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Abstract:  
 

This paper introduces a broadband absorber based on a multilayered, double-

cylindrical-shaped metamaterial, numerically characterized for its performance. The 

structure comprises four interacting layers that generate plasmonic resonances. CST 

microwave simulations were conducted to analyze its absorption characteristics. The 

results demonstrate that the proposed metamaterial absorber achieves 99% absorption at 

847 nm frequency region and 98% absorption in the 500-1200 nm frequency region. 

Additionally, polarization dependency analysis confirms that the absorber performs as a 

perfect, polarization-independent absorber across the studied frequency range. It 

exhibits high absorption in both TE and TM modes and remains unaffected by 

polarization or variations in the incident angle. Numerical simulations reveal that the 

absorption performance is driven by a combination of Fabry–Perot resonance effects, 

localized surface plasmons, and propagating surface plasmons. In summary, the 

proposed metastructure demonstrates omnidirectional absorption, polarization 

independence, and wide-angle incident absorption. This design shows significant 

potential for applications in photodetectors, active optoelectronic devices, and sensors. 

 

1. Introduction 
 

Solar energy is an exceptional renewable energy 

resource that generates electricity by the help of 

photovoltaic (PV) cells [1]. The amount of energy 

achieved from the electromagnetic (EM) radiation 

within a single hour can satisfy the annual energy 

demand of the world. Therefore, the latest 

researches are aimed to design solar absorbers with 

high efficiency with an ease of fabrication [2]. 

Solar absorbers, are crucial elements affecting the 

performance of solar photovoltaic systems. An 

optimum solar absorber should have high 

absorbance characteristic in a wide spectral range 

from UV to near-infrared, where the most of solar 

energy takes place [3]. Besides, zero emittance 

property in the mid-infrared is required to minimize 

the heat loss from self-emission. So, perfect 

wideband solar absorption and low mid-infrared 

emission are the most important features for a high 

efficiency solar absorber. Perfect absorption, an 

excellent opportunity is related to field localization, 

has many potential applications such as, energy 

harvesting [4,5], light emitting diodes [6,7], sensing 

[8–10], and optical filters [11,12]. Different type of 

design structures have been studied to absorb 

specific regimes of electromagnetic waves, 

including visible [13,14], infrared [15], terahertz 

[16], and gigahertz [17].  Especially, these designs 

includes three separate layers: a top layer, a 

dielectric spacer, and a metallic substrate that 

forming a metallic sub-wavelength resonator 

[18,19]. The absorption characteristics mainly 

effect from the geometric parameters of the design. 

The optical and electrical features of the designed 

absorber can be adjust mainly by tuning the design 

configuration [20].   

Photovoltaic (PV) solar cell is a kind of non-

mechanical device that can directly convert sunlight 

into electricity. It is well known that there is an 

absorption and re-emission mechanism in 

photovoltaic cells. Thus, the perfect plasmonic 

absorbers has to absorb solar radiation in a wide 

range to enhance the solar energy efficiency [21]. 

In addition, independence of the polarization state 

is also a key character to increase the absorption of 

the solar energy. Recently, the researchers focused 

on metamaterial solar absorbers that can provide 
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selective absorption or emission by exciting 

plasmonic resonances at particular wavelengths 

[22, 23]. Metamaterial is a kind of artificial 

material that can be designed for the desired 

wavelength naturally consists of periodic unitcell 

structure. The permeability and permittivity of 

metamaterial can be designed simultaneously, 

therefore it has a wide range of applications in the 

field of light capture and manipulation by tailoring 

both phase and amplitude on the subwavelength 

range [24-27]. Since the first demonstration of the 

metamaterials, a huge number of ultrathin, highly 

integrated optical devices have been studied for 

applications as; flat metalens [28], beam splitters 

[29], polarization conversion devices [25], perfect 

absorbers [30]. 

Perfect absorption can be achieved when the 

frequency-dependent effective impedance of the 

metamaterial absorber is the same as the impedance 

of free spaces where reflected and transmitted 

waves drop to zero [31]. The resonance frequency 

and efficiency of metamaterial absorbers are highly 

dependent on the geometric design parameters of 

the structure. By varying these parameters; the 

electrical and optical behavior of such plasmonic 

absorbers have gain tunable characteristic and can 

be easily optimized and initiated [32]. 

Previous studies have reported various absorber 

designs operating in the visible range, but each 

faced notable limitations. For instance, Ullah et al. 

[33] developed a multiband absorber that achieved 

only 50% absorption efficiency. Mulla et al. [34] 

introduced a polarization-independent multiband 

absorber, but the resonance width was restricted to 

just 34 nm. In summary, while perfect absorbers 

with an average absorption of 94% and dual-band 

absorbers [34] have been investigated, these 

designs either displayed significant angle-

dependence or had narrow resonance widths, 

limiting their practical usability. Thus, there is a 

need of design and fabricate a wide-angle, 

polarization-independent, selective solar absorbers 

with high absorptance from UV to near-infrared 

region.In this work, we design numerically studied 

metamaterial structures made of double cylindrical 

cones which has the ability of perfect absorbtion. 

