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Abstract:  
 

Lung cancer is one of the major causes of cancer deaths with thousands of affected 

patients who have developed liver metastasis, complicating the treatment and further 

prognosis. Early predictions of lung cancer and metastasis may greatly improve patient 

outcomes since clinical interventions will be instituted in time. This paper compares the 

performance of different machine learning models including Decision Tree Classifiers, 

Logistic Regression, Naïve Bayes, K-Nearest Neighbors, Support Vector Machines and 

Gaussian Mixture Models toward the best set of techniques for prediction. The applied 

dataset includes various clinical features, such as respiratory symptoms and biochemical 

markers, for the development of stronger predictive performance. The models were 

cross-validated using testing and validation techniques aimed at generalizing the whole 

model with reliability in generating both train and test data. The results of the generated 

models are gauged using metrics of accuracy, precision, recall, F1-score, and area under 

ROC curve. Results obtained have revealed that the Decision Tree and KNN models 

also showed stronger predictive accuracy and strong classification performance, 

especially in early-stage lung cancer and liver metastasis. The present study is a 

comparison of the Decision Tree and KNN models, which hence denotes the potential 

of these models in clinical decision-making and suggests application to the development 

of diagnostic tools for the early detection of cancer. This provides a very useful guide 

that is applicable in the use of machine learning in oncology and helps pave the way to 

future research which would be focused on model optimization and integration into 

healthcare systems that would produce better management of patients and better 

survival rates. 

 

1. Introduction 
 

1.1 Background and Context: 

 

Lung Cancer is one of the most frequent and deadly 

forms of cancer. In the United States, approx there 

would be 238,340 new cases in 2023 and around 

127,070 deaths [1,2]. This is because late-stage 

diagnosis, and many times the time of diagnosis 

usually is at an advanced stage or even already 

spread into other body parts through metastasis, 

further metastasizes mostly to the liver. The early 

diagnosis of lung cancer results in good prognosis 

and survival. The traditional diagnostic procedures 

are basically imaging and biopsy; however, all of 

them fail both in terms of timing and accuracy to 

evaluate 4, 5. New forms of recent machine 

learning technologies can bring new approaches to 

improve the accuracy of diagnosing and usher in 

early intervention. 

 

1.2 Purpose of this study 

 

It will identify and suggest designs for the choice of 

suitable machine learning models that could 

potentially predict the occurrence of lung cancer 

and metastasis to the liver from clinical, 

demographic, and imaging data [3].  

It will increase the detection time as well as the 

process involved in facilitating clinical decision 

making. 

http://dergipark.org.tr/en/pub/ijcesen
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1.3 Why this study Is Important 
 

The interesting feature this work has is that there 

can be potential closure of the gap between early 

detection and clinical intervention. Therefore, the 

machine learning algorithm shall be put to use 

through this work in providing a promising tool to 

healthcare providers for the early identification of 

at-risk patients, allowing proper treatment strategies 

that can start in a timely fashion. 

 

1.4 Previous Studies 
 

For example, a lot of work in the application of 

machine learning has been carried on the topic of 

oncology. For instance, it has been illustrated by 

Kearney et al. that ML can be used for prediction of 

the outcomes of cancer and patients' response 

towards the treatment applied for cancers . Other 

people applied decision tree classifiers to cancer 

diagnosis: such models are very interpretable and 

efficient, which makes them an attractive tool for 

certain applications, but they haven't found many 

applications in the current deep learning 

architectures; in short, they do not compete with a 

well-implemented CNN with a few million 

parameters. Currently, the literature available does 

not bridge the existing lacunae in knowledge 

concerning lung cancer and metastasis to the liver, 

which reflects the unmet need for such studies. 

 

1.5 Objectives of the Research Work 

 

This study focuses on identifying highly robust 

prediction models for early detection of lung cancer 

and liver metastasis using decision tree classifiers. 

It aims at analyzing variable clinical and imaging 

variables coming from different groups of patients 

in order to observe the major predictors which 

could be used in improving accuracy within the 

procedure of diagnosis. 

 

2. Literature Review 

 

For several years, the application of machine 

learning in medical diagnosis has been on the 

increase. Many studies have demonstrated its 

potential to be significantly applied in cancer 

detection. For example, Smith et al. (2020) [3] 

discussed some challenges about the conventional 

early detection of lung cancer and pointed out 

particularly the urgency to advance technology. 

Meanwhile, the role that AI is assuming in lung 

cancer diagnosis was described by Chen et al. 

(2021) [4], where models such as Decision Trees 

and Neural Networks were also shown to help 

predict lung cancer with reasonable accuracy. As a 

support for the viability of machine learning in 

cancer prediction, Wang et al. (2022) [5] had 

recently reviewed some applications of deep 

learning for radiological image analysis. 

This is because while many research studies have 

made entirely static focus on the diagnosis of lung 

cancer, it has mainly been carried out on the 

metastasis, especially to the liver. As Tang et al., 

(2021) [6] proposed a machine learning framework 

that predicted the liver metastasis in the patients 

suffering from the CRC, it is clear that the 

integration of clinical features as well as 

biochemical markers improves prediction accuracy. 

Building on such findings, it then applies them to 

the actual context presented with the metastasis 

from lung cancers. 

Jha et al. (2019) [6] applied SVM to classify 

clinical and demographic features associated with 

lung cancer. It has demonstrated how better 

accuracy can be achieved while making use of ML 

algorithms as opposed to traditional diagnostic 

processes, especially when early lung cancer is 

distinguishable from other diseases that may cause 

such respiratory discomfort. Similarly, Wang et al. 

(2020) [7] used a random forest classifier for the 

prediction of liver metastasis among lung cancer 

patients to show that ensemble learning could 

improve predictability. 

Among them are those that Al-Waeli et al. (2019) 

[8] has presented regarding machine learning 

techniques to be applied for early prediction of lung 

cancer; these authors emphasize that there should 

be an explanation of how these models, in this case 

decision trees, work, and therefore how they should 

be explained for clinical practice. The results 

clearly indicate that even though simpler in form 

than other complex models, such as neural 

networks, decision trees still achieve a wonderful 

balance between accuracy and transparency, and for 

that reason, they could be applicable in healthcare 

settings where clinicians should understand the 

logic applied to the predictions made by the 

models. 

    In 2020, Islam et al. [9] proposed a hybrid 

machine learning approach towards very early lung 

cancer diagnosis integrating multiple algorithms, 

provided higher accuracy in diagnosis than 

individual models. Their results with decision trees 

combined with neural networks showed a better 

precision for detection at the early stage of lung 

cancer. The focus point of this study is that hybrid 

models can uncover complex interactions among 

variables that are not identified by models of lower 

complexity. 
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 Similarly, Liu et al. (2020) [10] designed a random 

forest classifier that forecasts liver metastasis in 

NSCLC patients with very high accuracy and 

thereby potentially utilizes machine learning for the 

prediction of metastatic cancer cases. 

Collectively, these studies illustrate the increasing 

role for machine learning in oncology. Decision 

trees are particularly valued for interpretability and 

their ability to process a rich variety of clinical 

data. Despite that, however, there is still a need for 

high-performing models that can easily be 

integrated into the clinical workflow. 

 

3. Dataset Overview 

 

3.1. Features of the First Dataset 

 

The first dataset used in this study contains 1,236 

records with 16 different columns, which 

constitutes a wide range of characteristics for the 

diagnosis of lung cancer (Figure 1). This constitutes 

a wide range of characteristics for the diagnosis of 

lung cancer altogether. They consist of both 

demographic and clinical requirements, hence 

forming an excellent basis on which model training 

and evaluation can be carried out. Key 

demographic variables include GENDER and AGE, 

which are critical due to their established 

correlation with lung cancer risk—men and older 

individuals are statistically more prone to 

developing the disease. The inclusion of 

SMOKING is particularly relevant, as smoking 

remains the leading cause of lung cancer and serves 

as a vital feature in risk assessment. Besides the 

demographic factors, the dataset is supported by 

some clinical variables that indicate symptoms 

most characteristically found in lung cancer. 

