

Copyright © IJCESEN

International Journal of Computational and Experimental

Science and ENgineering

(IJCESEN)

Vol. 11-No.1 (2025) pp. 616-641
http://www.ijcesen.com

ISSN: 2149-9144

 Research Article

Hyperparameter Tuning of Random Forest using Social Group Optimization

Algorithm for Credit Card Fraud Detection in Banking Data

Sudhirvarma Sagiraju1, Jnyana Ranjan Mohanty2, Anima Naik3,*

1Research Scholar, School of Computer Engineering, KIIT Deemed to be University, Bhubaneswar, India,

Email: 2181071@kiit.ac.in - ORCID: 0009-0002-6481-4831

2Professor, School of Computer Engineering, KIIT Deemed to be University, Bhubaneswar, India,
Email: jmohantyfca@kiit.ac.in - ORCID: 0000-0002-8762-3037

3Professor, Computer Science and Engineering, Raghu Engineering college, Visakhapatnam, India,
* Corresponding Author Email: anima.naik@raghuenggcollege.in - ORCID: 0000-0002-7808-5994

Article Info:

DOI: 10.22399/ijcesen.777

Received : 16 December 2024

Accepted : 29 January 2025

Keywords :

SGO, Random Forest, accuracy,

hyperparameters,

Credit Card Fraud Detection,

European cardholders' imbalanced

dataset.

Abstract:

As the adoption of credit cards continues to expand alongside advancements in e-

commerce, the frequency and complexity of fraudulent activities have also grown, posing

significant challenges for the financial sector. Detecting fraudulent transactions within

highly imbalanced datasets remains a critical issue in ensuring secure banking operations.

This study explores a robust approach RF_SGO to credit card fraud detection by

combining pre-processing techniques such as Synthetic Minority Oversampling

Technique (SMOTE) and class weight adjustment with Random Forest (RF) models

optimized using the Social Group Optimization (SGO) algorithm. Additionally, the study

utilizes Random Forest's feature importance mechanism to identify the most influential

features contributing to fraud detection, enhancing interpretability and decision-making.

Our methodology evaluates RF_SGO across three datasets: the original European

cardholders' imbalanced dataset, a class-weight-adjusted dataset, and a SMOTE-

enhanced dataset. Model performance is measured using key metrics, including

Accuracy, Precision, Recall, F1-Score, and ROC-AUC. The RF_SGO model

demonstrated superior performance, with the SMOTE-enhanced variant achieving the

highest ROC-AUC (0.98) and Recall (0.88), effectively balancing sensitivity and

specificity. The class-weighted RF_SGO achieved the highest Precision (0.96), making

it ideal for minimizing false positives. Furthermore, the feature importance analysis

identified key predictors of fraudulent behavior, providing actionable insights for

financial institutions. Comparisons with traditional machine learning algorithms (e.g.,

Logistic Regression, Decision Trees, and SVM) and advanced models (e.g., XGBoost,

CatBoost, and deep learning) highlight RF_SGO's ability to outperform in precision-

recall trade-offs and overall classification effectiveness. This study underscores the

significance of incorporating hyperparameter tuning, feature importance analysis, and

data balancing strategies to improve fraud detection. The proposed RF_SGO framework

offers a scalable and efficient solution for financial institutions to mitigate fraud, ensuring

more reliable and secure transaction systems.

1. Introduction

Credit card fraud detection is a critical area of

research in financial security, driven by the rapid

growth of online transactions and the escalating

sophistication of fraudulent activities. The rise of

digital payment methods and global e-commerce

platforms has made transactions more convenient

but also more vulnerable to exploitation. Fraudulent

activities not only lead to financial losses but also

erode customer trust in financial systems. According

to industry reports, global credit card fraud losses

have reached unprecedented levels, prompting a

need for advanced and scalable fraud prevention

systems. Financial institutions are under immense

pressure to balance security with customer

experience, as overly stringent measures can hinder

legitimate transactions. Thus, designing effective

fraud detection systems has become a strategic

priority [1-2]. The detection of fraudulent

http://dergipark.org.tr/en/pub/ijcesen
http://www.ijcesen.com
mailto:2181071@kiit.ac.in
mailto:jmohantyfca@kiit.ac.in
mailto:anima.naik@raghuenggcollege.in

Sudhirvarma Sagiraju, Jnyana Ranjan Mohanty, Anima Naik/ IJCESEN 11-1(2025)616-641

617

transactions poses unique challenges due to the

imbalanced nature of credit card datasets, where

legitimate transactions far outnumber fraudulent

ones. This imbalance often causes traditional

machine learning models to favor the majority class,

leading to poor performance in detecting fraudulent

transactions. Furthermore, fraud patterns evolve

rapidly as attackers employ sophisticated techniques

such as identity theft, skimming, and phishing to

bypass existing security measures. Models must not

only detect known fraud patterns but also generalize

well to emerging, unseen behaviors. Another critical

challenge is minimizing false positives, as

incorrectly flagging legitimate transactions can

disrupt the customer experience and lead to loss of

business. This necessitates the development of fraud

detection systems that achieve a fine balance

between precision and recall.

Machine learning techniques have emerged as

powerful tools for identifying anomalous patterns in

transaction data, enabling real-time fraud detection

and prevention. Unlike rule-based systems, machine

learning models can automatically learn from data,

adapting to new fraud patterns with minimal human

intervention [3]. Supervised learning algorithms,

such as logistic regression, support vector machines,

and ensemble methods like Random Forest, have

demonstrated significant promise in fraud detection

tasks. Additionally, advanced deep learning

architectures, such as neural networks and

autoencoders, offer opportunities to model complex

relationships in high-dimensional data [4].

Unsupervised methods and anomaly detection

algorithms are also gaining traction, especially for

identifying previously unseen fraud scenarios.

Combining these techniques with domain-specific

knowledge can enhance the robustness of fraud

detection systems [5].

This paper investigates novel approaches to

enhancing fraud detection accuracy, with a particular

emphasis on addressing class imbalance and

reducing false positives. The study focuses on

employing advanced machine learning algorithms

and evolutionary optimization techniques to develop

scalable models suitable for real-world applications.

We propose an efficient credit card fraud detection

framework, evaluated on publicly available

European cardholders dataset [6], incorporating

machine learning algorithms such as Random Forest

(RF) and optimization methods like Social Group

Optimization (SGO)[7], alongside hyperparameter

tuning strategies. The SGO algorithm offers several

benefits for hyperparameter selection in machine

learning models, making it an effective choice for

this purpose. SGO possesses a good optimality-

finding ability and is used in various fields [8-18].

An effective fraud detection system must accurately

identify fraudulent transactions while maintaining

high precision, ensuring customer trust in financial

institutions and minimizing losses from incorrect

detections. The primary contributions of this paper

are summarized as follows:

 Addressing Imbalanced Data: To mitigate the

class imbalance issue in credit card fraud

datasets, we employ Synthetic Minority

Oversampling Technique (SMOTE) and

class_weight-tuning of hyperparameters as

preprocessing steps.

 Fraud Detection Algorithm: We adopt Random

Forest as the base machine learning algorithm for

detecting fraudulent transactions.

 Feature Importance Analysis: Using Random

Forest, we analyze feature importance to quantify

the contribution of each feature to the model’s

predictions, enabling better interpretability and

feature selection.

 Optimization Using SGO: We utilize the Social

Group Optimization (SGO) algorithm to fine-

tune the hyperparameters of the Random Forest

model, improving its predictive performance.

 Comprehensive Evaluation: To validate the

proposed approach, we conduct extensive

experiments on publicly available real-world

datasets. The performance of the model is

evaluated using metrics such as accuracy,

precision, recall, F1-score, and ROC-AUC. The

results demonstrate that the proposed methods

outperform existing baseline approaches in

detecting credit card fraud effectively.

This study highlights the potential of combining

machine learning algorithms with evolutionary

optimization techniques to build robust and efficient

fraud detection systems, ensuring practical

applicability in financial domains.

The remainder of this paper is organized as follows:

Section 2 reviews the existing literature on credit

card fraud detection methods and their limitations.

Section 3 discusses SGO algorithm Section 4

outlines the methodology employed in this research.

Section 5 discussed in detail about our proposed

RF_SGO model. Section 6 presents the results and

compares the performance of the proposed method

with existing approaches. Discusses the findings,

and their implications. Finally, Section 7 concludes

the paper, summarizing the contributions and future

research.

2. Related works

In reference [19], the authors designed a credit card

fraud detection system utilizing various machine

learning techniques, such as Logistic Regression

(LR), Decision Tree (DT), Support Vector Machine

Sudhirvarma Sagiraju, Jnyana Ranjan Mohanty, Anima Naik/ IJCESEN 11-1(2025)616-641

618

(SVM), and Random Forest (RF). These models

were tested on a dataset containing transaction data

from European cardholders in 2013. Due to the

highly imbalanced nature of the dataset, the ratio of

non-fraudulent to fraudulent transactions posed a

significant challenge. The performance of the

models was assessed based on classification

accuracy, with LR, DT, SVM, and RF achieving

scores of 97.70%, 95.50%, 97.50%, and 98.60%,

respectively. While these results were promising, the

authors suggested incorporating advanced data

preprocessing methods to potentially enhance

classifier performance further.

Varmedja et al. [20] proposed a method for detecting

credit card fraud using machine learning, applying a

dataset obtained from Kaggle [6]. This dataset,

comprising transactions recorded over two days

from European cardholders, exhibited a significant

class imbalance. To address this, the authors utilized

the Synthetic Minority Oversampling Technique

(SMOTE). The models tested included RF, Naïve

Bayes (NB), and Multilayer Perceptron (MLP).

Their findings highlighted RF as the most effective,

achieving an accuracy of 99.96%, while NB and

MLP scored 99.23% and 99.93%, respectively. The

study concluded by suggesting that incorporating

feature selection methods could further enhance the

accuracy of other models.

In [21], Khatri et al. evaluated the performance of

various ML techniques, including DT, k-Nearest

Neighbors (KNN), LR, RF, and NB, for credit card

fraud detection. Using a highly imbalanced dataset

sourced from European transactions, the models

were evaluated primarily on precision. The study

reported precision values of 85.11%, 91.11%,

87.5%, 89.77%, and 6.52% for DT, KNN, LR, RF,

and NB, respectively.

Awoyemi et al. [22] conducted a comparative study

of ML methods applied to fraud detection using the

European cardholder dataset. The researchers

addressed class imbalance through a hybrid

sampling approach. Models tested included NB,

KNN, and LR, and their evaluation was conducted

using accuracy as the primary metric. The study

reported accuracy scores of 97.92%, 54.86%, and

97.69% for NB, LR, and KNN, respectively. The

authors noted the potential for improved results by

incorporating feature selection techniques.

In [23], the authors investigated the use of several

machine learning approaches to tackle credit card

fraud detection, applying the European cardholder

dataset. To manage the imbalance in the dataset, they

employed SMOTE. Models like DT, LR, and

Isolation Forest (IF) were evaluated using accuracy,

with scores of 97.08%, 97.18%, and 58.83%,

respectively.

Manjeevan et al. [24] presented a fraud detection

framework that leveraged Genetic Algorithms (GA)

for feature selection and aggregation. The study

evaluated multiple machine learning models to

assess the effectiveness of their approach. Results

indicated that GA-RF achieved an accuracy of

77.95%, GA-ANN reached 81.82%, and GA-DT

attained 81.97%. Khalilia et al. [25] investigated

Decision Tree (DT), Logistic Regression (LR),

Support Vector Machine (SVM), and Local Outlier

Factor (LOF) methodologies using the same dataset.

