 

features. Results for feature sets ranging from 5 to 

17 are presented in Table 3, while results for feature 

sets ranging from 18 to 30 are shown in Table 4, 

based on the original credit card dataset. 

Discussion  

Tables 3 and 4 present the performance metrics of 

the RF_SGO model on the original credit card 

dataset, evaluated for varying numbers of selected 

features (5–30). Below, we analyze the key trends 

and insights from these results. 

Accuracy 

Across all feature subsets, the RF_SGO model 

achieves exceptionally high accuracy, ranging 

between 0.999579 and 0.999672. This consistency 

indicates that the model performs well in correctly 

classifying the majority class (legitimate 

transactions), which is expected given the dataset's 

imbalance. Slight variations in accuracy are 

observed as the number of features changes, with the 

highest accuracy (0.999672) achieved with 25 

selected features. 

 

Precision 

 Precision values range from 0.91 to 0.96. Precision 

improves as the number of features increases, 

reflecting the model’s ability to minimize false 

positives (legitimate transactions misclassified as 

fraudulent). Notably, the highest precision values 

(0.96) are achieved at multiple feature counts (e.g., 

10, 19, 23, 28). 

Recall 

Recall varies between 0.79 and 0.83, showing more 

fluctuation compared to other metrics. Recall is 

crucial for fraud detection, as it indicates the 

proportion of actual fraudulent transactions correctly 

identified. Although recall does not demonstrate a 

consistent increasing trend, the highest value (0.83) 

is observed with 25 selected features, suggesting 

better sensitivity to the minority class. 

F1-Score 

The F1-score, a balance between precision and 

recall, ranges from 0.85 to 0.89. Similar to 

precision, the F1-score improves with a larger 

feature subset, peaking at 0.89 for 25 features. This 

suggests that the RF_SGO model achieves its best 

trade-off between minimizing false positives and 

false negatives with this feature count. 

ROC-AUC 

The ROC-AUC values are consistently high 

(between 0.94 and 0.97), reflecting the model's 

strong capability to distinguish between legitimate 

and fraudulent transactions. The highest value (0.97) 

is observed with 28 features, indicating optimal 

discriminatory power at this feature count. 

Macro Average Metrics: Precision, Recall, and 

F1-score (Macro Average): 
Macro average precision consistently exceeds 0.97, 

demonstrating the model's strong performance 

across both classes. Recall, however, remains stable 

around 0.90–0.92, reflecting challenges in boosting 

minority class detection. Macro average F1-scores 

show steady improvements with feature count, 

reaching 0.94 for larger subsets. These macro 

averages validate that performance improvements 

are achieved without compromising the minority 

class entirely, despite the dataset imbalance. 

Weighted Average Metrics 

Weighted average precision, recall, and F1-score 

remain constant at 1.00 across all feature subsets, 

highlighting that the model performs nearly 

perfectly on the majority class. However, these 

metrics should be interpreted carefully, as they are 

heavily influenced by the majority class's 

overwhelming presence. 

Confusion Matrix (TN, FP, FN, TP) 

True Negatives (TN): The TN values are 

consistently high across all feature subsets, 

reflecting the model’s strength in identifying 

legitimate transactions correctly. 

 False Positives (FP): FP values decrease as the 

number of features increases, with the  

lowest FP count (4) observed at 17 and 29 features. 

 False Negatives (FN): FN values fluctuate 

between 23 and 28, indicating room for 

improvement in correctly identifying fraudulent 

transactions. 
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True Positives (TP): TP values remain relatively 

stable, peaking at 113 with 25 features, which aligns 

with the highest recall observed. 

Insights and Observations 

Optimal Feature Selection: 
The RF_SGO model achieves its best overall 

performance in terms of accuracy, precision, recall, 

F1-score, and ROC-AUC with feature counts 

between 23–28. A feature count of 25 appears to be 

particularly effective, yielding the highest recall 

(0.83) and strong results across all metrics. 

Class Imbalance Challenges: 
The model demonstrates high precision but 

relatively lower recall, indicating that while it 

minimizes false positives effectively, there is room 

to improve its sensitivity to fraudulent transactions 

(reducing FN). 

Trade-offs Between Precision and Recall: 
The increase in precision with higher feature counts 

comes at a slight cost to recall in some cases. This 

trade-off needs to be balanced based on the 

application context-whether minimizing false alarms 

or detecting all fraud cases is prioritized. 