These are CHRONIC DISEASE like chronic 

obstructive pulmonary disease or asthma, 

FATIGUE, and COUGHING that are most 

frequently reportable conditions in the early stages 

of screening in any clinical scenario. This is 

essential since it allows the model to identify the 

disease and all other respiratory illness, thereby 

making its ability to early disease detection 

relatively efficient. The lung cancer output variable 

in this database is a binary one which either gives 

an indication of the presence or absence of the 

disease. In fact, this type of design would 

accommodate the effective application of some 

supervised learning algorithms. Datasets of 

comparable variables provide standardization of 

comparable research findings. This facilitates more 

relevant results and permits the comparison with 

previous studies concerning the lung cancer 

detection rate [3, 4]. This rich combination of 

features provides a comprehensive ground for 

machine learning model training toward greater 

predictive accuracy for early diagnoses and even 

for customized treatments. 

 

 
Figure 1. First dataset used in this study 

 

3.2. Features of the Second Dataset 

 

The second dataset used here comprises 1,236 

records with 15 attributes, as depicted in figure 2. 

These are largely biochemical markers in the 

identification of possible liver metastasis. Such 

biochemical markers are important for tracking 

physiological changes that could possibly point 

towards metastasis of lung cancer to the liver. In 

particular, the recommended set contains such 

significant markers as RBC Count and WBC 

Count, which is of utmost importance for assessing 

the general health as well as the overall response of 

the immune system. Hyper-elevation or 

hypoelevation of such markers might point to 

systemic inflammation or impaired functionality of 

the immune system and, therefore, possible 

progression of the cancer. A bulk of this dataset is 

associated with Liver Function Tests, that is, ALT, 

AST, and ALP. These decide if the liver is working 

normally or not. A typical level most of the time 

indicate liver damage or disease and also are 

associated with metastases of primary tumors, such 

as lung cancer. For example, high ALT and AST 

levels usually can be related to inflammation or 

metastasis into the liver. Sometimes abnormal ALP 

may indicate the involvement of the liver or bones. 

Liver Cancer Prediction would be a binary indicator 

for metastasis of lung cancer to the liver. This 

variable would be the heart of the purpose of the 

study since it would help achieve the ultimate goal 

of predicting metastatic progression such that 

metastases could be diagnosed early on. 
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The application of both hematological and 

biochemical markers in this data set gives another 

complementary aspect than that of the first data set, 

which stressed more on the demographic and 

clinical characteristics. Such integration between 

the two data sets works towards building a multi-

faceted approach in lung cancer prediction, namely 

examining respiratory symptoms along with an 

analysis of liver function. This method thus appeals 

to even contemporary studies like Tang et al. 

(2021) [6], which endorses the use of biochemical 

markers in the prediction of metastatic cancer. 

Inclusion of these factors upholds the holistic 

nature of diagnosis in the primary diagnosis of lung 

cancer and propensity for liver metastasis. Beyond 

the intuitive clinical understanding, they also serve 

to facilitate early intervention therapies. 

 

 
Figure 2. Second dataset used in this study 

 

3.3. Data Summary and Statistical Analysis 

 

There was vigorous statistical analysis to gain deep 

insights into the underlying structure and 

characteristics of the data set for a better 

comprehension of the data. The above summary 

statistics for each variable computed; the count, 

mean and standard deviation were reported together 

with min, 25%, 50% (the median), 75% and max, 

as displayed in table 1. These statistics are very 

helpful in interpreting the centre tendency, 

variability as well as range of the data; they are 

useful in proper preprocessing of data, feature 

engineering as well as model development. 

 

Summary Statistics Key Findings 

Distribution of Target Variable 

(LUNG_CANCER): 

The most shocking finding from the analytical data 

is that lung cancer presents. A mean value of 

LUNG_CANCER calculated as 0.8738, which 

further implies that about 87% inputted patients of 

this dataset had lung cancer. Biased distribution 

makes the development challenging. It may result 

biased because the learning algorithm may be 

biased toward the majority class, lung cancer in this 

case, and not classify the minority class 

appropriately and that is the non-cancer cases. 

Over-sampling of the minority class, under-

sampling of the majority class, and special 

algorithms like SMOTE that can handle this 

imbalanced dataset [11-13]. 

Biochemical Markers- Implicating Patient 

Health Variability: 

The biochemical markers like RBC Count, WBC 

Count, Platelet Count, Lymphocyte Count and the 

liver function indicators including ALT, AST, and 

ALP are reported to have a high variability in their 

values that are due to the virtue of the difference in 

health condition of the patient. For example, while 

there may be other patients whose liver enzyme 

levels would have already been elevated due to pre-

existing pathology in the livers, yet there may be 

some patients with clinically normal values and 

therefore these markers can be used for screening 

of lung cancer apart from determining whether or 

not metastasis to the liver is present [12]. Such a 

difference once again shows that data needs to be 

analyzed with differential consideration for 

individual differences. 

Types of Consistency and Heterogeneity in 

Descriptions: 

The standard deviations for most of the variables 

are well within bounds and, therefore, tend to 

suggest common clinical characteristics among 

most patients, which tends to concentrate the 

distribution of values at a point. All this is good and 

well during the training of the model as it tends to 

indicate that the majority of the features tend to be 

correlated and tend to follow some predictable 

patterns. For example, if the ALT and AST values 

are within pretty tight limits, then the problem of 

the model does not seem too daunting-so long as 

finding any meaningful relationship between the 

input features and the target variable is at issue. 

On the other hand, features such as Platelet Count 

and Lymphocyte Count have higher standard 

deviations that are interpreted to reflect much more 

significant variability across patient populations. 

This is because individual physiology or inherent 

conditions of health, stages of progression of 

cancer, or even measurement errors due to which 

data is collected might come into play. High 

variation with such features might cause noise in 

the model and hence lower its predictive accuracy. 

In such cases, normalization of such attributes may 

become a requirement so that such influence does 

not bring down the performance of the model. 
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Other outlier detection methods may be employed 

to identify outliers that may affect the conclusions. 

Range and Percentiles: 

Extremes of the variable may be found with 

minimum and maximum values, which would be 

pretty helpful to isolate outliers and extreme cases. 

For example, very high values of ALT or ALP may 

reflect actual severe liver damage, either through 

metastasis or through any kind of disease in the 

liver. Such outliers would need to be dealt with 

appropriately during preprocessing so as not to 

dominate the model. Knowing the 25th, 50th, and 

75th percentiles is important while understanding 

the spread of data among the patients. For example, 

median values of count of WBC and RBC can be 

excellent references to distinguish between normal 

and abnormal cases. Percentiles convey information 

about skewness, which may be helpful in 

ascertaining whether machine learning methods are 

appropriately applied or not. For example, Decision 

Trees and Random Forest perform well on biased 

or nonlinear data, whereas, in contrast, Logistic 

Regression and methods of its class might be 

selected when features are balanced and normally 

distributed. 

Data Preprocessing and Feature Engineering: 

All these summary statistics are crucial for taking 

informed decisions on data preprocessing and 

feature engineering. For example, one feature must 

have very small standard deviations and therefore 

needs much less scaling; however, some features 

have larger variances, meaning that they would 

need to be normalized or even standardized so as to 

contribute rightly to the model. Identifying 

imbalanced distributions, for instance, the many 

prevalent cases of lung cancer require class 

balancing techniques so as not to skew the 

predictive models. For instance, selection of the 

correct machine learning algorithm might cancel 

extremes mainly in biochemical markers if there is 

involved a high range. 

Selection of suitable machine learning 

techniques: 

The choice of a machine learning model is directly 

dependent upon data variability and structure. As 

an example, if the variations of features ALT and 

AST are constant trends, then it will be best for 

making things work with linear models like 

Logistic Regression; but if the variability of 

features is high, such as the Platelet Count and 

Lymphocyte Count, then normally it will be more 

performant with non-linear models like Decision 

Trees or K-Nearest Neighbors (KNN) that would 

naturally capture relationships in the data [14,15]. 

These can be achieved through full-scale statistical 

analysis, that the basis for further pre-processing of 

data and model development brings to light far 

deeper insight into the structure and variability of 

data. This balance, these variations, and possible 

outliers guide the choice, therefore, of appropriate 

algorithms in machine learning alongside feature 

engineering techniques so that the final models are 

not just correct ones but robust and predictive-both 

for predictions about lung cancer detection and for 

predictions related to liver metastasis. 

 

4. Exploratory Data Analysis 

 

4.1. Univariate Analysis 

 

Histograms for each individual variable were also 

constructed for further inspecting the distribution of 

the individual variables and checking if there are 

any outliers. These histograms and skewness values 

are presented in figure 3.  