The study reported accuracy values of 97.08% for

DT, 97.18% for LR, 95.12% for SVM, and 99% for

LOF, with LOF achieving a precision of only 5%.

Rtayli et al. [26] explored the performance of SVM,

LOF, and Isolation Forest (iForest) models. The

results showed that iForest achieved an accuracy of

99% with a precision of 34%, while DT reached 99%

accuracy but suffered from zero precision. Ileberi et

al. [27] employed SVM, Random Forest (RF), and

DT for fraud detection on the European cardholders

dataset. The results showed that SVM achieved an

accuracy of 97.50%, RF achieved 98.60%, while DT

had a precision score of 85.11%. Khan et al. [28]

evaluated multiple models, including DT, k-NN, LR,

RF, and NB, emphasizing precision as a key metric.

The results showed that DT, k-NN, LR, RF, and NB

achieved precision scores of 85.11%, 91.11%,

87.5%, 89.77%, and 6.52%, respectively.

Agarwal et al. [29] utilized LOF, iForest, DT, and

XGBoost, as well as an XGBoost variant with

Random Oversampling, to address fraud detection.

LOF achieved an accuracy of 99.60% with a

precision of 5%, while iForest scored 99.70%

accuracy with 34% precision. DT achieved 99.80%

accuracy with zero precision, and XGBoost achieved

an accuracy of 99.96% with precision, recall, and

F1-score values of 97.73%, 82.69%, and 89.58%,

respectively. The XGBoost with Random

Oversampling variant performed similarly, with

precision, recall, and F1-score values of 96.63%,

82.69%, and 89.12%.

Noviandy et al. [30] applied XGBoost with various

data balancing techniques, such as SMOTE,

SMOTE-Tomek, SMOTE-ENN, and ADASYN.

XGBoost with SMOTE achieved 99.95% accuracy,

89.69% precision, 83.65% recall, and an F1-score of

86.57%. With SMOTE-Tomek, it achieved 99.95%

accuracy, 87.00% precision, 83.65% recall, and an

F1-score of 85.29%. Using SMOTE-ENN, the

results were 99.95% accuracy, 86.27% precision,

84.62% recall, and an F1-score of 85.44%. The

ADASYN variant achieved 99.94% accuracy,

85.29% precision, 83.65% recall, and an F1-score of

84.47%.

Sudhirvarma Sagiraju, Jnyana Ranjan Mohanty, Anima Naik/ IJCESEN 11-1(2025)616-641

619

Sinap [31] compared DT, LR, k-NN, RF, XGBoost,

NB, and SVM. The results showed DT achieved

96% accuracy, 94% precision, 95% recall, and an

F1-score of 95%. LR achieved 95% accuracy, 97%

precision, 87% recall, and an F1-score of 92%. k-NN

scored 97% accuracy, 96% precision, 96% recall,

and an F1-score of 96%. RF achieved 97% accuracy,

99% precision, 94% recall, and an F1-score of 96%.

XGBoost scored 96% accuracy, 98% precision, 91%

recall, and an F1-score of 94%. NB achieved 94%

accuracy, 96% precision, 86% recall, and an F1-

score of 96%. Lastly, SVM scored 95% accuracy,

98% precision, 88% recall, and an F1-score of 93%.

The analysis of the related works on credit card fraud

detection for the European cardholder dataset

reveals certain limitations: Many studies highlight

the inherent challenge of imbalanced datasets, where

fraudulent transactions are significantly fewer than

non-fraudulent ones. Techniques like SMOTE,

hybrid sampling, and ADASYN have been applied

to balance the dataset, but they might not generalize

well for highly skewed datasets. These methods may

lead to overfitting by oversampling the minority

class, which does not fully address the complexity of

distinguishing between fraud and non-fraud. Most

works, such as those employing Random Forest (RF)

or Decision Trees (DT), rely on fixed or empirically

determined hyperparameters. Suboptimal

hyperparameters can lead to degraded model

performance in terms of accuracy, precision, recall,

and F1-score. A heavy reliance on accuracy as the

primary evaluation metric was observed in many

studies. Accuracy can be misleading in imbalanced

datasets as it may favor the majority class.

Insufficient focus on metrics like precision, recall,

and F1-score, which better reflect the performance

on the minority class (fraudulent transactions).

Feature selection or feature optimization techniques

were not consistently applied or integrated into the

detection models, as seen in some studies employing

Genetic Algorithms (GA). Suboptimal feature

selection can lead to noise in the model, reducing

prediction performance.

How RF_SGO Can Address These: RF_SGO

dynamically optimizes key hyperparameters of the

Random Forest model, such as the number of trees,

max depth, and split criteria, using the SGO

algorithm. This approach ensures the selection of

near-optimal hyperparameters tailored to the specific

dataset, improving model performance. RF_SGO

incorporates the optimized RF model, which

inherently handles class imbalance better than other

algorithms due to its ensemble approach. It can also

be paired with advanced sampling techniques to

further enhance balance. This minimizes the risk of

overfitting while improving recall and precision for

the minority class. RF_SGO evaluates fitness using

a composite function (e.g., 1-accuracy) and

optimizes for metrics like recall, precision, and F1-

score rather than solely accuracy. This ensures that

the model performs well across all metrics,

addressing fraud detection challenges

effectively.While RF_SGO primarily focuses on

hyperparameter tuning, it can be extended to include

feature selection during optimization, eliminating

irrelevant or noisy features. This leads to more

efficient and interpretable models, improving

prediction accuracy and robustness. 1. Social

Group Optimization (SGO) algorithm

The SGO algorithm is a population-based

metaheuristic optimization technique inspired by the

social behavior and decision-making patterns of

human groups. It was first proposed as a novel

approach to solve complex optimization problems

by mimicking the way individuals in a group

interact, share information, and collectively find

solutions to achieve common objectives.

Key Concepts and Mechanisms

1.Population Representation:

In SGO, a population of solutions represents

individuals in a social group. Each individual

corresponds to a candidate solution for the

optimization problem, characterized by specific

parameters and a fitness value.

2.Social Interaction Phases:

The algorithm divides the optimization process into

distinct phases, simulating real-world social

dynamics:

•Improving Phase: Individuals evaluate their current

position and adjust based on personal experience or

local optimization strategies. This phase allows for

exploration of the search space.

•Acquiring Phase: Individuals share information

with others in the group, promoting collaboration

and mutual learning. This interaction often leads to

convergence towards optimal regions of the solution

space.

3.Learning and Adaptation:

SGO incorporates learning mechanisms where

individuals adapt based on the influence of better-

performing solutions within the group. This

mechanism enhances the algorithm’s exploitation

capability.

4.Balance of Exploration and Exploitation:

By combining individual introspection and group

interaction, SGO strikes a balance between

exploration (searching new areas of the solution

space) and exploitation (refining existing promising

solutions).

Advantages of SGO

Sudhirvarma Sagiraju, Jnyana Ranjan Mohanty, Anima Naik/ IJCESEN 11-1(2025)616-641

620

•Simplicity: The algorithm is straightforward to

implement with minimal parameter tuning

requirements.

•Scalability: SGO can handle high-dimensional and

complex optimization problems effectively.

•Adaptability: It is versatile and can be applied

across diverse domains, from engineering design to

machine learning.

•Global Search Capability: SGO reduces the

likelihood of getting trapped in local optima due to

its collaborative exploration strategies.

SGO in This Study

In this research, the SGO algorithm has been

employed to optimize the hyperparameters of the

Random Forest (RF) model for credit card fraud

detection. By effectively fine-tuning the model,

SGO enhances classification performance, ensuring

a superior balance between precision, recall, and

overall accuracy.

The adaptability and efficiency of SGO make it an

excellent choice for solving optimization problems

in highly imbalanced datasets, as demonstrated in

the context of fraud detection. This reinforces its

potential for widespread use in real-world

applications requiring robust and scalable solutions.

Here is the detailed algorithmic framework for the

SGO algorithm:

1. Initialization
 Define the optimization problem: min F(x)

or max F(x), where 𝑥 is the decision

variable and F(x) is the fitness function.

 Initialize a population of N individuals

(solutions), 𝑥𝑖 for 𝑖=1,2,...,N, within the

predefined search space.

 Randomly assign initial positions for all

individuals and calculate their fitness

values 𝐹(𝑥𝑖)
 Set parameters like the maximum number of

iterations (maxIter), population size (N), and

other control parameters.

2. Iterative Process
Repeat the following steps until the stopping

condition (e.g., reaching maxIter) is met:

2.1. Improving Phase
 Each individual evaluates its current

position using its fitness value 𝐹(𝑥𝑖)
 Update the individual's position using:

𝑥𝑖
𝑛𝑒𝑤 = 𝑥𝑖 + 𝛼. 𝑟1. (𝑥𝑏𝑒𝑠𝑡 − 𝑥𝑖), (1)

Where 𝛼 is a self-introspection parameter.

𝑟1 is a random number in [0, 1]. 𝑥𝑏𝑒𝑠𝑡 is the

best solution found so far.

This step allows individuals to exploit their

knowledge of the best solution.

2.2. Acquiring Phase

 Each individual interacts with a randomly

chosen group member 𝑥𝑖, encouraging

exploration :

 𝑥𝑖
𝑛𝑒𝑤 =

{
𝑥𝑖 + 𝑟2. (𝑥𝑖 − 𝑥𝑘) + 𝑟3. (𝑥𝑏𝑒𝑠𝑡 − 𝑥𝑖) 𝑖𝑓 𝑓(𝑥𝑖) < 𝑓(𝑥𝑘)

𝑥𝑖 + 𝑟2. (𝑥𝑘 − 𝑥𝑖) + 𝑟3. (𝑥𝑏𝑒𝑠𝑡 − 𝑥𝑖) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (2)

Where 𝑟2 and 𝑟3 are random numbers

between 0 and 1, which help to introduce

diversity and exploration in the search

process This interaction enables the

population to explore different regions of

the search space.

2.3. Boundary Checking

 Ensure that the updated positions of individuals

do not exceed the defined search space

 bounds. Adjust any out-of-bound solutions

accordingly.

2.4. Fitness Evaluation
 Compute the fitness value F(xi)F(xi) for each

updated individual.

2.5. Update Best Solution
 If any individual achieves a better fitness value

than 𝑥𝑏𝑒𝑠𝑡, update 𝑥𝑏𝑒𝑠𝑡.
3. Termination
 Stop the algorithm when the maximum number of

iterations is reached or the solution

 converges to an acceptable threshold.

4. Return the Optimal Solution

 Output the best solution 𝑥𝑏𝑒𝑠𝑡 and its

corresponding fitness value F(𝑥𝑏𝑒𝑠𝑡).

Algorithm 1 Pseudocode of SGO

1. Initialize population size (N), maximum

iterations (maxIter), and other parameters.

2. Generate initial population of solutions within

the search space.