Real-World Applicability: 
Despite the dataset's class imbalance, the RF_SGO 

model maintains strong performance, suggesting its 

potential for real-world deployment. However, 

emphasis should be placed on improving recall to 

ensure the model effectively detects fraudulent 

transactions in critical scenarios. 

Tables 3 and 4 demonstrate the RF_SGO model's 

robustness across varying feature subsets. While the 

model performs exceptionally well overall, further 

optimization- such as feature engineering or 

adjustments to the training process-could focus on 

enhancing recall for more reliable fraud detection in 

real-world applications. 

Performance of the RF_SGO model on SMOTE-

treated credit card dataset 

The performance metrics of the RF_SGO model 

were computed for varying numbers of selected 

features. Results for feature sets ranging from 5 to 

17 are presented in Table 5, while results for feature 

sets ranging from 18 to 30 are shown in Table 6, 

based on the credit card dataset after SMOTE 

oversampling. 

Tables 5 and 6 provide a comprehensive analysis of 

the RF_SGO model's performance using SMOTE 

oversampling, varying the number of selected 

features from 5 to 30. The discussion below 

highlights key trends and insights drawn from the 

metrics. 

Accuracy 

Accuracy improves progressively from 0.9976 (5 

features) to a peak of 0.999544 (17 features). This 

trend demonstrates that adding features enhances the 

model's ability to generalize while leveraging the 

oversampled dataset. Beyond 17 features, accuracy 

remains stable, ranging between 0.999497 and 

0.999544. This suggests that adding more features 

beyond 17 provides limited additional value, as the 

model likely captures most relevant information by 

this point. 

Precision 

 In Table 5, precision starts low at 0.39 (5 features) 

and steadily increases, reaching 0.84 at 17 features. 

In Table 6, precision stabilizes around 0.82–0.84 for 

feature counts between 18 and 30. Precision growth 

reflects the model's ability to reduce false positives 

with more features. However, diminishing returns 

are evident as the feature count exceeds 17. 

Recall 

Recall values remain steady across Tables 5 and 6, 

staying within the range of 0.87–0.89. The balanced 

dataset ensures the model consistently identifies 

fraudulent transactions regardless of the number of 

features. While recall remains high, slight variations 

occur as precision improves, indicating an inherent 

trade-off between these metrics as more features are 

introduced. 

F1-Score 

F1-score increases from 0.54 (5 features) to a high 

of 0.86 (17 features), reflecting improved balance 

between precision and recall. Beyond 17 features, 

F1-scores plateau around 0.85, indicating that the 

addition of more features does not further enhance 

the balance of detection capabilities. 

ROC-AUC 

ROC-AUC remains consistently high (0.97–0.98) 

across both tables, demonstrating the model's ability 

to effectively distinguish between fraudulent and 

non-fraudulent transactions, even with varying 

feature sets. 

Macro and Weighted Averages 

Macro-averaged precision and F1-scores improve up 

to 17 features, stabilizing thereafter. This highlights 

the model's robustness in treating both classes 

equally. Weighted average precision, recall, and F1-

scores remain perfect (1.00) across all feature 

counts. This reflects the significant dominance of 

non-fraudulent transactions and the model's strong 

performance on the majority class. 

Confusion Matrix Analysis 

True Negatives (TN) and False Positives (FP): TN 

values increase slightly as more features are added, 

reducing FP rates from 189 (5 features) to 23 (17 

features in Table 5) and stabilizing in Table 6. This 

indicates improved classification of non-fraudulent 

transactions. 

True Positives (TP) and False Negatives (FN): TP 

values slightly fluctuate but remain steady at ~120, 

while FN values stay low, varying between 15 and 

18. This reflects consistent sensitivity to fraudulent 

cases across different feature sets. 
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Key Insights 

Optimal Feature Count: 

Performance metrics (accuracy, precision, F1-score) 

improve significantly with features up to 17, with 

diminishing returns beyond this point. Therefore, 

15–17 features represent an optimal balance between 

performance and complexity. 

Impact of SMOTE: 

 SMOTE effectively balances the dataset, enabling 

the model to maintain high recall and F1-scores. This 

is crucial for detecting rare fraudulent transactions. 