 

Table1. Summary Statistics of the Dataset 
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Figure 3. Histograms and Skewness Values for Individual Features 

 

 
Figure 4. Correlation Matrix of the Dataset using Bivariate Analysis 
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Figure 5. Correlation Matrix of the Dataset using Multivariate Analysis 

 

These provide more detailed graphics how the data 

spreads over the population of patients. From the 

visualizations, each feature distributed and spread 

would be observable, as well as more detailed 

impressions about possible anomalies that could 

have affected such downstream machine learning 

models.  

Some Key Observations from Histograms and 

Skewness Values are described below: 

Distribution Patterns: The histograms describe 

the underlying distribution of each feature taken 

into consideration. It declares whether it is a normal 

distribution (bell-shaped), right-skewed, or left-

skewed. For example, the age and liver enzymes 

like ALT, AST, and ALP are positively skewed in 

the clinical data set. It simply means that most 

patients are piled up at one end of the axis. The 

skewness of these distributions is important since 

most of the machine learning models, including 

logistic regression, assume that the input features 

are normally distributed. 

Effect of Skewness on Model Performance All 

the variables are highly skewed. This might affect 

the behaviour of the model. For example, when 

ALT and AST are positively skewed, this can give 

training models a headache because they will keep 

throwing biased predictions that precisely require 

log transformations, square root transformations, or 

even Box-Cox transformations for normalizing 

these variables. Distribution of transformed features 

is more symmetrical and thus better suited for 

sensitive algorithms toward nonlinear relationships, 

such as Support Vector Machines (SVM) or 

Logistic Regression. Such skewed distributions are 

less problematic in tree-based models of Decisions 

Trees or Random Forests; transformation may 

nonetheless improve interpretability and stability. 

Outliers and Their Detection: The histograms 

also open a possibility of discovering outliers — 

extremely values that are significantly different 

from the norm of a set of data. Such might be, for 

example, some patients having very high levels of 

ALT or ALP. One could suspect a severe 

dysfunction of the liver; on the other hand, the 

measuring errors would also be an obvious 

explanation of such phenomena. Outliers skew both 

the mean and inflate the standard deviations, 

leading to learning patterns from the model that the 

model does not well generalize to new data. Thus, it 

is very important to handle outliers correctly. 

Handling Outlier Techniques: There are several 

techniques to handle outliers such as, 

 Winsorization: Here, you cap the extreme 

values to a particular percentile, for example; 

you may replace values that are above the 99th 

percentile value by the 99th percentile value. 

Winsorization caps extreme value but retains the 

overall distribution of the main feature in the 

data. 

 Trimming: This method totally removes 

extreme outliers from a data set. While this 

sometimes will improve model fit, it should be 

used with caution since too much useful 

information may be lost. 
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Strong Scaling: There are instances where no 

transformation of the raw data or removal of 

outliers is needed; robust scaling methods may 

be applied to degrade the influence of extreme 

values when training.  

Guidelines on Preprocessing Data: The 

histograms guide the preprocessing pipeline to 

determine if the data needs it. For skewed features, 

one may need to look at logarithmic transformation; 

for features with extreme values, one would also 

consider outlier handling strategies like 

winsorization or trimming. Histograms show 

whether a particular feature actually needs to be 

scaled . For example, numerical features such as 

measurements of liver enzymes with extreme 

variances may be standardized using z-score 

normalization, whereas skewed features might 

require min-max scaling after transformation. 

Model Stability and Robustness: Correcting for 

skewness and outliers helps ensure that the machine 

learning models trained on the data are indeed 

stabilized and generalize to unseen data. Without 

such preprocessing operations, models may over-fit 

the noisy or unbalanced patterns, which reflect poor 

generalization performance in the real world. 

Models such as Decision Trees or Logistic 

Regression also become more interpretable when 

skewed variables are normalized and outliers are 

corrected. This, therefore, improves the clinical 

utility of the developed predictive models because 

healthcare practitioners now simply understand 

how biochemical markers relate to cancer 

outcomes. 

Opportunities for Feature Engineering The 

histograms also have remarks concerning any 

possible feature engineering. For example, in case 

there exist features of long-tailed distributions like 

ALT and AST, then the derived features that could 

possibly be created would be the ratio of ALT to 

AST and which may have better predictiveness. 

Furthermore, the binned categories of continuous 

variables, for example, can be helpful in 

categorizing low, medium, or high levels of ALT to 

be in tune with clinical decision making. 

Histograms and skewness values in figure 3 draw 

important information about the nature of the 

characteristics, thus guiding suitable preprocessing 

techniques and feature engineering as well as 

outlier handling that will be applied. Therefore, 

identification of skewness and outliers will 

strengthen and clinically robust and accurate 

predictive models resulting from this study. These 

visualizations format the data in such a way that it's 

computationally possible to process by machine 

learning algorithms without having any detrimental 

effects on the precision and interpretability of 

predictions relating to lung cancer diagnosis and 

detection of liver metastasis. 

 

4.2. Bivariate Analysis 

 

With the Seaborn library, this study creates a 

correlation matrix and visualized it as a heat map to 

enable an analysis of the associations for various 

pairs of variables. Figure 4 is the correlation matrix 

is one useful intuitive means of assessing the linear 

relationships between numerical features of the 

dataset. 

A cell in the matrix contains Pearson correlation 

coefficient, also called an r-value. The strength and 

the direction of a linear relationship between two 

variables are reflected by the coefficient. Values of 

coefficients lie between -1 and 1: 

r = 1, perfect positive correlation-as one variable 

increases, so does the other for example. 

r = -1, perfect negative correlation-when one 

variable increases, the other decreases for example. 

r ≈ 0, no linear relationship between the variables. 

Moving on with the detailed study of the 

correlation matrix makes further enrichment of 

information and easier picking up of the prediction 

feature, potential multicollinearity identification, 

and possible non-informative features-that plays a 

very crucial role in the feature selection, 

engineering, and model optimization. 

Key takeaways from the Correlation Matrix and 

Heatmap are detailed below: 

Features v s LUNG_CANCER: Most features 

correlate strongly and moderately with the 

LUNG_CANCER target variable, so predictor 

importance might be important. Features like age, 

smoking status, chronic disease, fatigue, and 

coughing show moderate positive correlation, 

which will indicate that these patients would be 

likely cases of lung cancer. This validation results 

in the clinical known risk factors for the presence of 

lung cancer, like a history of smoking or respiratory 

symptoms; therefore, these traits guarantee that 

there is still predictive information left within the 

dataset. Example: If smoking status has a 

correlation coefficient r = 0.65 with 

LUNG_CANCER, then it explains that smoking 

status must have a strong linear association to be 

associated with the cancer condition and that this is 

based on the previous clinical studies that 

researchers pointed out as being the most prominent 

risk factor in lung cancer based on the prevalent 

smoking rates. 

Inter-Correlations between Features: Some of 

the features are exhibiting moderate to strong inter-

correlation with each other, which may indicate that 
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a correlation exists between the features. Take, for 

instance, these clinical markers for liver function: 

ALT, AST, and ALP. All these enzymes have 

positive correlations because they tend to rise in 

proportion with each other in the case of 

malfunctioning of the liver. Similarly, fatigue and 

chronic disease would also correlate moderately 

because many causes of chronic disease may leave 

a patient in a condition that leads to fatigue. These 

correlations provide useful insight into the state of 

patient health but introduce redundancy to the 

dataset. 

Effect on Modeling: Having so many highly 

correlated features in a linear model such as 

Logistic Regression is going to produce potential 

multicollinearity issues where the interpretation of 

the model coefficients becomes extremely 

challenging. Thus, either  drop some of the 

correlated features or synthesize them-that is, build 

interaction terms, or apply dimensionality reduction 

techniques such as PCA. 

Weak or No Correlations with 

LUNG_CANCER: Many features in the data have 

very low and null correlations with 

LUNG_CANCER and could potentially have low 

power to predict this target variable . Some markers 

like platelet count, and possibly lymphocyte count, 

maybe have an r-value of less than 0.2, so these 

variables cannot be assumed to have any significant 

linear relationship with lung cancer. Contribution to 

noise will also lower the predictive power from the 

model. Thus, low correlation features can be either 

dropped or used in non-linear models such as 

Decision Trees or Random Forests where the 

weakness of linear relationships is not much of an 

issue. 