3. Evaluate fitness of each solution and find the

initial best solution (𝑥𝑏𝑒𝑠𝑡).
4. For iter = 1 to maxIter:

 a. Introspection Phase:

 For each individual i:

 Update position using equation (1)

 b. Interaction Phase:

 For each individual i:

 Interact with random individual j:

 Update position using equation (2)

 c. Boundary Checking:

 Ensure all solutions remain within the search

space.

 d. Fitness Evaluation:

 Recalculate fitness values for updated

positions.

 e. Update Best Solution:

 If a better solution is found, update 𝑥𝑏𝑒𝑠𝑡.
5. End For

Sudhirvarma Sagiraju, Jnyana Ranjan Mohanty, Anima Naik/ IJCESEN 11-1(2025)616-641

621

6. Return 𝑥𝑏𝑒𝑠𝑡 and F(𝑥𝑏𝑒𝑠𝑡)

3. Methodology

The proposed method follows a structured approach

to identify an efficient and accurate algorithm for

detecting credit card fraud, as illustrated in figure 1.

Given the highly imbalanced nature of the credit

card fraud dataset, we addressed this issue using two

independent techniques: the Synthetic Minority

Oversampling Technique (SMOTE) [32,33] and

class weight tuning [34] as a hyperparameter

adjustment. Additionally, we conducted experiments

without these techniques to analyze their impact on

fraud detection. To enhance model performance, we

employed a Random Forest (RF) classifier and

optimized its hyperparameters using the Social

Group Optimization (SGO) metaheuristic algorithm.

This optimization aimed to identify the optimal

parameter set to improve the model's accuracy on

imbalanced fraud data.

The methodology begins with data acquisition,

followed by preprocessing, which includes three

critical steps: data cleaning, balancing the dataset,

and feature selection. We utilized RF's feature

importance mechanism to identify the most

significant features, ensuring that only essential

attributes were retained for building the predictive

model.

The pre-processed data was then used to train RF

models designed to detect fraudulent transactions

effectively. Before model training, the

hyperparameters of RF were fine-tuned using the

SGO algorithm to achieve an optimal configuration.

The dataset was divided into 80% for training and

20% for testing using the train_test_split method.

The model was trained on the training subset and

subsequently evaluated on the test subset to measure

its predictive accuracy. To comprehensively assess

the model's performance, we generated a confusion

matrix and calculated various evaluation metrics,

including accuracy, precision, recall, F1 score, and

ROC-AUC score. These metrics provided a

thorough evaluation of the model’s effectiveness in

detecting credit card fraud.

3.1 Feature Importance using Random Forest

Feature importance in the Random Forest (RF)

algorithm [35] is a technique used to quantify the

contribution of individual features to the model's

predictions. This metric provides valuable insights

into the dataset, helping identify which features are

most influential in making decisions within the RF

model.

Figure 1. The proposed architecture for credit card fraud detection

Sudhirvarma Sagiraju, Jnyana Ranjan Mohanty, Anima Naik/ IJCESEN 11-1(2025)616-641

622

It serves as an essential tool in enhancing model

performance and interpretability.

Mechanism of Feature Importance

Random Forest is an ensemble learning method that

builds multiple decision trees during training.

Feature importance is calculated based on the extent

to which a feature reduces the impurity (e.g., Gini

impurity or entropy) across all trees in the forest. The

importance score for each feature is derived from:

 Impurity Reduction: Evaluating how much the

inclusion of a feature decreases impurity

(improves the split quality) across all splits in all

trees.

 Permutation Importance: Measuring the drop

in model accuracy when a specific feature's

values are randomly shuffled, thereby disrupting

its relationship with the target variable.

 Mean Decrease in Accuracy: Estimating the

reduction in accuracy if a feature is removed,

aggregated across all trees.

Significance in Fraud Detection

In creditcard fraud detection, feature importance

plays a critical role in identifying the most predictive

attributes, such as transaction amounts, timestamps,

locations, and user behaviour patterns. By focusing

on these features, the model can be fine-tuned to

enhance its precision and recall, ensuring more

accurate detection of fraudulent transactions.

Advantages

 Dimensionality Reduction:
Feature importance helps reduce the number of input

variables by retaining only the most significant

ones, thereby simplifying the model and reducing

the risk of overfitting.

 Model Interpretability:
It provides a clear understanding of how different

features influence the model's predictions, aiding

in decision-making and validating the model’s

logic.

 Optimized Feature Selection:
It guides researchers in selecting the most relevant

features, saving computational resources and

improving model efficiency.

Implementation in this research

In this research, RF's feature importance was utilized

to identify the critical features in the creditcard fraud

detection dataset. This allowed us to prioritize

influential features and exclude irrelevant ones

during model training. The feature importance

scores were computed using RF's built-in

mechanism, and the results informed the

preprocessing and model development phases.

By employing this technique, the proposed method

achieved a refined feature set, enabling the RF

classifier to deliver improved performance metrics

in terms of accuracy, precision, recall, F1 score, and

ROC-AUC. The insights derived from feature

importance also contributed to the interpretability

and reliability of the developed fraud detection

system.

3.2 Performance metrics: Confusion matrix, and

Evaluation Metrics

The confusion matrix[36] is a 2×2 matrix used to

evaluate classification model performance,

consisting of four elements: True Negative (TN),

False Positive (FP), False Negative (FN), and True

Positive (TP), arranged at positions (1,1), (1,2),

(2,1), and (2,2), respectively. This matrix divides the

predicted outcomes of a classification model into

four categories:

 True Negative (TN): Correctly classified

negative cases.

 False Positive (FP): Incorrectly classified

positive cases.

 False Negative (FN): Incorrectly classified

negative cases.

 True Positive (TP): Correctly classified positive

cases.

.

Evaluation Metrics

Accuracy

Accuracy measures the proportion of all correct

predictions relative to the total predictions made.

Accuracy=
TP+TN

TP+TN+FP+FN

Precision

Precision, also known as positive predictive value,

measures the proportion of predicted positive cases

that are actually positive. It indicates the accuracy of

positive predictions.

Precision =
TP

TP + FP

Recall

Recall, also referred to as sensitivity or true positive

rate, represents the proportion of actual positive

cases that are correctly predicted by the model.

 Recall(Sensitivity) =
TP

TP+FN

Specificity
Specificity measures the proportion of actual

negative cases that are correctly identified by the

model. It is also known as the true negative rate.

 Specificity=
𝑇𝑁

𝑇𝑁+𝐹𝑃

F1 Score

Sudhirvarma Sagiraju, Jnyana Ranjan Mohanty, Anima Naik/ IJCESEN 11-1(2025)616-641

623

The F1 Score is the harmonic mean of precision and

recall, providing a single metric that balances both.

It is especially useful when there is an uneven class

distribution or when both precision and recall are

important.

F1 score =2
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

ROC-AUC Score: Evaluation Metric for

Classification Models

The ROC-AUC (Receiver Operating Characteristic -

Area Under the Curve) score[37] is a comprehensive

and widely recognized metric for evaluating the

performance of classification models, particularly in

scenarios involving imbalanced datasets, such as

creditcard fraud detection. The ROC-AUC score

reflects the model’s ability to distinguish between

the positive and negative classes effectively across

different thresholds.

ROC Curve

The ROC curve is a graphical representation that

illustrates the trade-off between two critical metrics:

 True Positive Rate (TPR) or Sensitivity:

 TPR=
𝑇𝑃

𝑇𝑃+𝐹𝑁

 This metric measures the proportion of actual

positive cases correctly identified by the

 model.

 False Positive Rate (FPR):

 FPR=
𝐹𝑃

𝐹𝑃+𝑇𝑁

 This metric quantifies the proportion of

actual negative cases incorrectly classified as

 positive by the model.

AUC (Area Under the Curve)

The AUC value represents the area under the ROC

curve and provides a single scalar measurement of

the model's performance:

 An AUC value of 1 indicates perfect

classification.

 An AUC value of 0.5 indicates performance

equivalent to random guessing.

In this study, the ROC-AUC score was used as a key

performance metric to evaluate the proposed

creditcard fraud detection model. By summarizing

the model's ability to distinguish between fraudulent

and legitimate transactions across various

thresholds, the ROC-AUC score ensured a

comprehensive assessment of its predictive

capabilities. The high ROC-AUC scores obtained in

the experiments demonstrate the robustness and

reliability of the model in identifying fraudulent

transactions effectively.

4. Proposed RF_SGO model

To employ SGO algorithm for optimizing Random

Forest (RF) model hyperparameters, it is essential to

identify the most critical hyperparameters that

influence RF's performance. The key

hyperparameters considered in this study include:

 Number of Trees (n_estimators): Defines the

number of decision trees in the forest. Range: [10,

1000].

 Maximum Depth of Trees (max_depth): Limits

the depth of the tree to control overfitting. Range:

[5, 50].

 Minimum Samples Split (min_samples_split):

Specifies the minimum number of samples

required to split an internal node. Range: [2, 10].

 Minimum Samples per Leaf

(min_samples_leaf): Determines the minimum

number of samples required to form a leaf node.

Range: [1, maximum features].

 Maximum Features (max_features): Indicates

the number of features to consider for the best

split. Range: [1, total features in the dataset].

 Bootstrap Sampling (bootstrap): Indicates

whether bootstrap samples are used when

building trees. Values: True or False.

 Criterion: Specifies the function to measure the

quality of a split. Values: entropy or gini.

In this study, each RF model is represented as

a decision vector or population of seven

dimensions (one per hyperparameter).

5. Experimental Design, Results Analysis and

discussions

Machine learning library
The experiments on the ML techniques discussed in

this study were conducted using Python, and the

Scikit-learn library, commonly known as sklearn,

which is a free package for machine learning [38].

This study also utilized various scientific computing

libraries, including Scikit-learn [39], NumPy [40],

matplotlib [41], pandas [42], and seaborn [43], to

support the analysis and implementation.

Datasets
In this study, we utilize a real-world dataset to ensure

the practical applicability of the proposed algorithm.

The dataset, named “creditcard,” comprises 284,807

transaction records collected over two days in

September 2013. Of these, 492 transactions are

identified as fraudulent, while the remainder are

legitimate. The fraudulent transactions represent

only 0.172% of the total, making this dataset highly

imbalanced. This dataset is publicly accessible

through Kaggle.

The dataset consists exclusively of numerical input

variables derived from a Principal Component

Analysis (PCA) transformation, as the original

features and contextual details are unavailable due to

confidentiality and privacy constraints. The PCA

transformation produced components labelled V1 to

Sudhirvarma Sagiraju, Jnyana Ranjan Mohanty, Anima Naik/ IJCESEN 11-1(2025)616-641

624

Algorithm to Decode a Decision Vector

The decision vector uses real-value encoding, which is decoded into discrete hyperparameter values during

optimization. Algorithm 2 details the decoding process, as follows:

Algorithm 2: Decode a Decision Vector to RF Model

Input: Decision vector 𝑉 = [𝑣1, 𝑣2, …… , 𝑣7] where 𝑑=7.

Output: Optimized RF model.

Steps:

1. Map Bootstrap and Criterion:

 For bootstrap, round 𝑣6:

 ROUND(𝑣6)=0: Set True.

 ROUND(𝑣6)=1: Set False.

 For criterion, round 𝑣7:

 ROUND(𝑣7)=0: Set entropy.

 ROUND(𝑣7)=1: Set gini.