The metamaterial absorber exhibits absorption 

greater than 95% from 500 nm to 1500 nm 

frequency region, and an average absorption of 94 

% is also achieved between 500 nm to 3500 nm.  

 

2. Material and Methods 
 

2.1 Geometry and Simulation Method 

We have designed a unique geometry that 

composed of cylindrical shaped binary mesa 

structure combining with a multi-layer film 

structure, to realize a perfect absorber from visible 

light to near infrared band. The unitcell consists of 

a ground-plane layer {300 nm x 300 nm gold layer 

(h1) and 300 nm x 300 nm silicone layer (h2)}, 

nickel layer {300 nm x 300 nm (h3)}, cyclindrical 

pillar a {200 nm diameter silicone (h4) and 200 nm 

diameter nickel (h5)}, cyclindrical pillar b {120 nm 

diameter silicone (h6) and 120 nm diameter nickel 

(h7)}. Through parameter optimization by CST 

simulations, the height parameters of the 

metamaterial structure are set to  h1=200 nm,  h2 = 

150  nm, h3 = 30 nm, h4 = 150 nm, h5 = 20 nm, h6 

= 150 nm, h7= 20 nm.  The thickness of the silicon 

which is used as a dielectric layer is h2 = 150 nm, 

that is sufficient for absorption at shorter 

wavelengths), the thickness of the metallic substrate 

that is used as a reflector to reduce the transmission 

is h1 = 200 nm.  At shorter wavelengths, the 

metallic component plays a more significant role 

due to increased Ohmic losses and plasmon decay. 

In solar cell applications, where the metallic 

substrate primarily absorbs light, a P-type 

semiconductor can be placed beneath the substrate. 

In the absence of light, some free electrons from the 

metallic substrate diffuse into the semiconductor, 

forming a PN junction due to the charge imbalance 

at the interface. In the simulation, the dielectric 

constant of SiO₂ is 1.45, and the dielectric 

constants of Ni and Au can be obtained from 

material library of CST microwave studio. Because 

the thickness of the metallic Au layer is greater than 

its skin depth, transmittance is negligible. 

In figure 1., the schematic diagram of metamaterial 

structure with perspective view, numerical analysis 

setup and conceptual layout is given. 

3. Results and Discussions 

 
The proposed metastructure leverages two primary 

mechanisms: Fabry–Perot Resonances and the 

plasmonic effects. The multilayer configuration 

enhances absorption at target frequencies by 

creating standing waves through constructive 

interference, a phenomenon explained by Fabry–

Perot resonance. Additionally, plasmonic effects, 

driven by localized surface plasmons (LSPs) and 

propagating surface plasmons (PSPs) induced at the 

interfaces, trap incident light and convert it into 

localized energy, further boosting the absorber's All 

computations and numeric analysis are performed 

using CST Microwave Studio software. The 

simulation domain is subjected to Floquet periodic 

boundary conditions, which ensure the periodic 

repetition of the unit cells in both the x- and y-

directions. The effect of geometric  
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Figure 1. Schematic diagram of metamaterial structure 

with (a) perspective view , and (d) numerical analysis 

setup. (c) conceptual layout 

dimensions on the absorption performance of the 

metamaterial structure was investigated through 

simulations, focusing on variations in cylindrical 

pillar height and incident angle. The absorption 

performance was then analyzed for both single and 

double-pillar configurations, highlighting the 

influence of the binary pillar structure. We also 

investigate the effect of surface plasmon waves 

(SPWs) within the absorber by E-field and H-field 

monitoring. efficiency [35]. CST simulations were 

conducted to examine the frequency-dependent 

absorption characteristics, optimize geometric 

parameters, and evaluate the impact of polarization 

on absorption efficiency. Figure 2 shows the 

absorption spectra of the proposed metamaterial 

structure with double mesa pillar design. The 

proposed mesa pillar structure exhibits ultra-

broadband absorption exceeding 95% across 
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Figure 2. The absorption spectrum of the proposed mesa 

pillar structure (double mesa pillar design).  
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Figure 3. The absorption spectrum of the proposed mesa 

pillar structure with single mesa  and double mesa 

design on the same graph.  

wavelengths ranging from 500 nm to 3300 nm, with 

an average absorption of up to 98.7 % within this 

range. Notably, peak absorption reaches 98 % in 

210 nm and 99.4 % accross the wavelengths 

ranging  from 830–1040 nm and 2020–2433 nm. To 

highlight the effect of the double mesa structure on 

the absorber, the single mesa structure was also 

analyzed and plotted on the same graph (figure 3). 
In figure 3., the absorption spectrum of the 

proposed mesa pillar structure with single mesa and 

double mesa design are given on the same plot.  For 

the single mesa structure, the maximum absorption 

reaches up to 97% at 520 nm and 92% in the range  
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H-Field (Perspective View) 

Figure 4. E-field and H-field distributions at TE mode. 

of 2500 nm to 3200 nm. Notably, the proposed 

absorber structure exhibits significantly enhanced 

absorption efficiency in the range of 500 nm to 

2200 nm compared to the single-grating structure. 