How to Handle Multicollinearity: Highly 

correlated features are sources of multicollinearity, 

which affects the stability and interpretability of 

some machine learning models, namely linear 

models (Logistic Regression and SVM). It is quite 

hard to establish the influence of each predictor 

variable separately because changes in one 

correlated feature often encompass changes in 

another. Some ways of dealing with 

multicollinearity include: 

  Eliminate one of the highly correlated features: 

If two features, say ALT and AST are extremely 

highly correlated, that is, r > 0.85, we eliminate 

one of them to avoid redundancy. 

  Feature aggregation: Create a new feature by 

the ratio of ALT to AST, which may capture 

relevant information but reduces redundancy. 

  Dimensionality reduction techniques: 

Techniques such as PCA can transform 

thecorrelated features into uncorrelated 

components that could potentially make better 

models. 

 

Feature Selection and Engineering: Correlation 

matrix is the most useful constituent of feature 

selection. Highly correlated features with the target 

will most probably stay within the model because 

the features are predictive of lung cancer or liver 

metastasis. Weakly correlated features could be 

dropped in an effort to reduce the complexity of the 

model, or through feature engineering, could be 

transformed to obtain relationships better. Highly 

inter-correlated features could perhaps provide a 

chance for producing new features that characterize 

relationships between them better. 

 

Examples: 

 Interaction Terms: Interaction terms, such as 

chronic disease × smoking status, can be 

employed to model how such factors interact to 

influence the risk of lung cancer. 

 Non-linear Transformations: When there are 

non-linear relationships with lung cancer risk, as 

is the case with the age features, polynomial 

representations are helpful. 

 

Selecting Useful Models from Patterns of 

Correlation: 

The models to fit depends on what one learns from 

the correlation matrix. 

The best performance is achieved for highly 

linearly related datasets with very little 

multicollinearity.  

  Highly correlated predictors make this model 

prone to overfitting, especially in the case of 

methods of regularization like Ridge or Lasso 

regression. 

 Other less sensitive models to correlation and 

multicollinearity are the Decision Trees, 

Random Forests, and K-Nearest Neighbors. This 

makes it possible to make use of such models in 

datasets, which might have intricate 

interdependencies between their features. 

From figure 4, the correlation matrix and heat map 

produced insights on the relationship between 

variables hence making a feature selection and 

preprocessing easier along with modeling. Some of 

them turn out to have a high correlation with the 

LUNG_CANCER target variable, meaning that it is 

pretty important for predictiveness. There is also 

multicollinearity among features; therefore, careful 

preprocessing with droppings of redundant features 

or applying dimensionality reduction is required. 

Features are very weakly correlated with 

LUNG_CANCER but those properties can still 

perhaps be useful in non-linear models, although 
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they do not have any significance in linear models. 

Thus, summary correlation matrix analysis will 

ensure that final predictive models hold not only 

accuracy but can be interpreted and robust in the 

support of early detection of lung cancer and 

prediction of metastasis. 

 

4.3. Multivariate Analysis 

 

To delve deeper into the complex interactions of a 

couple of variables, the work has applied a 

multivariate correlation matrix[16]. It is one of the 

most basic statistical tools which provides the 

quantitative account between pairs of relationships 

between any pair of variables, aiding the detection 

of patterns, dependencies, and even redundancy. 

The method demonstrates how individual features 

function among themselves and with the target 

variable in this case-LUNG_CANCER. 

Figure 5 is a graphical representation as a heatmap 

of the correlation matrix along both strength and 

direction. Color gradients describe how the color 

differs for correlation coefficient bounds between -

1 to +1. The darker shades appear with one end of 

the spectrum indicating positively correlated 

variables; the negative correlations are generally 

shown by appearing as dark shades toward the 

other end of the spectrum. A value close to zero 

means that there is a very weak or negligible 

relationship. Important Observations from the 

Correlation Matrix are as follows: 

 

Relationships Between Features and 

LUNG_CANCER: Features like many others are 

moderately to highly correlated with 

LUNG_CANCER and would thus be good 

predictors of lung cancer in more complex models. 

For instance, the following features whose 

correlations with LUNG_CANCER surpass 0.6 

imply that these relationships are strong concerning 

the development of lung cancer disease. It includes 

[features, such as AGE, SMOKING_STATUS, or 

POLLUTION_LEVEL]. Such a relationship 

reflects the importance of these features for risk 

factor recognition and may influence feature 

selection in predictive models. A strong correlation 

indicates that as the value of the independent 

variable increases, there could be a trend of 

increased lung cancer probability or extent and vice 

versa. 

Issues with Multicollinearity: Although the 

features that are strongly correlated to a target 

variable are very crucial to prediction, other 

features also exhibit moderate to strong correlations 

amongst them. This phenomenon, which calls 

multicollinearity complicates model performance 

because it is difficult to ascribe the contribution of 

several independent variables to the target 

prediction, especially when their effects overlap 

one another. In such cases, one would rather prefer 

models like Decision Tree Classifier, as such 

models can handle some levels of correlation better 

than linear models. However, in such cases, 

multicollinearity may inflate the variance of 

coefficients and may also affect interpretability. 

Techniques like VIF analysis or elimination of 

features might be required. 

Weak or Negligible Correlations: The heatmap 

further reveals that some of the features are very 

weakly or not correlated with LUNG_CANCER: 

coefficients close to zero. These ones, for example, 

[list specific low-correlated features], promise little 

in terms of predictivity. Others will convey feeble 

signals to other variables in the matrix; features that 

have low or no correlation will make a model 

complicated and will do nothing to enhance the 

performance. Upon further analysis, these variables 

may be dropped off from the final model so as to 

enhance efficiency and noise. 

Interpretation of Positive and Negative 

Correlations: If the values tend to grow together 

then there will be a positive correlation. Meaning 

the other variable also tends to increase as the value 

of one variable increases. Example: 

SMOKING_DURATION is likely to be positively 

correlated with LUNG_CANCER-meaning that the 

higher one's exposure to smoking, the more of a 

risk one has for lung cancer. A negative correlation 

would mean that with one variable going up, the 

other variable goes down. Such inverse correlations 

are surprisingly few in health-related datasets, but 

when they arise, those insights can be revealing-for 

example, that there could be an inverse correlation 

between the scale of PHYSICAL_ACTIVITY and 

the risk of lung-cancer, which would then stress its 

protection capacity. 

Applications in Predictive Modeling The 

evidence gained from the correlation matrix will 

have important ramifications for predictive model 

development. Good candidates to add to the model 

are features that score highly correlated to 

LUNG_CANCER: they tell us meaningfully 

something about the target. But multicollinearity in 

the features is a problem. Models relying on 

variables this strongly correlated can prove to be 

unstable and even overfit, offering high predictive 

performance over training data but lousy 

performance over any unseen data. Techniques for 

dimensionality reduction, such as Principal 

Component Analysis or some regularization 

techniques, might eradicate the problem by 
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extracting orthogonal components or penalizing 

redundant features. 

Features that indicate very low correlations are 

probably going to contribute negligibly to the 

predictive power of the model. At this level of 

feature selection, they can be dropped or assigned a 

lesser weight. Therefore, the model becomes 

strongly reduced and its effectiveness gets neither 

traded off at major scale [17-19]. This whole 

procedure of choosing the right number of the 

variables finally achieves the end prediction model 

that happens to be also parsimonious as well as 

very interpretable. It thus stays that way and that 

too turns out to be very important for clinician's 

applications because interpretability and 

transparency make the front-end part of decision-

making processes. It is within this light that the 

correlation matrix reveals a first step in knowing 

the fact of what drives the relationships of the 

variables, association with how those could be 

linked to lung cancer. Important predictors come up 

such as [key features], through further insight on 

how multicollinearity might be important in 

determining the models' performance. Further, it 

identifies less informative features, allowing us to 

focus only on the most relevant variables. From the 

correlation matrix, this will guide the selection of 

features, building a model, and making evaluations 

into a robust explanatory model for making sensible 

clinical decisions in the final predictive model. 

 

5. Methodology 

 

5.1. Machine Learning Models 

 

This study has used a set of machine learning 

models to calculate the predictions concerning lung 

cancer. Strengths of variously used models depend 

on the mathematical method applied to solve 

classification problem problems in advantageous 

ways for each part of such problems. Different 

models are applied in medical diagnostics to offer a 

completely representative test to pinpoint the best 

model. Brief overview of the models is given 

below: 

 Decision Trees: A prime reason to use decision 

trees in medicine is that they are simple and 

interpretable. They work by recursively 

partitioning the dataset along with feature values 

into a tree-like structure where decisions are 

made tracing a path from root to leaf. The 

interpretability of decision trees allows 

clinicians to know how predictions are made, 

which makes it a sensitive application like 

cancer diagnosis to require such interpretability 

in its decision-making process. 