2. Define RF Model Parameters:
Decode other hyperparameters as follows:

𝑅𝐹 = 𝑅𝑎𝑛𝑑𝑜𝑚𝐹𝑜𝑟𝑒𝑠𝑡𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟(

{

𝑛_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 = 𝑅𝑂𝑈𝑁𝐷(𝑣1)

max _𝑑𝑒𝑝𝑡ℎ = 𝑅𝑂𝑈𝑁𝐷(𝑣2)

min _𝑠𝑎𝑚𝑝𝑙𝑒𝑠_𝑠𝑝𝑙𝑖𝑡 = 𝑅𝑂𝑈𝑁𝐷(𝑣3)

min _𝑠𝑎𝑚𝑝𝑙𝑒𝑠_𝑙𝑒𝑎𝑓 = 𝑅𝑂𝑈𝑁𝐷(𝑣4)

max _𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 = 𝑅𝑂𝑈𝑁𝐷(𝑣5)

𝑏𝑜𝑜𝑡𝑠𝑡𝑟𝑎𝑝 = 𝐷𝑒𝑐𝑜𝑑𝑒𝑑 𝐵𝑜𝑜𝑡𝑠𝑡𝑟𝑎𝑝
𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 = 𝐷𝑒𝑐𝑜𝑑𝑒𝑑 𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛

3. Evaluate Fitness:
Train the RF model on the training dataset and evaluate its accuracy on the test dataset. Calculate

the fitness value:

𝑓(𝑉) = 1 − 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦

Decoded values correspond to:

RF: n_estimators=747,max_depth=14,min_samples_split=2,min_samples_leaf=1,max_features=5,bootstr

ap="True",criterion="entropy".

SGO Procedure for RF Optimization

Algorithm 3: RF_SGO Model Optimization

Input: Dataset features (X), target labels (y).

Output: Optimized RF model with near-optimal hyperparameters.

Steps:

1. Initialization:
 Define SGO parameters: population size (P), introspection parameter (c), decision vector

dimension (d=7), maximum iterations (max_gen), and bounds for each hyperparameter.

 Split the dataset into training and testing sets.

 Randomly initialize the population, with decision vectors sampled uniformly within the bounds.

2. Fitness Evaluation:
 Decode each decision vector using Algorithm 2 to create an RF model.

 Compute the fitness 𝑓(𝑉) = 1 − 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦.

Sudhirvarma Sagiraju, Jnyana Ranjan Mohanty, Anima Naik/ IJCESEN 11-1(2025)616-641

625

3. Global Best Search:
 Identify the decision vector with the minimum fitness value (best accuracy).

4. Iteration (Optimization Loop):

 Repeat until termination criteria (e.g., max_gen) are met:

 Perform Improving Phase: Update each decision vector based on self-introspection and the global

best solution.

 Perform Acquiring Phase: Interact with other vectors to explore the solution space.

 Evaluate new decision vectors and retain the better solutions.

5. Final Model:
 Select the best decision vector from the final population.

 Decode it into an optimized RF model using Algorithm 2.

Optimization Objective

The SGO algorithm aims to minimize the fitness function f(V):

min
𝑉𝑖
𝑓(𝑉𝑖), subject to 𝐿𝑗 ≤ 𝑉𝑖,𝑗 ≤ 𝑈𝑗

Where:

 𝐿𝑗 𝑎𝑛𝑑 𝑈𝑗 are the lower and upper bounds of the j-th hyperparameter.

 𝑓(𝑉𝑖) is computed as 1−Accuracy.

This process iteratively enhances the performance of the RF model by fine-tuning its hyperparameters.

Figure 2 presents a graphical abstract of the proposed RF_SGO framework.

Table 1. The feature of creditcard fraud dataset that is used in this paper

Features name Description Type Resources

𝑉1, 𝑉2, 𝑉3, ……., 𝑉28 Transaction feature after PCA

transformation

Integer https://www.kaggle.com/mlg-

ulb/

creditcardfraud. Time Seconds elapsed between each Transaction Integer

Amount Transaction value Integer

Class Legitimate or Fraudulent 0 to 1

Table 2 The transaction label distribution in the "creditcard" dataset. This unbalanced data is expected in real-life

datasets.

Operation No of

Transactions

No. of

legitimate

Transaction

No. of

fraudulent

Transactions

Legitimate

(%)

Fraudulent

(%)

Before train_test_split:80% for training, 20% for testing

Original 284,807 284,315 492 99.83% 0.17%

Dataset after

SMOTE operation

483459 284315 199144 58.81% 41.19%

Dataset with

class_weight

operation

284,807 284,315 492 99.83% 0.17%

After train_test_split:80% for training, 20% for testing

Original : Training 199364 199008 356 99.82% 0.18%

Original : Testing 85443 85307

136 99.84 0.16%

Dataset after

SMOTE operation:

Training

398016 199008

199008

50% 50%

Sudhirvarma Sagiraju, Jnyana Ranjan Mohanty, Anima Naik/ IJCESEN 11-1(2025)616-641

626

Dataset after

SMOTE operation:

Testing

85443 85307

136 99.84 0.16%

Dataset with

class_weight

operation :

Training

199364 199008 356 99.82% 0.18%

Dataset with

class_weight

operation : Testing

85443 85307

136 99.84 0.16%

Figure. 2 Graphical abstract of proposed RF_SGO Model

Sudhirvarma Sagiraju, Jnyana Ranjan Mohanty, Anima Naik/ IJCESEN 11-1(2025)616-641

627

Table 3. Performance Metrics of the Proposed Model with Numbers of Selected Features (5-17) for original credit

card dataset

No. of

selecte

d

feature

s

5 6 7 8 9 10 11 12 13 14 15 16 17

Accura

cy
0.999579 0.999555 0.999602 0.999602 0.999579 0.999625 0.999602 0.999637 0.999637 0.999649 0.999661 0.999625 0.999649

Precisio

n
0.91 0.91 0.93 0.94 0.93 0.95 0.94 0.95 0.96 0.96 0.96 0.94 0.96

Recall 0.82 0.80 0.81 0.80 0.79 0.81 0.80 0.82 0.81 0.82 0.82 0.82 0.81

F1-

score
0.86 0.85 0.87 0.87 0.86 0.87 0.87 0.88 0.88 0.88 0.89 0.87 0.88

ROC-

AUC
0.94 0.94 0.95 0.95 0.95 0.96 0.95 0.96 0.96 0.95 0.95 0.96 0.96

Macro

avg

precisio

n

0.95 0.95 0.97 0.97 0.97 0.97 0.97 0.97 0.98 0.98 0.98 0.97 0.98

Macro

avg

Recall

0.91 0.90 0.90 0.90 0.90 0.90 0.90 0.91 0.90 0.91 0.91 0.91 0.90

Macro

avg

F1-

score

0.93 0.93 0.93 0.93 0.93 0.94 0.93 0.94 0.94 0.94 0.94 0.94 0.94

Weight

ed avg

precisio

n

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Weight

ed avg

Recall

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Weight

ed avg

F1-

score

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

TN 85296 85296 85299 85300 85299 85301 85300 85301 85302 85302 85302 85300 85303

FP 11 11 8 7 8 6 7 6 5 5 5 7 4

FN 25 27 26 27 28 26 27 25 26 25 24 25 26

TP 111 109 110 109 108 110 109 111 110 111 112 111 110

Table 4. Performance Metrics of the Proposed Model with Numbers of Selected Features (8-30) for original credit

card dataset

No. of

selected

features

18 19 20 21 22 23 24 25 26 27 28 29 30

Accurac

y
0.999614 0.999649 0.999590 0.999625 0.999625 0.999649 0.999602 0.999672 0.999590 0.999614 0.999637 0.999625 0.999614

Precisio

n
0.95 0.96 0.93 0.95 0.94 0.96 0.93 0.96 0.93 0.93 0.96 0.96 0.95

Recall 0.80 0.82 0.80 0.81 0.79 0.82 0.81 0.83 0.80 0.82 0.81 0.79 0.80

F1-

score
0.87 0.88 0.86 0.87 0.86 0.88 0.87 0.89 0.86 0.87 0.88 0.87 0.87

ROC-

AUC
0.95 0.95 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.97 0.96

Macro

avg
0.97 0.98 0.97 0.97 0.97 0.98 0.97 0.98 0.97 0.97 0.98 0.98 0.97

Sudhirvarma Sagiraju, Jnyana Ranjan Mohanty, Anima Naik/ IJCESEN 11-1(2025)616-641

628

precisio

n

Macro

avg

Recall

0.90 0.91 0.90 0.90 0.90 0.91 0.90 0.92 0.90 0.91 0.90 0.90 0.90

Macro

avg

F1-

score

0.93 0.94 0.93 0.94 0.93 0.94 0.93 0.94 0.93 0.94 0.94 0.94 0.93

Weighte

d avg

precisio

n

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Weighte

d avg

Recall

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Weighte

d avg

F1-

score

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

TN 85301 85302 85299 85301 85300 85302 85299 85302 85299 85299 85302 85303 85301

FP 6 5 8 6 7 5 8 5 8 8 5 4 6

FN 27 25 27 26 28 25 26 23 27 25 26 28 27

TP 109 111 109 110 108 111 110 113 109 111 110 108 109

Table 5 Performance Metrics of the Proposed Model with Numbers of Selected Features (5-17) using SMOTE oversampling

technique on credit card dataset

No. of

selected

features

5 6 7 8 9 10 11 12 13 14 15 16 17

Accurac

y
0.997612 0.998514 0.998841 0.999204 0.999251 0.999309 0.999356 0.999391 0.999403 0.999462 0.999462 0.999520 0.999544

Precisio

n
0.39 0.52 0.59 0.70 0.71 0.73 0.76 0.77 0.78 0.80 0.80 0.82 0.84

Recall 0.89 0.88 0.88 0.88 0.89 0.89 0.88 0.88 0.88 0.88 0.89 0.89 0.88

F1-

score
0.54 0.65 0.71 0.78 0.79 0.80 0.81 0.82 0.82 0.84 0.84 0.86 0.86

ROC-

AUC
0.97 0.98 0.97 0.97 0.97 0.97 0.97 0.97 0.98 0.98 0.97 0.98 0.98

Macro

avg

precisio

n

0.70 0.76 0.80 0.85 0.86 0.87 0.88 0.89 0.89 0.90 0.90 0.91 0.92

Macro

avg

Recall

0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94

Macro

avg

F1-

score

0.77 0.83 0.85 0.89 0.90 0.90 0.91 0.91 0.91 0.92 0.92 0.93 0.93

Weighte

d avg

precisio

n

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Weighte

d avg

Recall

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Weighte

d avg
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Sudhirvarma Sagiraju, Jnyana Ranjan Mohanty, Anima Naik/ IJCESEN 11-1(2025)616-641

629

F1-

score

TN 85118 85196 85224 85255 85258 85263 85269 85272 85273 85278 85276 85281 85284

FP 189 111 83 52 49 44 38 35 34 29 31 26 23

FN 15 16 16 16 15 15 17 17 17 17 15 15 16

TP 121 120 120 120 121 121 119 119 119 119 121 121 120

Table 6. Performance Metrics of the Proposed Model with Numbers of Selected Features (8-30) using SMOTE

oversampling technique on credit card dataset

No. of

selected

features

18 19 20 21 22 23 24 25 26 27 28 29 30

Accuracy 0.999508 0.99954 0.999520 0.999508 0.999544 0.999508 0.999497 0.999497 0.999497 0.999497 0.999508 0.999520