Practical Implications: 

In real-world scenarios, recall and F1-score are 

critical for fraud detection to minimize undetected 

fraudulent transactions. A feature set of 15–17 offers 

the best trade-off between performance and 

computational efficiency. 

Scalability: 

The model demonstrates consistent performance 

across a wide range of feature counts, showcasing its 

scalability and adaptability for datasets with 

different feature dimensions. 

The RF_SGO model, when applied to a SMOTE-

treated credit card dataset, achieves high precision, 

recall, and F1-scores with 15–17 selected features. 

This ensures robust and balanced fraud detection 

capabilities, making it well-suited for practical 

applications where minimizing false negatives is 

critical. 

Performance of the RF_SGO model using 

the class_weight technique on credit card dataset 

The performance metrics of the RF_SGO model 

were computed for varying numbers of selected 

features. Results for feature sets ranging from 5 to 

17 are presented in Table 7, while results for feature 

sets ranging from 18 to 30 are shown in Table 8, 

based on the credit card dataset using class_weight 

technique. 

Tables 7 and 8 present the performance of the 

RF_SGO model applied to the credit card 

dataset with feature subsets ranging from 5 to 30, 

optimized using the class_weight technique. Key 

insights are discussed below: 

Accuracy 

The model achieves consistently high accuracy, 

exceeding 99.95% for all feature subsets. Accuracy 

peaks at 0.999637 for 7 features, showing that 

smaller subsets can yield excellent results. Beyond 

10 features, accuracy remains relatively stable, 

fluctuating slightly around 0.999590–0.999625. 

Accuracy remains consistent with minor 

improvements at 27 and 29 features (0.999637). 

These results demonstrate the robustness of the 

model across feature subset sizes. 

Precision 
Precision remains high across all subsets, indicating 

the model’s ability to minimize false positives. 

Precision improves from 0.92 (5 features) to a 

maximum of 0.97 (10–12 features), maintaining this 

peak for most subsets. Precision remains 

consistently high between 0.95 and 0.97, showing 

marginal gains with larger feature subsets. 

Recall 

Recall, which measures the model’s ability to 

identify fraudulent transactions, shows variability: 

Recall is highest at 0.82 (5 features) but declines 

slightly to 0.77 (17 features) as the feature subset 

increases. Recall stabilizes between 0.76 and 0.79, 

demonstrating that the model maintains a good 

sensitivity to fraudulent transactions despite adding 

features. 

F1-Score  
The F1-score, balancing precision and recall, is 

consistently strong: Peaks at 0.88 (7 features) and 

remains stable around 0.87 for most feature subsets. 

F1-score fluctuates between 0.85 and 0.87, 

reflecting robust overall performance across larger 

feature subsets. 

ROC-AUC  
The ROC-AUC score, representing the model’s 

discriminatory power, remains excellent: Increases 

slightly from 0.94 (5 features) to 0.96 (10–12 

features), confirming strong model performance 

with smaller subsets. Scores stabilize between 0.95 

and 0.97, indicating reliable separation between 

classes even with larger feature subsets. 

Confusion Matrix Observations  

True Negatives (TN): The model consistently 

identifies legitimate transactions, with TN values 

exceeding 85,300 across all subsets. 

False Positives (FP): FP values remain low, 

particularly in optimal subsets: Minimum FP values 

occur with 10–12 features (only 3 false positives). 

FP stabilizes around 3–5, reinforcing the model's 

ability to minimize false alarms. 

True Positives (TP): TP values range between 104 

and 112, reflecting consistent identification of 

fraudulent transactions. 

False Negatives (FN): FN values slightly increase 

with feature count: FN ranges from 24 (5 

features) to 31 (17 features). FN values stabilize 

between 28 and 32, indicating slight limitations in 

capturing all fraudulent instances. 

Macro-Averaged Metrics 

Macro-Averaged Precision and Recall: Precision 

increases with feature count, peaking at 0.99 for 10–

12 features, while recall stabilizes around 0.89–0.91. 

Precision remains between 0.98 and 0.99, with 

stable recall values (0.89–0.90), showcasing 

balanced performance across classes. 

Macro-Averaged F1-Score: Remains consistent 

at 0.93–0.94, confirming the model’s robustness 

across subsets. 

Weighted Metrics 
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Weighted Precision, Recall, and F1-Scores are 

perfect (1.0) for all feature subsets in both tables, 

emphasizing the model’s ability to handle 

imbalanced datasets effectively. 