 Logistic Regression: Logistic Regression - 

logistic regression is a probabilistic model 

mainly used for binary classification. The model 

computes the probability of an event occurrence, 

for instance, lung cancer, based on a linear 

combination of the features input. Being 

extremely interpretable as well as 

computationally efficient, the method is often 

applied where the relationship between the 

features is presumably linear. It also exhibits the 

amount of contribution that one of the variables 

does in the final prediction and comes out 

helpful in performing feature selection. 

 Naïve Bayes Classifiers: Naive Bayes A 

probabilistic algorithm based on Bayes' theorem 

with a set of assumptions about independence 

between features conditional on the target class. 

Though naive, such assumptions surprisingly 

often lead to reasonable performance, especially 

for high-dimensional data. Also well-suited for 

categorical variables and can be used as a good 

baseline for diagnostic tasks. 

 K-Nearest Neighbors (KNN): It is a non-

parametric model that puts data points in the 

class by the majority of their nearest neighbors. 

In reality, very simple to implement, and works 

very well with small datasets though it can spoil 

its performance due to high computational cost 

and sensitivity to irrelevant features with huge 

datasets. Proper scaling of features is critical 

with KNN for lung cancer prediction. 

 Support Vector Machines (SVM): SVM is 

geared towards finding the hyperplane of 

maximum margin between different classes. 

More precisely, SVM is very efficient for 2-

class classification tasks as well as reduces 

complex not-so-linear relationships to easy 

linearity by employing kernel functions. Though 

fitting complex patterns to the medical data is 

good in SVM, it also depends on the adjustment 

of some hyperparameters in order to arrive at 

proper fit to avoid overfitting. 

 Gaussian Mixture Model: GMM seems to be a 

probabilistic model assuming that the given data 

is being generated from the mixture of several 

Gaussian distributions. It looks pretty strong in 

the work process toward the tasks of clustering 

but can also be used for revealing unsupervised 

learning as well as for anomaly detection 

purposes.  

Underlying functionality of GMM in capturing 

data distribution makes it work really well 

within the healthcare field, making it a 

particularly effective distinguishing tool 

between patient subgroups or an abnormal case 

detector. 
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5.2. Model Training and Testing 

 

This study has chosen the train-test split strategy 

for training and testing the models. This means that 

the study is essentially splitting the data into two 

sets: the training set and the test set. In using this 

strategy, the work fits the models on the training set 

but only access the testing set for us to evaluate the 

generalization capability of unseen data. This helps 

in preventing overfitting of the models on the 

training data and will give an unbiased estimate of 

how good these models are. This also used the 

cross-validation techniques to get more reliability 

and robustness from the models. In k-fold cross-

validation, the dataset is divided into k subsets 

known as (folds). The study has considered every 

fold exactly once as a validation set while the 

remaining k-1 folds were used for training. This 

was carried out k times, hence, an average 

performance across all the folds has been employed 

as a final evaluation metric. Cross-validation is 

meant to prevent variance in the performance 

estimates so that results do not vary for different 

subsets of data. 

 

5.3. Performance Metrics 

 

The study employed more than one performance 

metric to get different information about how well 

models could predict: 

 Accuracy: It computes the percentage 

occurrence that the model had correctly 

predicted from the total number of occurrences. 

Though it is good working, it fails to give a right 

impression in case of imbalanced datasets. 

 Precision: It is the ratio of correctly predicted 

true positives among all the positively predicted 

ones. That is, the higher the precision, the lower 

the number of false positives and thus the 

chances of misdiagnosing a patient are minimal. 

Precision becomes very important in a medical 

scenario, as a wrong diagnosis could lead to 

serious problems. 

 Recall or Sensitivity: Recall measures the 

ability of the model to correctly identify all 

actual positive instances. The risk of false 

negatives should be at a minimum. If in a health 

care application, recall would be very important 

because failing to identify a sign of cancer can 

have very serious consequences. 

 F1 score: This is the harmonic mean between 

precision and recall. It provides a balanced 

measure especially in scenarios where there is a 

trade-off between precision and recall. 

 Specificity: This measures the number of true 

negatives out of all the actual negatives; this 

may indicate how well the model was able to 

classify cases as non-cancerous correctly. There 

has to be very high specificity so as not to 

subject unnecessary treatments and thus patient's 

anxiety. 

Such above evaluation metrics along with cross-

validation will ensure that models perform very 

well not only in terms of accuracy but also rather 

balance both false positives as well as false 

negatives, thereby providing a wholesome 

evaluation to select the best model for prediction on 

lung cancer. 

 

5.4. Model Selection 

 

Lung Cancer Model 

The next lines of code represent the most important 

steps in model training, evaluation, and comparison 

as  follows: 

 

 
Figure 6. Lung Cancer Model 

 

Model Iteration: An iteration of all the models 

available in the dictionary models. It will help 

facilitate sequential training and then evaluation of 

all the models chosen. 

Training and Prediction: So to fit the model for 

all of them, it uses the fit method over the training 

dataset (X_train, y_train). After that, after fitting 

the model, if you use the predict method over the 

test dataset, then it will give you an idea of how 

your model will perform when it comes to unseen 

data. 

Computing the performance metrics: The code 

computes several performance metrics: accuracy, 

precision, recall, F1 score, specificity, and a 

confusion matrix with the aim to state that all these 

together comment on an elaborate evaluation of the 

model's performance involving: 
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 Overall accuracy, that refers to the percentage of 

the right prediction 

  Precision-minimizing false positive; 

 Recall-finding all positive instances 

  Specificity-classifying true negatives 

 F1-score, referring to the combination of both 

precision and recall; 

cross-validation: The cross_val_score provides a 

good evaluation of the generalization performance 

of the model using five-fold cross-validation. In 

this method, the dataset splits into five subsets; it 

trains on four subsequents with validation on one in 

each round. Running all the rounds then gives 

cross-validation with an improved estimate of the 

model's performance and reduces possibilities of 

overfitting. 

Adding Results: It keeps the computed metrics 

with cross validation accuracy in a results 

dictionary. The hierarchical structure allows for 

easy comparison of differences in performances 

that may be data-driven in a selection towards the 

most appropriate model. 

Scalability Testing: It measures the training time 

for each model in assessing the scalability of the 

model in question. These models fall into three 

categories depending on their training times: 

 Scalability "High": 1 = Less than 0.1 seconds. 

 Scalability "Medium": 2 = Between 0.1 to 1 

second. 

 Scalability: More than 1 second. 

This rating is quite crucial to determine which 

models need to be implemented in real-time 

applications or for huge datasets where efficiency 

in the computation is a must. 

Handling Gaussian Mixture Models (GMM): 

This type of model, GMM-based, gets special 

treatment since the fit_predict method is not 

available and requires fit functions followed by the 

prediction function on the data set to ensure a fair 

treatment between training and evaluation, which is 

somewhat crucial despite the variation in the 

functional structure of GMM. 

The given code trains, evaluates, and compares 

consistently structured machine learning models for 

performance metrics with cross-validation as well 

as scalability assessment. The set of performance 

metrics with cross-validation and scalability 

assessment ensures a holistic analysis of the 

models. It implies not only their accuracy and 

robustness but also their efficiency in computation 

at real-time application or large-scale datasets. 

GMM handling separately ensures easy integration 

of all models in the evaluation pipeline. Figure 6 

shows Lung Cancer Model. 

 

Liver Cancer Model 

The Figure7 is the Code Fragment which gives a 

High-Level Detailed Code Implementation of 

Model Training and Evaluation Pipeline with 

Additional Couple of Featural Components 

Supporting the Completeness and Clarity of the 

Processes. 

 

 
Figure 7. Liver Cancer Model 

 

Below is an expanded Explanation of the New 

Features Interwoven into the Code: 

Specificity Calculation: A particular function 

named specificity_score is defined for calculation 

of the specificity metric. Specificity refers to the 

ratio of actual true negative predictions to the total 

actual negative cases. This metric comes very 

handy specifically in healthcare applications 

wherein avoiding unnecessary treatments or 

overdiagnosis or even unwarranted anxiety in the 

patients requires well-established non-cancerous 

cases. Its formula is as, 

Specificity=  TN / TN+FPTN 

Here TN(True Negative) means number of 

correctly identified non-cancerous cases here, and 

FP stands for the number of non-cancerous cases 

misclassified as cancerous. It has been taken that in 

this regard, to include specificity, ensures that the 

assessment process evaluates not only the recall but 

also the ability not to misclassify wrongly as 

positive. 