However, beyond 2200 nm, its absorption exceeds 

that of the double mesa structure. Consequently, the 

double mesa structure demonstrates weaker 

absorption in the longer wavelength region.  

Figure 4 illustrates the E-field and H-field 

distributions for the TE mode, providing a 

perspective view of the electromagnetic interactions 

within the structure (for 95 THz and 375 THz). The 

E-field distribution demonstrates a strong 

localization near the edges of the metallic 

components and within the air gaps, highlighting 

the dominance of electric resonance effects. This 

suggests efficient confinement and coupling of 

electric energy in the designed metamaterial. In 

contrast, the H-field distribution shows a relatively 

smoother spread, with weaker intensity compared 

to the E-field. This indicates that magnetic 

contributions are less pronounced in driving the 

observed absorption characteristics. Together, these 

distributions confirm that the broadband absorption 

mechanism is primarily influenced by the electric 

field resonances, with the magnetic field playing a 

secondary role.  

In figure 5, the absoption spectrum of the mesa 

pillar structure via different cyclindrical mesa pillar 

a (h4) thicknesses are shown. As the thickness of 

the mesa pillar (h4) increases from 150 nm to 210 

nm, the absorption in the longer wavelength range 

significantly increases, while the absorption in the  
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Figure 5. The absorption spectrum of the proposed mesa 

pillar structure with varying cyclindrical mesa pillar a 

(h4) thickness. 
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Figure 6. The absorption spectrum of the proposed mesa 

pillar structure with varying cyclindrical mesa pillar b 

(h6) thickness. 

shorter wavelength range slightly increases. After 

considering the bandwidth and absorption 

efficiency, the optimal thickness of h4 is chosen to 

be 210 nm.As the final step in parameter 

optimization, the impact of the cylindrical mesa 

pillar thickness (h6) is analyzed (figure 6).  When 

the mesa pillar thickness (h6) increases from 150 

nm to 180 nm, absorption in the 500–3000 nm 

wavelength range shows a slight decrease, while 

absorption above 3000 nm remains largely 

unaffected. However, at 180 nm, a significant 

reduction in absorption is observed in the shorter 

wavelength region, along with notable variations in 

absorption characteristics. These results suggest  
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Figure 7. Absorption spectra with incident angle 

tuning from 00 to 450 (a) TE polarization 

(b) TM polarization. 

that the optimal thickness for h6 is 150 nm for this  

design. In practical applications, the effect of the 

incident angle on the absorption spectrum must be 

considered. The absorption spectra for different 

incident incidences are calculated and shown in 

Figures 7(a) and 7(b), with the incident angle 

varying from 0° to 45°. For TM-polarized light, the 

absorption bandwidth exhibits a blue shift; 

however, it maintains an absorption rate exceeding 

90% across the 500–3000 nm range, even at an 

incident angle of 45°. Significantly, within the 

crucial 500–700 nm range, particularly relevant for 

solar cell applications, the absorption peaks at 99% 

under the same conditions. For TE-polarized light, 

the absorption gradually decreases but maintains an 

average of approximately 85% across the 500–3500 

nm range, even at a 45° incident angle. 

Furthermore, the absorption peaks exhibit a slight 

blue shift, attributed to the decrease in the effective 

refractive index of the binary grating with 

increasing incident angle. These findings highlight 

the proposed absorber’s robustness and minimal 

sensitivity to changes in the incident angle. 

Consequently, the proposed mesa pillar design 

demonstrates high absorption across all incident 

angles, showcasing its effectiveness for wide-

incident-angle applications.  

The results indicate that the absorber meets the 

expected performance criteria, successfully 

absorbing a broad range of visible and near-infrared 

wavelengths. This characteristic makes it suitable 

for use as a wideband band-stop filter with 

tunability. Additionally, the structure can be 

applied in mid-infrared cameras to eliminate 

unwanted visible and near-infrared background 

interference, enhancing image clarity and 

functionality. 

4. Conclusions 

 
This paper presents a multilayer, double-cylindrical 

metamaterial absorber that achieves near-perfect 

absorption across a broad spectrum in the visible 

range. Numerical simulations reveal its exceptional 

performance, featuring omnidirectional absorption, 

polarization independence, and wide-angle 

functionality. By leveraging a combination of 

Fabry–Perot resonance and plasmonic effects, the 

proposed design demonstrates remarkable 

absorption efficiency. These properties make it a 

highly promising solution for next-generation solar 

energy harvesting and advanced optoelectronic 

applications. 
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