Smaller subsets (7–12 features) achieve the best 

trade-off between precision, recall, and F1-score, 

with fewer false positives and slightly higher recall. 

Larger subsets (18–30 features) maintain stable 

performance but show diminishing returns in terms 

of recall and F1-score. The RF_SGO model, 

combined with the class_weight technique, 

demonstrates exceptional performance across all 

metrics, handling the imbalanced nature of the 

dataset effectively while ensuring minimal 

computational overhead for smaller subsets. Future 

research can explore fine-tuning feature subsets 

further to optimize recall while maintaining 

precision. 

Comparison on evaluating the original 

dataset, SMOTE Oversampling dataset, 

and Class_Weight dataset to determine the best-

performing dataset for RF_SGO 

The visual summary (charts) and additional 

insights to give a complete view of the RF_SGO 

performance across the different datasets is 

explained below: 

Accuracy, Precision, Recall, and F1-Score 

Comparison: 
The comparison chart shows how these metrics 

change for each dataset across the feature ranges. 

Class Weight has the highest Precision and F1-

Score, with values around 0.97 and 0.87, 

respectively, which indicate that the model using 

class weight performs the best in terms of correctly 

identifying positive instances (fraud cases). 

SMOTE has slightly better Recall than Class 

Weight (around 0.88), suggesting that SMOTE 

provides a better balance in terms of detecting both 

fraud and non-fraud instances. The Original 

Dataset generally performs well but trails behind the 

others in Precision and Recall. 

ROC-AUC Comparison: 
The SMOTE and Class Weight datasets both 

achieve high ROC-AUC scores of 

around 0.98 and 0.96, respectively. The Original 

Dataset has a slightly lower ROC-AUC (~0.96). A 

higher ROC-AUC score reflects better model 

performance, so SMOTE seems to provide the best 

overall performance, followed closely by Class 

Weight.Additional Insights: 

Based on both accuracy and precision/recall 

balance, SMOTE appears to be the best dataset for 

the RF_SGO model. It offers the highest ROC-

AUC and better F1-Score, making it the most 

suitable dataset for distinguishing between fraud and 

non-fraud cases. While Class Weight provides 

excellent Precision and F1-Score, it tends to have 

slightly lower Recall than SMOTE, indicating it 

might be slightly more conservative in detecting 

fraud instances. However, it could be useful in 

scenarios where false positives need to be minimized 

(e.g., avoiding too many false alarms). The Original 

Dataset does perform well, but it lags 

behind SMOTE and Class Weight across most 

metrics. It’s generally better suited for baseline 

comparisons or when data balancing techniques like 

SMOTE or class weighting aren't available. 

The SMOTE dataset offers the best overall 

performance, balancing both detection accuracy and 

model sensitivity, making it the preferred choice for 

fraud detection in this case. However, depending on 

the application, Class Weight might be a better 

choice if minimizing false positives is a priority.  

Simulation results: Performance comparisons in 

predicting frauds on creditcard data by various 

algorithms 

Hyperparameters have a significant effect on the 

performance of machine learning models. We refer 

to optimization as the process of finding the best set 

of hyperparameters that configure a machine 

learning algorithm during its training. Recently, it 

was shown that the evolutionary optimization 

methods is capable of finding the optimised values 

in a much smaller number of training courses 

compared with traditional optimization methods 

[44-45]. In this paper, we use the SGO optimization 

algorithm to tune the hyperparameters of RF that 

leads to performance improvement. For comparison 

purpose we have utilized various results  of 

algorithms imported from various research paper 

which are listed as Logistic regression [46], 

LGBM[46], XGM[46], CatBoost[46], 

Vot_Lg,Xg,Ca[46], Vot_Lg, Xg[46], Vot_Xg, 

Ca[46], Vot_Lg, Ca[46], Deep learning model[46],  

NB [22], LR [22], 𝑘-NN [22], DT [25], LR [25], 

SVM[26], LOF[26], iForest[26], DT[26], SVM[27], 

RF[27], DT[27], LR[27], DT[28], k-NN[28], 

LR[28], RF[28], NB[28], LOF[29], iForest[29], 

DT[29], XGBoost [30], XGBoost + Random 

Oversampling[30], XGBoost + SMOTE[30], 

XGBoost + SMOTETomek[30], XGBoost + 

SMOTEENN[30], XGBoost + ADASYN[30], 

DT[31], LR[31], 𝑘-NN[31], RF[31], XGBoost[31], 

NB[31], SVM[31].Discussion 

The table 9 presents a comparative performance 

evaluation of various machine learning models for 

creditcard fraud detection, using key metrics such 

as Accuracy, Precision, Recall, F1-Score, 

and ROC-AUC score. This comparison includes 

traditional machine learning algorithms, advanced 

ensemble methods, deep learning models, and 

models optimized using the SGO algorithm. 