Handling GMM: The code treats GMM specially 

so that the fit_predict method most classifiers use is 

avoided. While the fit method of GMM is utilized 

to train the model; the predict function was called 

upon in the test datasets for prediction so that 

GMM can always be pipelined with other models in 
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the pipeline though differing with their API in the 

implementation.  

GMM models are often applied to tasks such as 

unsupervised learning or clustering, but in this 

experiment, it is applied as a classifier where the 

data points are mapped to the most likely Gaussian 

component. Treatment of GMM separately 

emphasizes its specific probabilistic nature and is, 

therefore, applied to the same thorough assessment 

process as other models. 

Adding Results : Following the predictions from 

GMM, the same class of performance metrics-most 

of which are accuracy, precision, recall, F1-score, 

specificity, confusion matrix and cross-validation 

accuracy-are calculated. These results are inserted 

into the results dictionary appended; this ensures 

how good the GMM performs can be compared 

head-to-head with every other model. The results 

could also be kept systematically for easy analysis 

and visualization of the relative strengths and 

weaknesses of all models in play. 

Scalability Test The code has rated GMM a "Low" 

scalability rating with metaphorical definitions for 

the very high computational complexity of the 

model. In GMM, complexity takes place because 

iterative algorithms like Expectation-Maximization 

(EM) are used in training. The operations are very 

computationally expensive and may take several 

hours to compute when large datasets are 

considered. 

The code will classify models in different classes 

based on their training times. This will provide 

insight into whether the model is suited for real-

time applications or the treatment of large-scale 

data: 

 High Scalability: Models whose training time is 

less than 0.1 seconds 

 Medium Scalability: Models whose training 

time ranges between 0.1 and 1 second 

 Low Scalability: Models whose training time is 

above 1 second. 

 This ranking ensures that computational efficiency 

is taken into account in the selection of the model, 

especially in practical settings in which the models 

are deployed in real time. Like in clinical settings, 

for instance. The additional code snippet of figure 7 

elaborates on the additional clearer information 

concerning the process of model training and the 

evaluation process. The specificity calculation in 

fact ensures that the negative case may be 

classified, which is important in reducing 

unnecessary medical interventions. In fact, separate 

treatment of the GMM model is a reflection of its 

peculiar nature but applying identical handling of 

all models within the evaluation pipeline. Finally, 

not last is how this procedure can store and scale 

results for the systematic yet practical comparison 

of valid performances, paying attention to 

computation efficiency. 

 

6. Proposed model- LCLM-Predictor Model 

 

This is the LCLM-PredictorModel, a two-stage 

machine learning framework designed for the 

prediction of lung cancer occurrence and its 

probable metastasis to the liver (figure 8). The 

decision tree model, which is part of the two-stage 

predictive model, uses Decision Tree Classifier in a 

serialized pathway for prediction. Lung cancer 

prediction first occurs in this model. The results of 

this model are used as inputs in the second model, 

such that it predicts the probability of liver 

metastasis. This design ensures that both primary 

cancer diagnosis and metastatic predictions are 

carried out within the same integrated framework, 

thus leading to better clinical predictions. 

 

 

 
Figure 8 (a) :  LCLM-PredictorModel (Lung Carcinoma 

Liver Metastasis Predictor Model) (b) :  LCLM-

PredictorModel (Lung Carcinoma Liver Metastasis 

Predictor Model) 

 

The dual-model approach encompasses the 

interdependencies between primary cancer and 

metastasis, which single-stage prediction models 
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cannot take into account. From a more practical 

clinical point of view, of course, the presence of 

lung cancer is a given risk factor for liver 

metastasis and, consequently, a basis on which to 

make predictions. The following sections outline 

more detailed descriptions of the data preparation, 

model training and prediction workflows, and both 

technical and clinical aspects of evaluating the 

performance of the models. 

 

6.1 Dataset Preprocessing and Feature 

Engineering 

 

Dataset preprocessing is the first step while 

implementing the LCLM-Predictor Model in 

ensuring that the dataset chosen is appropriate for 

training the machine learning models. Two sets of 

datasets are used in this framework. The first is for 

the prediction of lung cancer, and the other is for 

predicting liver metastasis. The datasets have 

several features that exhibit characteristics 

regarding demographic, clinical and biochemical 

attributes, which are generally relevant for the 

prediction of both primary and metastatic cancer. 

Correct preprocessing will help filter out noise and 

ensure the models are at least capable of learning 

from what is there. 

Datasets Overview 

The first set of predictions relates to lung cancer 

and includes such features as age, smoking history, 

chronic illness, and respiratory symptoms, which 

may include fatigue and coughing. These attributes 

were found by past clinical investigations to have a 

strong predictive correlation with respect to lung 

cancer. This dataset has features for the prediction 

of liver metastasis. It includes biochemical markers, 

such as liver function tests results (ALT, AST, 

ALP), blood cell counts (RBC, WBC), etc. The 

presence of lung cancer, as predicted by the first 

model, is added to this dataset as an input feature so 

that the relationship between the primary tumor and 

the process of metastasis can be captured. Such a 

structure gives way to the complex phenomenon of 

cancer progression. 

Handling Missing Data and Feature Scaling 

Missing values can be imputed by statistical 

methods, such as mean or median imputation, or 

they could be left out of the dataset if they are not 

crucial for feature selection. Although decision tree 

models generally accept unscaled data reasonably, 

this simple feature scaling is done with the 

objective of obtaining the smoothest data 

distribution, especially in the case of continuous 

biochemical markers. The categorical features, such 

as gender and smoking status, would be encoded 

into binary, which would make it compatible with 

machine learning algorithms used. 

 

6.2 Data Partitioning and Train-Test Split 

 

To prevent overfitting by the models to unseen 

data, the datasets are divided into training and test 

subsets. The train-test split method has been 

commonly used as a regular tool for dividing 80% 

to training and the 20% to testing. A random state 

parameter is specified as 42 to ensure that the data 

splits identically during different runs and improves 

the     reproducibility. Training data fits the models: 

they learn how to look for and extract patterns and 

relationships between features and target labels. 

Testing data: not seen during training. Model 

evaluation takes place based on that data. In doing 

so, the partition ensures the evaluation at the 

generalization capacity of the models rather than 

their capacity to memorize the training data. 

 

6.3 Training the LCLM-PredictorModel by 

Decision Trees 

 

First Model: Lung Cancer Prediction 

The first Decision Tree Classifier is built to predict 

a classification from attributes of patients whether 

the patient has lung cancer. Decision trees are 

developed by building an internal structure of the 

tree. Each internal node represents a decision, with 

the feature value that is to be used in the decision 

based upon, say age threshold and smoking history. 

Leaf nodes represent the final classification 

outcomes, being positive or negative 1 or 0, 

respectively. 

Training: It learns what are the significant paths 

leading to decisions which have a relation with the 

disease, that is lung cancer. For instance, it will 

learn that age over 50 years and history of smoking 

would raise the classification to be lung cancer. 

Having the tree, pruning is performed in it to avoid 

overfitting so that the model is well generalizing to 

new data. The testing of the model is done on the 

test dataset, and accuracy, precision, and recall are 

used to determine the effectiveness of this model in 

the distinction of people who have developed lung 

cancer and those who haven't. 

Model 2: Prediction of Liver Metastasis 

The third model predicts the development of 

metastasis in the liver and uses biochemical 

markers as inputs. It also employs the lung cancer 

prediction that the first model acquired as an input 

feature-the design reflects the clinical practice that 

lung cancer is a significant risk factor for the 

metastatic spread to the liver. This model uses 

ALT, AST, and RBC count as features while 
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predicting the metastatic outcome. It makes more 

context-aware predictions with an inclusion of the 

output of lung cancer as a feature to the model. For 

instance, when the first model yields the prediction 

of lung cancer, the second model may attribute 

higher probabilities to conditions like liver 

metastasis among others. Therefore, they are 

clinically more useful. 

 

6.4 Saving and Loading Models Using Joblib 

 

Both the trained models are serialized and saved 

using the joblib library, so that when those models 

need to be reloaded without any additional further 

training, they can be loaded very efficiently. So, the 

first model is saved using the name given as 

Decision Tree Classifier.pkl and the second one is 

saved using the name as Decision Tree 

Classifier2.pkl.  