Precision 0.82 0.84 0.83 0.82 0.84 0.83 0.83 0.83 0.82 0.82 0.83 0.84

Recall 0.88 0.88 0.88 0.88 0.88 0.88 0.87 0.87 0.88 0.88 0.88 0.87

F1-score 0.85 0.86 0.85 0.85 0.86 0.85 0.85 0.85 0.85 0.85 0.85 0.85

ROC-

AUC
0.97 0.97 0.97 0.98 0.97 0.97 0.98 0.97 0.98 0.97 0.98 0.97

Macro

avg

precision

0.91 0.92 0.91 0.91 0.92 0.91 0.91 0.91 0.91 0.91 0.91 0.92

Macro

avg

Recall

0.94 0.94 0.94 0.94 0.94 0.94 0.93 0.93 0.94 0.94 0.94 0.93

Macro

avg

F1-score

0.93 0.93 0.93 0.93 0.93 0.92 0.92 0.92 0.92 0.92 0.92 0.93

Weighted

avg

precision

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Weighted

avg

Recall

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Weighted

avg

F1-score

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

TN 85281 85284 85282 85281 85285 85282 85282 85282 85281 85281 85282 85284

FP 26 23 25 26 22 25 25 25 26 26 25 23

FN 16 16 16 16 17 17 18 18 17 17 17 18

TP 120 120 120 120 119 119 118 118 119 119 119 118

Table 7. Performance Metrics of the Proposed Model with Numbers of Selected Features (5-17) using class_weight

technique on credit card dataset

No. of

selected

feature

s

5 6 7 8 9 10 11 12 13 14 15 16 17

Accurac

y
0.999602 0.999590 0.999637 0.999614 0.999602 0.999625 0.999625 0.999625 0.999625 0.999590 0.999602 0.999614 0.999579

Precisio

n
0.92 0.93 0.96 0.96 0.95 0.97 0.97 0.97 0.96 0.96 0.96 0.96 0.95

Recall 0.82 0.80 0.81 0.79 0.79 0.79 0.79 0.79 0.79 0.77 0.79 0.79 0.77

F1-

score
0.87 0.86 0.88 0.87 0.86 0.87 0.87 0.87 0.87 0.86 0.86 0.87 0.85

ROC-

AUC
0.94 0.94 0.95 0.96 0.96 0.96 0.96 0.96 0.95 0.95 0.96 0.96 0.95

Macro

avg
0.96 0.97 0.98 0.98 0.97 0.99 0.99 0.99 0.98 0.98 0.98 0.98 0.98

Sudhirvarma Sagiraju, Jnyana Ranjan Mohanty, Anima Naik/ IJCESEN 11-1(2025)616-641

630

precisio

n

Macro

avg

Recall

0.91 0.90 0.90 0.90 0.90 0.89 0.89 0.89 0.90 0.89 0.89 0.89 0.89

Macro

avg

F1-

score

0.93 0.93 0.94 0.93 0.93 0.93 0.93 0.93 0.94 0.93 0.93 0.93 0.93

Weight

ed avg

precisio

n

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Weight

ed avg

Recall

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Weight

ed avg

F1-

score

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

TN 85297 85299 85302 85302 85301 85304 85304 85304 85303 85303 85302 85303 85302

FP 10 8 5 5 6 3 3 3 4 4 5 4 5

FN 24 27 26 28 28 29 29 29 28 31 29 29 31

TP 112 109 110 108 108 107 107 107 108 105 107 107 105

Table 8. Performance Metrics of the Proposed Model with Numbers of Selected Features (18-30) using

class_weight technique on credit card dataset

No. of

selecte

d

feature

s

18 19 20 21 22 23 24 25 26 27 28 29 30

Accura

cy
0.999590 0.999579 0.999579 0.999602 0.999602 0.999625 0.999625 0.999625 0.999614 0.9996374 0.999614 0.9996374 0.999614

Precisio

n
0.96 0.95 0.96 0.96 0.96 0.97 0.97 0.96 0.96 0.97 0.97 0.97 0.96

Recall 0.77 0.77 0.76 0.79 0.78 0.79 0.79 0.79 0.79 0.79 0.78 0.79 0.79

F1-

score
0.86 0.85 0.85 0.86 0.86 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87

ROC-

AUC
0.95 0.96 0.96 0.95 0.97 0.96 0.97 0.96 0.96 0.96 0.95 0.96 0.97

Macro

avg

precisio

n

0.98 0.98 0.98 0.98 0.98 0.99 0.99 0.98 0.98 0.99 0.99 0.99 0.98

Macro

avg

Recall

0.89 0.89 0.88 0.89 0.89 0.89 0.89 0.90 0.89 0.90 0.89 0.90 0.89

Macro

avg

F1-

score

0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.94 0.93 0.94 0.93 0.94 0.93

Weight

ed avg

precisio

n

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Weight

ed avg

Recall

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Sudhirvarma Sagiraju, Jnyana Ranjan Mohanty, Anima Naik/ IJCESEN 11-1(2025)616-641

631

Weight

ed avg

F1-

score

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

0TN 85303 85302 85303 85302 85303 85304 85304 85303 85303 85304 85304 85304 85303

FP 4 5 4 5 4 3 3 4 4 3 3 3 4

FN 31 31 32 29 30 29 29 28 29 28 30 28 29

TP 105 105 104 107 106 107 107 108 107 108 106 108 107

Figure 3. Visual comparison of accuracy, precision, recall and F1score for original, SMOTE,and class_weight

dataset

Figure 4. Visual comparison ROC-AUC for original, SMOTE, and class_weight dataset

Sudhirvarma Sagiraju, Jnyana Ranjan Mohanty, Anima Naik/ IJCESEN 11-1(2025)616-641

632

Table 9. Performance evaluation of Algorithms

Model Accuracy Precision Recall F1score ROC-AUC score

Logistic regression [46] 0.97477 0.0617 0.8730 0.1143 0.9578

LGBM[46] 0.99919 0.7534 0.7990 0.7699 0.9472

XGM[46] 0.99923 0.7862 0.7949 0.7830 0.9517

CatBoost[46] 0.99880 0.6431 0.8096 0.7066 0.9390

Vot_Lg,Xg,Ca[46] 0.99924 0.7720 0.8033 0.7825 0.9501

Vot_Lg, Xg[46] 0.99927 0.7901 0.8012 0.7901 0.9522

Vot_Xg, Ca[46] 0.99923 0.7681 0.8097 0.7823 0.9492

Vot_Lg, Ca[46] 0.99912 0.7260 0.8075 0.7581 0.9459

Deep learning model[46] 0.9994 0.8043 0.8222 0.8132 0.9401

NB [22] 0.9792 − − − −

LR [22] 0.5486 − − − −

𝑘-NN [22] 0.9769 − − − −

DT [25] 0.9708 − − − −

LR [25] 0.9718 − − − −

SVM[26] 0.9512 0.87 − − −

LOF[26] 0.99 0.5 − − −

iForest[26] 0.99 0.34 − − −

DT[26] 0.99 0.00 − − −

SVM[27] 0.9750 − − − −

RF[27] 0.9860 − − − −

DT27] 0.9550 − − − −

LR[27] − 0.9770 − − −

DT [28] − 0.8511 − − −

k-NN[28] − 0.9111 − − −

LR[28] − 0.875 − − −

RF[28] − 0.8977 − − −

NB[28] − 0.652 − − −

LOF[29] 0.9960 0.5 − − −

IForest[29] 0.9970 0.34 − − −

DT[29] 0.9980 0.00 − − −

XGBoost [30] 0.9996 0.9773 0.8269 0.8958 −

XGBoost + Random

Oversampling[30]

0.9996 0.9663 0.8269 0.8912 −

XGBoost + SMOTE[30] 0.9995 0.8969 0.8365 0.8657 −

XGBoost +

SMOTETomek[30]

0.9995 0.8700 0.8365 0.8529 −

XGBoost +

SMOTEENN[30]

0.9995 0.8627 0.8462 0.8544 −

XGBoost + ADASYN[30] 0.9994 0.8529 0.8365 0.8447 −

DT[31] 0.96 − − − −

LR[31] 0.95 − − − −

𝑘-NN[31] 0.97 − − − −

RF[31] 0.97 − − − −

XGBoost[31] 0.96 − − − −

NB[31] 0.94 − − − −

SVM[31] 0.95 − − − −

RF_SGO on original

dataset

0.999672 0.96 0.83 0.89 0.96

RF_SGO after SMOTE 0.999544 0.84 0.88 0.86 0.98

RF_SGO with class_weight 0.999637 0.96 0.81 0.88 0.95

Sudhirvarma Sagiraju, Jnyana Ranjan Mohanty, Anima Naik/ IJCESEN 11-1(2025)616-641

633

V28, along with two non-transformed features,

“Time” and “Amount.”

 The “Time” feature records the time in seconds

between a transaction and the first transaction in

the dataset.

 The “Amount” feature represents the monetary

value of the transaction.

 The target variable, “Class” indicates the

outcome of the transaction, where 1 represents a

fraudulent transaction and 0 represents a

legitimate one.

A summary of the dataset's features and variables is

provided in Table 1.

Simulation results: Performance of RF_SGO

model in predicting frauds on creditcard dataset
To evaluate the performance of the proposed

RF_SGO model, we utilized three variations of the

original creditcard dataset: (1) the original creditcard

dataset(unbalanced) (2) the dataset balanced using

the SMOTE technique, and (3) the dataset with

class_weight adjustments (unbalanced). Detailed

descriptions of these datasets are provided in Table

2.

Performance of the RF_SGO model on original

credit card dataset
The performance metrics of the RF_SGO model

were computed for varying numbers of selected

features. Results for feature sets ranging from 5 to

17 are presented in Table 3, while results for feature

sets ranging from 18 to 30 are shown in Table 4,

based on the original credit card dataset.

Discussion

Tables 3 and 4 present the performance metrics of

the RF_SGO model on the original credit card

dataset, evaluated for varying numbers of selected

features (5–30). Below, we analyze the key trends

and insights from these results.

Accuracy

Across all feature subsets, the RF_SGO model

achieves exceptionally high accuracy, ranging

between 0.999579 and 0.999672. This consistency

indicates that the model performs well in correctly

classifying the majority class (legitimate

transactions), which is expected given the dataset's

imbalance. Slight variations in accuracy are

observed as the number of features changes, with the

highest accuracy (0.999672) achieved with 25

selected features.

Precision

 Precision values range from 0.91 to 0.96. Precision

improves as the number of features increases,

reflecting the model’s ability to minimize false

positives (legitimate transactions misclassified as

fraudulent). Notably, the highest precision values

(0.96) are achieved at multiple feature counts (e.g.,

10, 19, 23, 28).

Recall

Recall varies between 0.79 and 0.83, showing more

fluctuation compared to other metrics. Recall is

crucial for fraud detection, as it indicates the

proportion of actual fraudulent transactions correctly

identified. Although recall does not demonstrate a

consistent increasing trend, the highest value (0.83)

is observed with 25 selected features, suggesting

better sensitivity to the minority class.

F1-Score

The F1-score, a balance between precision and

recall, ranges from 0.85 to 0.89. Similar to

precision, the F1-score improves with a larger

feature subset, peaking at 0.89 for 25 features. This

suggests that the RF_SGO model achieves its best

trade-off between minimizing false positives and

false negatives with this feature count.

ROC-AUC

The ROC-AUC values are consistently high

(between 0.94 and 0.97), reflecting the model's

strong capability to distinguish between legitimate

and fraudulent transactions. The highest value (0.97)

is observed with 28 features, indicating optimal

discriminatory power at this feature count.

Macro Average Metrics: Precision, Recall, and

F1-score (Macro Average):
Macro average precision consistently exceeds 0.97,

demonstrating the model's strong performance

across both classes. Recall, however, remains stable

around 0.90–0.92, reflecting challenges in boosting

minority class detection. Macro average F1-scores

show steady improvements with feature count,

reaching 0.94 for larger subsets. These macro

averages validate that performance improvements

are achieved without compromising the minority

class entirely, despite the dataset imbalance.