LR [46] achieves an Accuracy of 0.97477 but 

performs poorly in Precision (0.0617) despite a high 
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Recall of 0.8730. This imbalance suggests that LR 

tends to overpredict the positive class, leading to a 

high false-positive rate. LR models from other 

studies [22], [27], [28], [31] show variable results, 

but none outperform ensemble methods or RF_SGO. 

DT models from [29], [25], [26], [27], [28], and [31] 

exhibit inconsistent performance, with Accuracy 

ranging from 0.9550 to 0.9980. However, DTs 

typically have lower precision, indicating 

suboptimal performance for imbalanced datasets. 

The k-NN models [22], [28], [31] perform 

moderately well with Accuracy around 0.97, but 

detailed precision and recall values are unavailable, 

making it difficult to assess their suitability for fraud 

detection. SVM models [26], [31] achieve Accuracy 

up to 0.9750 and moderate precision (0.87). 

However, they are not consistently better than 

ensemble methods or RF_SGO, particularly in 

recall. NB models [22], [28], [31] achieve lower 

accuracy (0.94–0.9792), indicating their limited 

capability for handling this imbalanced dataset. 

RF models from [27], [28], and [31] show Accuracy 

up to 0.9860, indicating good generalization. 

However, RF_SGO outperforms vanilla RF in both 

precision and recall due to its hyperparameter 

optimization. XGBoost models [30] perform well, 

with Accuracy reaching 0.9996. Variants like 

SMOTE and SMOTEENN enhance recall and F1-

scores but do not surpass RF_SGO's overall balance 

of metrics. For instance, XGBoost with random 

oversampling achieves Precision of 0.9663 and F1-

Score of 0.8912, slightly below RF_SGO (SMOTE). 

CatBoost [46] achieves Accuracy of 0.99880, with 

strong recall (0.8096) but lower precision (0.6431). 

LGBM [46] performs slightly better with higher 

precision (0.7534) but still lags behind RF_SGO. 

Ensemble combinations like Vot_Lg, Xg [46] and 

Vot_Xg, Ca [46] achieve Accuracy around 0.9992–

0.9993, with precision and recall values similar to 

XGBoost but lower than RF_SGO. 

RF_SGO achieves the highest Accuracy (0.999672) 

and Precision (0.96), making it ideal for scenarios 

prioritizing precision and minimizing false alarms. 

However, the Recall (0.83) is slightly lower 

compared to SMOTE-enhanced variants. The 

SMOTE-enhanced RF_SGO model achieves the 

highest ROC-AUC (0.98) with improved Recall 

(0.88), balancing the trade-off between precision and 

recall. This variant is ideal for scenarios where 

detecting fraudulent transactions is critical. The 

class-weighted RF_SGO model has an Accuracy of 

0.999637 and strong Precision (0.96), but its Recall 

(0.81) is the lowest among RF_SGO variants, 

indicating that it is less effective at identifying 

minority class instances. 

 

The deep learning model [46] achieves competitive 

metrics, with Accuracy of 0.9994, Precision of 

0.8043, and F1-Score of 0.8132. However, its lower 

ROC-AUC (0.9401) compared to RF_SGO indicates 

suboptimal performance in distinguishing classes. 

 

The RF_SGO with SMOTE variant is the most 

balanced model, achieving the highest ROC-AUC 

(0.98) and a robust trade-off between precision and 

recall. The RF_SGO on the original dataset is best 

suited for applications prioritizing precision (e.g., 

minimizing false positives). Logistic regression, 

decision trees, and naïve Bayes are less effective due 

to the imbalanced nature of the dataset, often 

favoring majority class predictions. Models like 

XGBoost and its variants, CatBoost, and ensemble 

methods are competitive but do not surpass 

RF_SGO's performance, especially in recall and 

AUC. When compared to traditional models 

like Logistic Regression (LR), Naive Bayes (NB), 

and Decision Trees (DT), RF_SGO outperforms 

them on all major metrics, especially in terms 

of Precision, Recall, and ROC-AUC. The SMOTE-

enhanced RF_SGO achieves the highest ROC-

AUC (0.98) and Recall (0.88), providing the best 

overall balance between detecting fraud and 

minimizing false positives. The visual comparison is 

illustrated by the figures 3-9. 