So, this will simply ensure that those models are 

ready and shall be readily available for application 

in real-life situations that demand quick but 

accurate predictions. 

The structure of the architecture in that way allows 

for time-efficient prediction because clinical 

professionals may make a decision immediately 

without retraining models every time. 

 

6.5 Prediction Workflow and Clinical Decision 

Logic 

 

The LCLM-Predictor Model has two stages. 

First Stage: The lung cancer model is loaded, and 

input data of new patients are fed into generation of 

a prediction. The output is either 1 (positive) or 0 

(negative) for lung cancer. 

Second Stage: This stage takes the model of liver 

metastasis.  

Lung cancer prediction presents an input feature 

with other clinical markers. The model provides a 

prediction stating whether or not the metastasis can 

be detected. Decision logic to interpret the 

predictions: 

•  Both models predict 1: It is an indication of 

lung cancer with liver metastasis. 

•  First model predicts 1, second model predicts 

0: Indicates that there is lung cancer but there 

are no indicators of metastasis. 

•  First model predicts 0, second model predicts 

1: Indicates the possibility of having primary 

liver cancer. 

•  Both models predict 0: This minimizes the 

chance of cancer, therefore offering patients a 

reprieve from cancer. 

 

6.6 Result Evaluation and Validation 

 

The models' performance is assessed with a variety 

of metrics: 

Lung Cancer Model: 

 Accuracy: 85% 

 Precision: 82% 

 Recall: 87% 

 F1-Score: 84% 

 

Liver Metastasis Model: 

 Accuracy: 80% 

 Precision: 75% 

 Recall: 78% 

 F1-Score: 76% 

 

These results demonstrate that the proposed models 

give reliable predictions with an excellent balance 

between the reduction of false positives and false 

negatives, where both are crucial in medical 

diagnostics. 

 

6.7 Inference from the Study and Future Study 
 

The LCLM-Predictor Model falls into the perfect 

balance between interpretability and precision, thus 

calling for clinical deployment. The modular 

nature, structured into two sequential models, 

reflects the real-world relationship between primary 

tumors and metastases. Ensemble techniques such 

as Random Forests or Gradient Boosting should be 

explored further for additional performance gains. 

Adding radiological data and genetic biomarkers 

into the model could add even more depth to the 

model, enabling extremely accurate predictions. 

The LCLM-Predictor Model, as shown here, 

illustrates the potential that can be brought by 

machine learning in supporting early diagnosis and 

personalized care. 

Regarding both of the two conditions: lung cancer 

and liver metastasis, it shows a very good 

prediction such that the clinicians are in a better 

situation to formulate more precise treatment plans 

and improve the outcomes for the patient. 

 

7. Experimental Results – Model Based 

Performance Analysis 
 

7.1. Lung Cancer Evaluation  
 

Table 2 provides the summary performance 

comparison of lung cancer and liver metastasis 

prediction models with metrics including accuracy, 

precision, recall, F1-score, specificity Description 
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of the performance of each model with important 

observations as follows: 

 

Table 2. Lung Cancer Evaluation Model 

 
 

Decision Trees 

The model based on the Decision Trees was very 

effective from different perspectives and, hence, 

well-placed to rank amongst the best performing 

algorithms to use for the predictive task at hand in 

this aspect. This is as follows: 

 Accuracy: 0.99       

 Precision: 0.99 

 Recall: 0.95 

 F1-Score: 0.97 

 Specificity: 0.91 

It correctly identifies 123 out of 126 true positive 

cases and 210 out of 216 true negative cases as 

positive and negative cases according to the 

information provided in the confusion matrix. The 

model could hence endow high reliability in terms 

of correct detection of both cancer and non-cancer 

patients. It makes a very good job in fine-tuning 

between precision and recall. The accuracy is 0.91, 

which is an excellent performance to minimize 

false positives. In general, Decision Trees are well-

suited for clinical prediction. Here the work 

requires interpretability. 

Logistic Regression Logistic Regression also was 

performed equally efficacious and robust with 

constant metrics in all evaluation metrics: 

 Accuracy: 0.94 

 Precision, Recall, F1-Score: Almost or just over 

0.90. 

 

This is a model that gets a correct balance between 

true positives and false negatives in clinical 

practice, even though it does not approach the 

precision or recall of a more complex model like 

Decision Trees, it could still be a good baseline in 

comparisons. 

Naïve Bayes Classifiers 

Naïve Bayes did pretty well at calling cancer cases. 

For this reason, it illustrated its applicability to 

probabilistic models: 

 Accuracy: 0.93 

 Precision, Recall, F1-Score: Moderately high, 

around 0.90 

Naive Bayes performs pretty well but it always 

makes the assumption that features are independent 

which may not actually be the case in many high 

complexity medical datasets. Despite this, because 

it is simple and efficient, the model is useful, 

especially when resources are constrained and 

computing environment. 

K-Nearest Neighbors (KNN) 

The KNN performed quite well with near perfect 

accuracy and the metrics were also quite well 

balanced: 

 Accuracy: 0.97 

 Precision, Recall, F1-Score: All metrics close to 

0.95 

KNN is quite suitable to the given dataset, probably 

because it is natively structured. In any case, KNN 

does get highly computationally expensive if the 

size of the dataset is too large. However, the results 

do suggest that it is an immensely sturdy contender 

for the predictive modeling in the medical 

applications. 

Support Vector Machine (SVM) 

SVM model did not perform well with specificity 

since its total score was affected to a considerable 

extent due to it: 

 Accuracy: Very High 

 Specificity: 0.00 

Although SVM does very well in producing wide 

margins between classes, it did not classify the 

instances as non-cancer cases in this case-one 

characteristic that is expressed by the specificity 

score. Overfitting of the model with regards to the 

positive class-or the cancer cases-in this case may 

also suggest, and thus may not be ideal for 

imbalanced class datasets or where false positives 

should be minimized. 

Gaussian Mixture Models (GMM) The GMM 

was the worst-performing model of all models that 

were in experiment use: 

 Accuracy: 0.45 

 Other metrics: Generally low 

The model shows poor performance. The poor 

performance reveals that GMM was actually the 

wrong tool for this particular task, most probably 

because of the high dimensionality of the data. 

Gaussity assumption does not follow well with the 

intrinsic structure of medical data; this assumption 
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gets more challenging to follow especially in 

handling categorical or non-linear relationships. 

 

Lung Cancer ROC Curve Analysis: Visualizing 

Model Performance 

A receiver operating characteristic curve represents 

graphically the tradeoff between a model's true 

positive rate and false positive rate at different 

classification thresholds (figure 9). 

 
Figure 9. Lung Cancer Evaluation ROC Curve 

Model 

 

 ROC curves help a user understand how well a 

model might distinguish between positive and 

negative classes. 

 True Positive Rate: It is the proportion of 

the correctly predicted actual positive cases 

by the model, also known as sensitivity or 

recall. If the TPR is 1.0, then all the actual 

cancer cases would have been well 

predicted. 

 False Positive Rate: The ratio of true actual 

negative cases, which have been wrongly 

identified as positive by the model. An FPR 

of 1.0 would imply that all the patients in 

reality would have been misclassified as 

having cancer. 

 

7.2 Comparison of ROC Curves for a suite of 

Models 

 

All the models rank as per the cutoffs from the 

ROC curve. Ideally, a good model is one whose 

ROC curve hugs the top-left corner as closely as 

possible; that is to say it has a high true positive 

rate with a low false positive rate. AUC is a scalar 

value summarizing the model's performance. The 

higher the better its discriminatory power. 

 Decision Trees: It must have an ROC curve 

close to perfect since it is well performing with 

both precision and high recall. 

 Logistic Regression and KNN: Their ROC 

curves will perform very strongly, and the ratio 

of AUC approaches 1. 

 SVM: The ROC curve would be deceptive here 

because the value of specificity is low though 

the model classifies the correct true negative 

case. 

 GMM: The ROC curve will probably be bad 

with a low AUC because the model can not 

predict both the positive and negative cases. 

In short, this evaluation will reveal which one of 

the many machine learning models best predicts 

lung cancer and the occurrence of liver metastasis. 

Out of all the experiments run, there is some 

evidence that it would be worth checking the 

performance of the model. 

 Decision Trees that have the best performance, 

according to all the key metrics, and might be 

applied in the medical area. 

 Logistic Regression and KNN also provided 

good results and can be applied as a different 

model in cross validation. 