Weighted Average Metrics

Weighted average precision, recall, and F1-score

remain constant at 1.00 across all feature subsets,

highlighting that the model performs nearly

perfectly on the majority class. However, these

metrics should be interpreted carefully, as they are

heavily influenced by the majority class's

overwhelming presence.

Confusion Matrix (TN, FP, FN, TP)

True Negatives (TN): The TN values are

consistently high across all feature subsets,

reflecting the model’s strength in identifying

legitimate transactions correctly.

 False Positives (FP): FP values decrease as the

number of features increases, with the

lowest FP count (4) observed at 17 and 29 features.

 False Negatives (FN): FN values fluctuate

between 23 and 28, indicating room for

improvement in correctly identifying fraudulent

transactions.

Sudhirvarma Sagiraju, Jnyana Ranjan Mohanty, Anima Naik/ IJCESEN 11-1(2025)616-641

634

True Positives (TP): TP values remain relatively

stable, peaking at 113 with 25 features, which aligns

with the highest recall observed.

Insights and Observations

Optimal Feature Selection:
The RF_SGO model achieves its best overall

performance in terms of accuracy, precision, recall,

F1-score, and ROC-AUC with feature counts

between 23–28. A feature count of 25 appears to be

particularly effective, yielding the highest recall

(0.83) and strong results across all metrics.

Class Imbalance Challenges:
The model demonstrates high precision but

relatively lower recall, indicating that while it

minimizes false positives effectively, there is room

to improve its sensitivity to fraudulent transactions

(reducing FN).

Trade-offs Between Precision and Recall:
The increase in precision with higher feature counts

comes at a slight cost to recall in some cases. This

trade-off needs to be balanced based on the

application context-whether minimizing false alarms

or detecting all fraud cases is prioritized.

Real-World Applicability:
Despite the dataset's class imbalance, the RF_SGO

model maintains strong performance, suggesting its

potential for real-world deployment. However,

emphasis should be placed on improving recall to

ensure the model effectively detects fraudulent

transactions in critical scenarios.

Tables 3 and 4 demonstrate the RF_SGO model's

robustness across varying feature subsets. While the

model performs exceptionally well overall, further

optimization- such as feature engineering or

adjustments to the training process-could focus on

enhancing recall for more reliable fraud detection in

real-world applications.

Performance of the RF_SGO model on SMOTE-

treated credit card dataset

The performance metrics of the RF_SGO model

were computed for varying numbers of selected

features. Results for feature sets ranging from 5 to

17 are presented in Table 5, while results for feature

sets ranging from 18 to 30 are shown in Table 6,

based on the credit card dataset after SMOTE

oversampling.

Tables 5 and 6 provide a comprehensive analysis of

the RF_SGO model's performance using SMOTE

oversampling, varying the number of selected

features from 5 to 30. The discussion below

highlights key trends and insights drawn from the

metrics.

Accuracy

Accuracy improves progressively from 0.9976 (5

features) to a peak of 0.999544 (17 features). This

trend demonstrates that adding features enhances the

model's ability to generalize while leveraging the

oversampled dataset. Beyond 17 features, accuracy

remains stable, ranging between 0.999497 and

0.999544. This suggests that adding more features

beyond 17 provides limited additional value, as the

model likely captures most relevant information by

this point.

Precision

 In Table 5, precision starts low at 0.39 (5 features)

and steadily increases, reaching 0.84 at 17 features.

In Table 6, precision stabilizes around 0.82–0.84 for

feature counts between 18 and 30. Precision growth

reflects the model's ability to reduce false positives

with more features. However, diminishing returns

are evident as the feature count exceeds 17.

Recall

Recall values remain steady across Tables 5 and 6,

staying within the range of 0.87–0.89. The balanced

dataset ensures the model consistently identifies

fraudulent transactions regardless of the number of

features. While recall remains high, slight variations

occur as precision improves, indicating an inherent

trade-off between these metrics as more features are

introduced.

F1-Score

F1-score increases from 0.54 (5 features) to a high

of 0.86 (17 features), reflecting improved balance

between precision and recall. Beyond 17 features,

F1-scores plateau around 0.85, indicating that the

addition of more features does not further enhance

the balance of detection capabilities.

ROC-AUC

ROC-AUC remains consistently high (0.97–0.98)

across both tables, demonstrating the model's ability

to effectively distinguish between fraudulent and

non-fraudulent transactions, even with varying

feature sets.

Macro and Weighted Averages

Macro-averaged precision and F1-scores improve up

to 17 features, stabilizing thereafter. This highlights

the model's robustness in treating both classes

equally. Weighted average precision, recall, and F1-

scores remain perfect (1.00) across all feature

counts. This reflects the significant dominance of

non-fraudulent transactions and the model's strong

performance on the majority class.

Confusion Matrix Analysis

True Negatives (TN) and False Positives (FP): TN

values increase slightly as more features are added,

reducing FP rates from 189 (5 features) to 23 (17

features in Table 5) and stabilizing in Table 6. This

indicates improved classification of non-fraudulent

transactions.

True Positives (TP) and False Negatives (FN): TP

values slightly fluctuate but remain steady at ~120,

while FN values stay low, varying between 15 and

18. This reflects consistent sensitivity to fraudulent

cases across different feature sets.

Sudhirvarma Sagiraju, Jnyana Ranjan Mohanty, Anima Naik/ IJCESEN 11-1(2025)616-641

635

Key Insights

Optimal Feature Count:

Performance metrics (accuracy, precision, F1-score)

improve significantly with features up to 17, with

diminishing returns beyond this point. Therefore,

15–17 features represent an optimal balance between

performance and complexity.

Impact of SMOTE:

 SMOTE effectively balances the dataset, enabling

the model to maintain high recall and F1-scores. This

is crucial for detecting rare fraudulent transactions.

Practical Implications:

In real-world scenarios, recall and F1-score are

critical for fraud detection to minimize undetected

fraudulent transactions. A feature set of 15–17 offers

the best trade-off between performance and

computational efficiency.

Scalability:

The model demonstrates consistent performance

across a wide range of feature counts, showcasing its

scalability and adaptability for datasets with

different feature dimensions.

The RF_SGO model, when applied to a SMOTE-

treated credit card dataset, achieves high precision,

recall, and F1-scores with 15–17 selected features.

This ensures robust and balanced fraud detection

capabilities, making it well-suited for practical

applications where minimizing false negatives is

critical.

Performance of the RF_SGO model using

the class_weight technique on credit card dataset

The performance metrics of the RF_SGO model

were computed for varying numbers of selected

features. Results for feature sets ranging from 5 to

17 are presented in Table 7, while results for feature

sets ranging from 18 to 30 are shown in Table 8,

based on the credit card dataset using class_weight

technique.

Tables 7 and 8 present the performance of the

RF_SGO model applied to the credit card

dataset with feature subsets ranging from 5 to 30,

optimized using the class_weight technique. Key

insights are discussed below:

Accuracy

The model achieves consistently high accuracy,

exceeding 99.95% for all feature subsets. Accuracy

peaks at 0.999637 for 7 features, showing that

smaller subsets can yield excellent results. Beyond

10 features, accuracy remains relatively stable,

fluctuating slightly around 0.999590–0.999625.

Accuracy remains consistent with minor

improvements at 27 and 29 features (0.999637).

These results demonstrate the robustness of the

model across feature subset sizes.

Precision
Precision remains high across all subsets, indicating

the model’s ability to minimize false positives.

Precision improves from 0.92 (5 features) to a

maximum of 0.97 (10–12 features), maintaining this

peak for most subsets. Precision remains

consistently high between 0.95 and 0.97, showing

marginal gains with larger feature subsets.

Recall

Recall, which measures the model’s ability to

identify fraudulent transactions, shows variability:

Recall is highest at 0.82 (5 features) but declines

slightly to 0.77 (17 features) as the feature subset

increases. Recall stabilizes between 0.76 and 0.79,

demonstrating that the model maintains a good

sensitivity to fraudulent transactions despite adding

features.

F1-Score
The F1-score, balancing precision and recall, is

consistently strong: Peaks at 0.88 (7 features) and

remains stable around 0.87 for most feature subsets.

F1-score fluctuates between 0.85 and 0.87,

reflecting robust overall performance across larger

feature subsets.

ROC-AUC
The ROC-AUC score, representing the model’s

discriminatory power, remains excellent: Increases

slightly from 0.94 (5 features) to 0.96 (10–12

features), confirming strong model performance

with smaller subsets. Scores stabilize between 0.95

and 0.97, indicating reliable separation between

classes even with larger feature subsets.

Confusion Matrix Observations

True Negatives (TN): The model consistently

identifies legitimate transactions, with TN values

exceeding 85,300 across all subsets.

False Positives (FP): FP values remain low,

particularly in optimal subsets: Minimum FP values

occur with 10–12 features (only 3 false positives).

FP stabilizes around 3–5, reinforcing the model's

ability to minimize false alarms.

True Positives (TP): TP values range between 104

and 112, reflecting consistent identification of

fraudulent transactions.

False Negatives (FN): FN values slightly increase

with feature count: FN ranges from 24 (5

features) to 31 (17 features). FN values stabilize

between 28 and 32, indicating slight limitations in

capturing all fraudulent instances.

Macro-Averaged Metrics

Macro-Averaged Precision and Recall: Precision

increases with feature count, peaking at 0.99 for 10–

12 features, while recall stabilizes around 0.89–0.91.

Precision remains between 0.98 and 0.99, with

stable recall values (0.89–0.90), showcasing

balanced performance across classes.

Macro-Averaged F1-Score: Remains consistent

at 0.93–0.94, confirming the model’s robustness

across subsets.

Weighted Metrics

Sudhirvarma Sagiraju, Jnyana Ranjan Mohanty, Anima Naik/ IJCESEN 11-1(2025)616-641

636

Weighted Precision, Recall, and F1-Scores are

perfect (1.0) for all feature subsets in both tables,

emphasizing the model’s ability to handle

imbalanced datasets effectively.

Smaller subsets (7–12 features) achieve the best

trade-off between precision, recall, and F1-score,

with fewer false positives and slightly higher recall.

Larger subsets (18–30 features) maintain stable

performance but show diminishing returns in terms

of recall and F1-score. The RF_SGO model,

combined with the class_weight technique,

demonstrates exceptional performance across all

metrics, handling the imbalanced nature of the

dataset effectively while ensuring minimal

computational overhead for smaller subsets. Future

research can explore fine-tuning feature subsets

further to optimize recall while maintaining

precision.

Comparison on evaluating the original

dataset, SMOTE Oversampling dataset,

and Class_Weight dataset to determine the best-

performing dataset for RF_SGO

The visual summary (charts) and additional

insights to give a complete view of the RF_SGO

performance across the different datasets is

explained below:

Accuracy, Precision, Recall, and F1-Score

Comparison:
The comparison chart shows how these metrics

change for each dataset across the feature ranges.

Class Weight has the highest Precision and F1-

Score, with values around 0.97 and 0.87,

respectively, which indicate that the model using

class weight performs the best in terms of correctly

identifying positive instances (fraud cases).

SMOTE has slightly better Recall than Class

Weight (around 0.88), suggesting that SMOTE

provides a better balance in terms of detecting both

fraud and non-fraud instances. The Original

Dataset generally performs well but trails behind the

others in Precision and Recall.