RF_SGO after SMOTE is the most balanced model 

across all metrics, achieving a high ROC-AUC of 

0.98, excellent recall (88%), and a reasonable 

precision (84%). This version of the model is ideal 

for scenarios where identifying fraudulent 

transactions is the highest priority. RF_SGO on the 

original dataset is best for applications where 

minimizing false positives is crucial, as it achieves a 

very high precision (96%) but slightly sacrifices 

recall (83%). Class-weighted RF_SGO strikes a 

balance between the two extremes, providing 

excellent precision (96%) while still maintaining 

decent recall (81%). This configuration is well-

suited for situations where both precision and recall 

are important but precision is prioritized. XGBoost 

and LGBM perform well, but their performance is 

outpaced by RF_SGO variants in terms of the 

precision-recall trade-off and ROC-AUC. Ensemble 

methods (e.g., Vot_Lg, Xg, Ca) and deep learning 

models perform competitively but generally fall 

short of RF_SGO’s ability to effectively balance 

precision and recall for fraud detection tasks. This 

performance evaluation shows that RF_SGO, 

particularly when combined with SMOTE, provides 

a highly effective approach for credit card fraud 

detection, outshining many traditional and advanced 

models in various key metrics. 
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Figure 5. Visual comparison of Accuracy by different algorithms 
 

 

Figure 6. Visual comparison of Precision by different algorithms 

 

Figure 7. Visual comparison of Recall by different algorithms 
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Figure 8. Visual comparison of F1 score by different algorithms 

 

Figure 9. Visual comparison of ROC-AUC score by different algorithms 

 

7. Conclusion and Future work 

This study demonstrates the significant potential of 

the RF_SGO framework for credit card fraud 

detection, particularly in handling highly 

imbalanced datasets. Among the tested approaches, 

the RF_SGO model combined with SMOTE 

emerges as the most balanced, achieving an 

impressive ROC-AUC of 0.98, high recall (88%), 

and reasonable precision (84%). This configuration 

is particularly suited for scenarios where identifying 

fraudulent transactions is the top priority. In contrast, 

the class-weighted RF_SGO model maintains 

excellent precision (96%) with decent recall (81%), 

making it ideal for applications requiring a balance 

between sensitivity and specificity. The RF_SGO 

model applied to the original dataset, with its very 

high precision (96%) and slightly lower recall 

(83%), is optimal for minimizing false positives. 

Additionally, the integration of feature importance 

analysis enhances the interpretability of the Random 

Forest model by identifying key predictors of 

fraudulent behavior, providing actionable insights 

for financial institutions. The comparative 

evaluation further highlights RF_SGO's superior 

performance over traditional machine learning 

models (e.g., Logistic Regression, Decision Trees, 

and SVM), advanced algorithms (e.g., XGBoost, 

CatBoost), and deep learning techniques in terms of 

precision-recall trade-offs and ROC-AUC 

metrics.The findings emphasize the importance of 

hyperparameter optimization, feature importance 
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analysis, and effective data balancing techniques in 

building robust and scalable fraud detection systems. 

These contributions provide financial institutions 

with a practical and efficient framework to mitigate 

credit card fraud, ensuring secure transaction 

environments. While this study establishes RF_SGO 

as a highly effective solution, several areas for future 

exploration remain. Implementing RF_SGO in real-

time fraud detection systems to evaluate its 

performance in dynamic and evolving environments. 

Enhancing the framework’s interpretability using 

advanced explainable AI techniques to meet 

regulatory requirements and build stakeholder trust. 

Extending the evaluation to diverse datasets across 

industries to validate the generalizability of the 

proposed framework.  Combining RF_SGO with 

other advanced techniques, such as ensemble 

methods and deep learning, to further improve 

detection accuracy.By addressing these directions, 

the RF_SGO framework can evolve into a more 

adaptable, reliable, and comprehensive solution for 

combating fraudulent activities in the financial 

sector.   
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