ROC-AUC Comparison:
The SMOTE and Class Weight datasets both

achieve high ROC-AUC scores of

around 0.98 and 0.96, respectively. The Original

Dataset has a slightly lower ROC-AUC (~0.96). A

higher ROC-AUC score reflects better model

performance, so SMOTE seems to provide the best

overall performance, followed closely by Class

Weight.Additional Insights:

Based on both accuracy and precision/recall

balance, SMOTE appears to be the best dataset for

the RF_SGO model. It offers the highest ROC-

AUC and better F1-Score, making it the most

suitable dataset for distinguishing between fraud and

non-fraud cases. While Class Weight provides

excellent Precision and F1-Score, it tends to have

slightly lower Recall than SMOTE, indicating it

might be slightly more conservative in detecting

fraud instances. However, it could be useful in

scenarios where false positives need to be minimized

(e.g., avoiding too many false alarms). The Original

Dataset does perform well, but it lags

behind SMOTE and Class Weight across most

metrics. It’s generally better suited for baseline

comparisons or when data balancing techniques like

SMOTE or class weighting aren't available.

The SMOTE dataset offers the best overall

performance, balancing both detection accuracy and

model sensitivity, making it the preferred choice for

fraud detection in this case. However, depending on

the application, Class Weight might be a better

choice if minimizing false positives is a priority.

Simulation results: Performance comparisons in

predicting frauds on creditcard data by various

algorithms

Hyperparameters have a significant effect on the

performance of machine learning models. We refer

to optimization as the process of finding the best set

of hyperparameters that configure a machine

learning algorithm during its training. Recently, it

was shown that the evolutionary optimization

methods is capable of finding the optimised values

in a much smaller number of training courses

compared with traditional optimization methods

[44-45]. In this paper, we use the SGO optimization

algorithm to tune the hyperparameters of RF that

leads to performance improvement. For comparison

purpose we have utilized various results of

algorithms imported from various research paper

which are listed as Logistic regression [46],

LGBM[46], XGM[46], CatBoost[46],

Vot_Lg,Xg,Ca[46], Vot_Lg, Xg[46], Vot_Xg,

Ca[46], Vot_Lg, Ca[46], Deep learning model[46],

NB [22], LR [22], 𝑘-NN [22], DT [25], LR [25],

SVM[26], LOF[26], iForest[26], DT[26], SVM[27],

RF[27], DT[27], LR[27], DT[28], k-NN[28],

LR[28], RF[28], NB[28], LOF[29], iForest[29],

DT[29], XGBoost [30], XGBoost + Random

Oversampling[30], XGBoost + SMOTE[30],

XGBoost + SMOTETomek[30], XGBoost +

SMOTEENN[30], XGBoost + ADASYN[30],

DT[31], LR[31], 𝑘-NN[31], RF[31], XGBoost[31],

NB[31], SVM[31].Discussion

The table 9 presents a comparative performance

evaluation of various machine learning models for

creditcard fraud detection, using key metrics such

as Accuracy, Precision, Recall, F1-Score,

and ROC-AUC score. This comparison includes

traditional machine learning algorithms, advanced

ensemble methods, deep learning models, and

models optimized using the SGO algorithm.

LR [46] achieves an Accuracy of 0.97477 but

performs poorly in Precision (0.0617) despite a high

Sudhirvarma Sagiraju, Jnyana Ranjan Mohanty, Anima Naik/ IJCESEN 11-1(2025)616-641

637

Recall of 0.8730. This imbalance suggests that LR

tends to overpredict the positive class, leading to a

high false-positive rate. LR models from other

studies [22], [27], [28], [31] show variable results,

but none outperform ensemble methods or RF_SGO.

DT models from [29], [25], [26], [27], [28], and [31]

exhibit inconsistent performance, with Accuracy

ranging from 0.9550 to 0.9980. However, DTs

typically have lower precision, indicating

suboptimal performance for imbalanced datasets.

The k-NN models [22], [28], [31] perform

moderately well with Accuracy around 0.97, but

detailed precision and recall values are unavailable,

making it difficult to assess their suitability for fraud

detection. SVM models [26], [31] achieve Accuracy

up to 0.9750 and moderate precision (0.87).

However, they are not consistently better than

ensemble methods or RF_SGO, particularly in

recall. NB models [22], [28], [31] achieve lower

accuracy (0.94–0.9792), indicating their limited

capability for handling this imbalanced dataset.

RF models from [27], [28], and [31] show Accuracy

up to 0.9860, indicating good generalization.

However, RF_SGO outperforms vanilla RF in both

precision and recall due to its hyperparameter

optimization. XGBoost models [30] perform well,

with Accuracy reaching 0.9996. Variants like

SMOTE and SMOTEENN enhance recall and F1-

scores but do not surpass RF_SGO's overall balance

of metrics. For instance, XGBoost with random

oversampling achieves Precision of 0.9663 and F1-

Score of 0.8912, slightly below RF_SGO (SMOTE).

CatBoost [46] achieves Accuracy of 0.99880, with

strong recall (0.8096) but lower precision (0.6431).

LGBM [46] performs slightly better with higher

precision (0.7534) but still lags behind RF_SGO.

Ensemble combinations like Vot_Lg, Xg [46] and

Vot_Xg, Ca [46] achieve Accuracy around 0.9992–

0.9993, with precision and recall values similar to

XGBoost but lower than RF_SGO.

RF_SGO achieves the highest Accuracy (0.999672)

and Precision (0.96), making it ideal for scenarios

prioritizing precision and minimizing false alarms.

However, the Recall (0.83) is slightly lower

compared to SMOTE-enhanced variants. The

SMOTE-enhanced RF_SGO model achieves the

highest ROC-AUC (0.98) with improved Recall

(0.88), balancing the trade-off between precision and

recall. This variant is ideal for scenarios where

detecting fraudulent transactions is critical. The

class-weighted RF_SGO model has an Accuracy of

0.999637 and strong Precision (0.96), but its Recall

(0.81) is the lowest among RF_SGO variants,

indicating that it is less effective at identifying

minority class instances.

The deep learning model [46] achieves competitive

metrics, with Accuracy of 0.9994, Precision of

0.8043, and F1-Score of 0.8132. However, its lower

ROC-AUC (0.9401) compared to RF_SGO indicates

suboptimal performance in distinguishing classes.

The RF_SGO with SMOTE variant is the most

balanced model, achieving the highest ROC-AUC

(0.98) and a robust trade-off between precision and

recall. The RF_SGO on the original dataset is best

suited for applications prioritizing precision (e.g.,

minimizing false positives). Logistic regression,

decision trees, and naïve Bayes are less effective due

to the imbalanced nature of the dataset, often

favoring majority class predictions. Models like

XGBoost and its variants, CatBoost, and ensemble

methods are competitive but do not surpass

RF_SGO's performance, especially in recall and

AUC. When compared to traditional models

like Logistic Regression (LR), Naive Bayes (NB),

and Decision Trees (DT), RF_SGO outperforms

them on all major metrics, especially in terms

of Precision, Recall, and ROC-AUC. The SMOTE-

enhanced RF_SGO achieves the highest ROC-

AUC (0.98) and Recall (0.88), providing the best

overall balance between detecting fraud and

minimizing false positives. The visual comparison is

illustrated by the figures 3-9.

RF_SGO after SMOTE is the most balanced model

across all metrics, achieving a high ROC-AUC of

0.98, excellent recall (88%), and a reasonable

precision (84%). This version of the model is ideal

for scenarios where identifying fraudulent

transactions is the highest priority. RF_SGO on the

original dataset is best for applications where

minimizing false positives is crucial, as it achieves a

very high precision (96%) but slightly sacrifices

recall (83%). Class-weighted RF_SGO strikes a

balance between the two extremes, providing

excellent precision (96%) while still maintaining

decent recall (81%). This configuration is well-

suited for situations where both precision and recall

are important but precision is prioritized. XGBoost

and LGBM perform well, but their performance is

outpaced by RF_SGO variants in terms of the

precision-recall trade-off and ROC-AUC. Ensemble

methods (e.g., Vot_Lg, Xg, Ca) and deep learning

models perform competitively but generally fall

short of RF_SGO’s ability to effectively balance

precision and recall for fraud detection tasks. This

performance evaluation shows that RF_SGO,

particularly when combined with SMOTE, provides

a highly effective approach for credit card fraud

detection, outshining many traditional and advanced

models in various key metrics.

Sudhirvarma Sagiraju, Jnyana Ranjan Mohanty, Anima Naik/ IJCESEN 11-1(2025)616-641

638

Figure 5. Visual comparison of Accuracy by different algorithms

Figure 6. Visual comparison of Precision by different algorithms

Figure 7. Visual comparison of Recall by different algorithms

Sudhirvarma Sagiraju, Jnyana Ranjan Mohanty, Anima Naik/ IJCESEN 11-1(2025)616-641

639

Figure 8. Visual comparison of F1 score by different algorithms

Figure 9. Visual comparison of ROC-AUC score by different algorithms

7. Conclusion and Future work

This study demonstrates the significant potential of

the RF_SGO framework for credit card fraud

detection, particularly in handling highly

imbalanced datasets. Among the tested approaches,

the RF_SGO model combined with SMOTE

emerges as the most balanced, achieving an

impressive ROC-AUC of 0.98, high recall (88%),

and reasonable precision (84%). This configuration

is particularly suited for scenarios where identifying

fraudulent transactions is the top priority. In contrast,

the class-weighted RF_SGO model maintains

excellent precision (96%) with decent recall (81%),

making it ideal for applications requiring a balance

between sensitivity and specificity. The RF_SGO

model applied to the original dataset, with its very

high precision (96%) and slightly lower recall

(83%), is optimal for minimizing false positives.

Additionally, the integration of feature importance

analysis enhances the interpretability of the Random

Forest model by identifying key predictors of

fraudulent behavior, providing actionable insights

for financial institutions. The comparative

evaluation further highlights RF_SGO's superior

performance over traditional machine learning

models (e.g., Logistic Regression, Decision Trees,

and SVM), advanced algorithms (e.g., XGBoost,

CatBoost), and deep learning techniques in terms of

precision-recall trade-offs and ROC-AUC

metrics.The findings emphasize the importance of

hyperparameter optimization, feature importance

Sudhirvarma Sagiraju, Jnyana Ranjan Mohanty, Anima Naik/ IJCESEN 11-1(2025)616-641

640

analysis, and effective data balancing techniques in

building robust and scalable fraud detection systems.

These contributions provide financial institutions

with a practical and efficient framework to mitigate

credit card fraud, ensuring secure transaction

environments. While this study establishes RF_SGO

as a highly effective solution, several areas for future

exploration remain. Implementing RF_SGO in real-

time fraud detection systems to evaluate its

performance in dynamic and evolving environments.

Enhancing the framework’s interpretability using

advanced explainable AI techniques to meet

regulatory requirements and build stakeholder trust.

Extending the evaluation to diverse datasets across

industries to validate the generalizability of the

proposed framework. Combining RF_SGO with

other advanced techniques, such as ensemble

methods and deep learning, to further improve

detection accuracy.By addressing these directions,

the RF_SGO framework can evolve into a more

adaptable, reliable, and comprehensive solution for

combating fraudulent activities in the financial

sector.

Author Statements:

 Ethical approval: The conducted research is not

related to either human or animal use.

 Conflict of interest: The authors declare that

they have no known competing financial interests

or personal relationships that could have

appeared to influence the work reported in this

paper

 Acknowledgement: The authors declare that

they have nobody or no-company to

acknowledge.

 Author contributions: The authors declare that

they have equal right on this paper.

 Funding information: The authors declare that

there is no funding to be acknowledged.

 Data availability statement: The data that

support the findings of this study are available on

request from the corresponding author. The data

are not publicly available due to privacy or

ethical restrictions.

References

[1] Nanduri, J., Liu, Y.-W., Yang, K., & Jia, Y. (2020).

Ecommerce fraud detection through fraud islands and

multi-layer machine learning model. In Future of

Information and Communication Conference (pp.

556–570). Springer.

[2] Matloob, I., Khan, S. A., Rukaiya, R., Khattak, M. A.

K., & Munir, A. (2022). A sequence mining-based

novel architecture for detecting fraudulent

transactions in healthcare systems. IEEE Access, 10,

48447–48463.

https://doi.org/10.1109/ACCESS.2022.3171418

[3] Sulaiman, B. R., Schetinin, V., & Sant, P. (2022).

Review of machine learning approach on credit card

fraud detection. Human-Centric Intelligent Systems,

2, 55–68. https://doi.org/10.1007/s44230-022-

00004-0

[4] Dornadula, V. N., & Geetha, S. (2019). Credit card

fraud detection using machine learning algorithms.

Procedia Computer Science, 165, 631–641.

https://doi.org/10.1016/j.procs.2020.01.057

[5] Sekar, M. (2022). Fraud and anomaly detection. In

Machine Learning for Auditors (pp. 321–340).

Apress. https://doi.org/10.1007/978-1-4842-8051-

5_21

[6] Kaggle. (n.d.). The credit card fraud. Kaggle.

Retrieved from https://www.kaggle.com/mlg-

ulb/creditcardfraud

[7] Satapathy, S., & Naik, A. (2016). Social group

optimization (SGO): A new population evolutionary

optimization technique. Complex & Intelligent

Systems, 2(3), 173–203.

[8] Naik, A., et al. (2018). Social group optimization for

global optimization of multimodal functions and data

clustering problems. Neural Computing &

Applications, 30(1), 271–287.

https://doi.org/10.1007/s00521-016-2614-6

[9] Naik, A., & Chokkalingam, P. K. (2022). Binary

social group optimization algorithm for solving 0-1

knapsack problem. Decision Science Letters, 11(1),

55–72.

[10] Monisha, R., et al. (2019). Social Group

Optimization and Shannon’s Function-Based RGB

Image Multi-level Thresholding. In Smart Intelligent

Computing and Applications (pp. 123–132).

Springer, Singapore.

[11] Reddy, A., & Narayana, K. V. L. (2022).

Investigation of a multi-strategy ensemble social

group optimization algorithm for the optimization of

energy management in electric vehicles. IEEE

Access, 10, 12084–12124.

[12] Manic, K. S., Al Shibli, N., & Al Sulaimi, R. (2018).

SGO and Tsallis entropy-assisted segmentation of

abnormal regions from brain MRI. Journal of

Engineering Science and Technology, 13, 52–62.

[13] Parwekar, P. (2018). SGO: A new approach for

energy efficient clustering in WSN. International

Journal of Natural Computing Research, 7(3), 54–

72.

[14] Pant, M., et al. (2008). Improved particle swarm

optimization with low-discrepancy sequences. In

2008 IEEE Congress on Evolutionary Computation

(Vols 1–8, pp. 3011–3018).

[15] Naik, A., Jena, J. J., & Satapathy, S. C. (2021). Non-

dominated sorting social group optimization

algorithm for multi-objective optimization. Journal

of Scientific & Industrial Research.

[16] Naik, A. (2023). Chaotic social group optimization

for structural engineering design problems. Journal

of Bionic Engineering, 20, 1852–1877.

https://doi.org/10.1007/s42235-023-00340-2

[17] Naik, A. (2024). Marine predators social group

optimization: A hybrid approach. Evolutionary

https://doi.org/10.1109/ACCESS.2022.3171418
https://doi.org/10.1007/s44230-022-00004-0
https://doi.org/10.1007/s44230-022-00004-0
https://doi.org/10.1016/j.procs.2020.01.057
https://doi.org/10.1007/978-1-4842-8051-5_21
https://doi.org/10.1007/978-1-4842-8051-5_21
https://www.kaggle.com/mlg-ulb/creditcardfraud
https://www.kaggle.com/mlg-ulb/creditcardfraud
https://doi.org/10.1007/s00521-016-2614-6
https://doi.org/10.1007/s42235-023-00340-2

Sudhirvarma Sagiraju, Jnyana Ranjan Mohanty, Anima Naik/ IJCESEN 11-1(2025)616-641

641

Intelligence, 17, 2355–2386.

https://doi.org/10.1007/s12065-023-00891-7

[18] Naik, A. (2024). Multi-objective social group

optimization for machining process. Evolutionary

Intelligence, 17, 1655–1676.

https://doi.org/10.1007/s12065-023-00856-w

[19] Campus, K. (2018). Credit card fraud detection using

machine learning models and collating machine

learning models. International Journal of Pure and

Applied Mathematics, 118(20), 825–838.

[20] Varmedja, D., Karanovic, M., Sladojevic, S.,

Arsenovic, M., & Anderla, A. (2019). Credit card

fraud detection-machine learning methods. In 18th

International Symposium INFOTEH-JAHORINA

(pp. 1–5).

[21] Khatri, S., Arora, A., & Agrawal, A. P. (2020).

Supervised machine learning algorithms for credit

card fraud detection: A comparison. In 10th

International Conference on Cloud Computing, Data

Science & Engineering (Confluence) (pp. 680–683).

[22] Awoyemi, J. O., Adetunmbi, A., & Oluwadare, S.

(2018). Effect of feature ranking on the detection of

credit card fraud: Comparative evaluation of four

techniques. I-Manage Journal of Pattern

Recognition, 5(3), 10.

[23] Dornadula, V. N., & Geetha, S. (2019). Credit card

fraud detection using machine learning algorithms.

Procedia Computer Science, 165, 631–641.

[24] Seera, M., Lim, C. P., Kumar, A., Dhamotharan, L.,

& Tan, K. H. (2021). An intelligent payment card

fraud detection system. Annals of Operations

Research, 1–23.

[25] Khalilia, M., Chakraborty, S., & Popescu, M. (2011).

Predicting disease risks from highly imbalanced data

using random forest. BMC Medical Informatics and

Decision Making, 11, 1–13.

[26] Rtayli, N., & Enneya, N. (2020). Selection features

and support vector machine for credit card risk

identification. Procedia Manufacturing, 46, 941–

948.

[27] Ileberi, E., Sun, Y., & Wang, Z. (2022). A machine

learning based credit card fraud detection using the

GA algorithm for feature selection. Journal of Big

Data, 9(1), 1–17.

[28] Khan, M. Z., Shaikh, S. A., Shaikh, M. A., Khatri, K.

K., Rauf, M. A., Kalhoro, A., Adnan, M. (2022). The

performance analysis of machine learning algorithms

for credit card fraud detection. International Journal

of Online Engineering, 19(03), 83.

[29] Agarwal, A., & Ratha, N. K. (2021). Black-box

adversarial entry in finance through credit card fraud

detection. In CIKM Workshops.

[30] Noviandy, T. R., Idroes, G. M., Maulana, A., Hardi,

I., Ringga, E. S., & Idroes, R. (2023). Credit card

fraud detection for contemporary financial

management using XGBoost driven machine

learning and data augmentation techniques. Indatu

Journal of Management and Accounting, 1(1), 29–

35.

[31] Sinap, V. (2024). Comparative analysis of machine

learning techniques for credit card fraud detection:

Dealing with imbalanced datasets. Turkish Journal of

Engineering, 8(2), 196–208.

[32] Naik, A., Satapathy, S. C., & Abraham, A. (2020).

Modified Social Group Optimization—a meta-

heuristic algorithm to solve short-term hydrothermal

scheduling. Applied Soft Computing, 95, 106513.

https://doi.org/10.1016/j.asoc.2020.106513

[33] Chawla, N., Bowyer, K., Hall, L. O., & Kegelmeyer,

W. P. (2002). SMOTE: Synthetic minority over-

sampling technique. ArXiv, abs/1106.1813.

[34] He, H., & Garcia, E. A. (2009). Learning from

imbalanced data. IEEE Transactions on Knowledge

and Data Engineering, 21(9), 1263–1284.

https://doi.org/10.1109/TKDE.2008.239

[35] Archer, K. J., & Kimes, R. V. (2008). Empirical

characterization of random forest variable

importance measures. Computational Statistics &

Data Analysis, 52(4), 2249–2260.

https://doi.org/10.1016/j.csda.2007.08.015

[36] Powers, D. M. (2020). Evaluation: From precision,

recall, and F-measure to ROC, informedness,

markedness, and correlation. arXiv preprint

arXiv:2010.16061.

[37] Fawcett, T. (2006). An introduction to ROC analysis.

Pattern Recognition Letters, 27(8), 861–874.

https://doi.org/10.1016/j.patrec.2005.10.010

[38] Pedregosa, F., et al. (2011). Scikit-learn: Machine

learning in Python. Journal of Machine Learning

Research, 12, 2825–2830.

[39] Scikit-learn User Guide. (n.d.). Retrieved from

https://scikit-learn.org/stable/user_guide.html

[40] Pajankar, A., & Joshi, A. (2022). Getting started with

NumPy. In Hands-on Machine Learning with Python

(pp. 23–30). Apress. https://doi.org/10.1007/978-1-

4842-7921-2_2

[41] Matplotlib Overview. (n.d.). Retrieved from

https://matplotlib.org/stable/contents.html

[42] Pajankar, A., & Joshi, A. (2022). Introduction to

pandas. In Hands-on Machine Learning with Python

(pp. 45–61). Apress. https://doi.org/10.1007/978-1-

4842-7921-2_4

[43] Waskom, M. (n.d.). Seaborn User Guide and

Tutorial. Retrieved from

https://seaborn.pydata.org/tutorial.html

[44] Nistor, S. C., & Czibula, G. (2022). IntelliSwAS:

Optimizing deep neural network architectures using

a particle swarm-based approach. Expert Systems

with Applications, 187, 115945.

[45] Ghosh, A., Jana, N. D., Mallik, S., & Zhao, Z. (2022).

Designing optimal convolutional neural network

architecture using differential evolution algorithm.

Patterns, 3(9), 100567.

[46] Hashemi, S. K., Mirtaheri, S. L., & Greco, S. (2023).

Fraud detection in banking data by machine learning

techniques. IEEE Access, 11, 3034–3043.

https://doi.org/10.1109/ACCESS.2023.3275174

https://doi.org/10.1007/s12065-023-00891-7
https://doi.org/10.1007/s12065-023-00856-w
https://doi.org/10.1016/j.asoc.2020.106513
https://doi.org/10.1109/TKDE.2008.239
https://doi.org/10.1016/j.csda.2007.08.015
https://doi.org/10.1016/j.patrec.2005.10.010
https://scikit-learn.org/stable/user_guide.html
https://doi.org/10.1007/978-1-4842-7921-2_2
https://doi.org/10.1007/978-1-4842-7921-2_2
https://matplotlib.org/stable/contents.html
https://doi.org/10.1007/978-1-4842-7921-2_4
https://doi.org/10.1007/978-1-4842-7921-2_4
https://seaborn.pydata.org/tutorial.html
https://doi.org/10.1109/ACCESS.2023.3275174