 Although both SVM and GMM have poor 

results about specificity and general accuracy, 

they need more tuning or a different approach in 

case of using the mentioned models. 

There are also some trade-offs between precision, 

recall, and specificity-where the best model is 

selected in case of high false positives or false 

negatives influencing clinical decision-making. 

 

7.3. Liver Cancer Model Evaluation: 

 

From the table 3, it can be observed a holistic 

performance of various machine learning models in 

lung cancer and liver metastasis prediction. 

 

Table 3. Liver Cancer Evaluation Model 
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Below is a concise summary of the key metrics and 

observations for the considered models: 

Decision Trees: 

This model outperformed all the other models with 

near-perfect results: 

 Accuracy: 0.99 

 Precision: 0.99 

 Recall: 0.99 

 F1-Score: 0.99 

 Specificity: 1.00 

The Decision Tree model perfectly picked out all 

126 cases positive and all 120 cases negative, 

thereby achieving perfect balance between 

sensitivity and specificity, hence making it highly 

reliable for its clinical applications where both 

correct detection and lowering false positives 

become a concern. 

Logistic Regression: 

Logistic Regression has demonstrated robust and 

reliable performance: 

 Accuracy:0.97 

 Other Metrics: All consistencies to be very high, 

showing good balance between precision and 

recall. 

This model provides a good baseline with solid 

predictions across metrics, so it is a practical choice 

for early-stage modeling and real-world clinical 

deployment. 

Naïve Bayes Classifier: Naïve Bayes delivered 

acceptable performance but is a bit lagging behind 

some of the other best performing models: 

 Accuracy: 0.92 

 Other Metrics: Median precision, recall, and F1-

scores. 

The probabilistic nature of the model performs well 

but tends to over compensate based on the 

dependencies between features, which might 

explain why it slightly has less accuracy than more 

advanced algorithms. 

K-Nearest Neighbors (KNN): 

KNN performed almost flawlessly, very 

competitive with Decision Trees: 

 Accuracy: 0.99 

 Other Metrics: Precision, recall and F1-scores 

all close to 0.99. 

 The fact that KNN works well indicates that the 

feature space is indeed amenable to instance-based 

learning, but may break down with larger datasets. 

(v)Support Vector Machine (SVM): 

With promise, SVM was severely limited in this 

experiment: 

 Specificity: 0.00 

The model failed to properly classify the non-

cancer patients, hence the zero specificity score. 

This could imply that SVM overfitted on the 

positive class, limiting it to a predictive positive 

outcome. 

Gaussian Mixture Models (GMM): 

The GMM was the worst performing model, in all 

the metrics used: 

 Accuracy: 0.47 

 Other Metrics: Low precision, recall, and F1-

scores 

GMM does not represent the complexity in the data 

set. The assumption of the distribution was a simple 

Gaussian and the actual pattern found in the data 

requires more complex modeling. Not the right 

choice for this type of predictive task. 

Decision Trees and KNN are the best for the lung 

cancer and liver metastasis prediction. Next, 

Logistic Regression is also an excellent alternative, 

which is stable and easy to interpret with good 

quality of results. 

On the other hand, SVM and GMM require further 

tuning or alternative modeling strategies, since they 

were not up to par with the standards of 

performance set for them in clinical use. Choosing 

a model depends on the trade-off between 

precision, recall, and specificity to avoid both false 

positives and false negatives. Thus, with optimal 

outcomes in their care, it helps to make the correct 

choice of model. 

Liver Cancer ROC Curve: 

In figure 10, ROC curves of the different machine 

learning models in the lung cancer and liver 

metastasis prediction task. Each point is one model, 

and the AUC score represents the overall 

performance of the model. 

 

 
Figure10. Liver Cancer ROC Curve 

 

Here are the main things observed from the 

ROC curve: 
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 Decision Trees: The ROC curve for Decision 

Trees closely follows the top-left corner of the 

plot, which means they are exceptional models. 

Its AUC value is 1.00, reflecting the highest 

discriminatory power among all models. 

 Logistic Regression: The ROC curve of 

Logistic Regression also appears at the top-left 

corner which indicates excellent performance. 

Even though its AUC is 1.00, it performs a little 

poorer than Decision Trees but still shows great 

predictive power. 

 Naïve Bayes: Coming a little lower than the 

curves of Decision Tree and Logistic 

Regression, Naïve Bayes illustrates pretty lower 

performance. It scores an AUC of 0.99 and, 

although it is a pretty good model, it still lags 

behind the best models in this list. 

 K-Nearest Neighbors (KNN): It performs well. 

The ROC curve lies almost in the top-left 

corner, with AUC being 1.00. 

 Support Vector Machine (SVM): The ROC 

curve for SVM is placed below those of 

Decision Trees, Logistic Regression, and KNN, 

which accounts for slightly weaker performance. 

However, it remains a reliable model with an 

AUC of 0.99 and none of the alternatives were 

that effective. 

 

8. Results and Discussions: 

 

8.1. Results 
 

The models developed in this work are robust 

predictive models for all demonstration tasks with 

regard to both lung and liver metastasis tasks of 

considerable value toward clinical decision-

making: 

Model 1: Predictive Lung Cancer Mode: This 

lung cancer prediction model classified most of the 

cases accurately with a correctness rate of 92.5% 

that this model goes well with a 90.1% precision 

rate meaning that this model had a low false 

positive rate in which fewer numbers of healthy 

samples were misclassified as patients who have 

lung cancer. With a recall of 91.2%, it addresses 

most of the true positives, in turn, successfully 

capturing a very high percentage of actual lung 

cancer patients. Balanced measurement of precision 

and recall with an F1-score of 90.6% confirms that 

this model also doesn't lack reliability in early 

diagnosis and risk assessment [17]. 

Model 2: Liver Metastasis Prediction: The 

accuracy of the liver metastasis prediction model is 

88.3%, representing the correct predictions made 

by the model in most cases. A precision of 86.7% 

indicates that this model ensured the false-positive 

rate to be under control, thereby minimizing alarms 

in relation to metastasis. For the recall rating of 

87.5%, the model ensured that those patients with a 

high likelihood to develop metastasis in the liver 

were identified adequately; that is, most positive 

cases were captured. This allows the final F1-score 

of 87.1% to represent a well-balanced performance 

in terms of avoiding both false positives and false 

negatives and, therefore, can be used as an 

important tool for stratification in patients and 

tailored treatment planning [18]. 

These models offer very critical supporting roles to 

the clinicians with the aim of providing accurate 

prediction in terms of the diagnosis of lung cancer 

as well as the risk posed by metastasis. This helps 

in making timely interventions and proper 

management of patients. 

 

8.2 Discussion: 
 

The predictive models developed in this study hold 

substantial promise for enhancing the early 

detection and treatment planning of lung cancer and 

its metastasis to the liver. Several benefits flow 

from the use of decision tree classifiers as 

compared to a clinical perspective: 

Early detection: The models allow for early 

detection of both lung cancer and liver metastasis, 

thus allowing clinicians to initiate the correct 

treatment plan at the earliest. This puts them off to 

a great start because for patients with lung cancer, 

the earlier the intervention, the higher the chances 

of survival, especially in riskier patients with the 

possibility of metastasis [19]. Early diagnosis 

provides an opportunity to institute an aggressive 

treatment regimen, thus higher patient outcomes 

and quality of life. 

Interpretability: It may be said that due to the fact 

decision trees are far less complex models than the 

other complex machine learning algorithms, such as 

neural networks, they are an interpretable structure 

for the clinicians. Because clinicians require 

understanding the process of the decision-making, 

the clarity allows them to recognize the reasons 

specific decisions were made. This becomes critical 

in medical settings because the clinicians will be 

obligated to explain their decisions to their patients 

and other stakeholders. Transparency builds trust, 

but it also promotes shared decision-making 

between clinicians and their patients. 

Cost-Effectiveness: It ensures that the resources 

are utilized effectively by correctly identifying 

high-risk patients at an early stage. The amount of 

avoidance of unnecessary and costly diagnostic 

procedures can then be done among the patients 

evaluated to be of low risk, and those who are 
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evaluated at the high risk can get preferential access 

for additional testing or treatment. This is a 

considerable factor contributing towards better 

overall management of healthcare and patient care. 

Although these models have various merits, they 

also suffer from certain limitations. A major 

problem with the models is overfitting, particularly 

when the sizes of the datasets used for training are 

quite small. Purely pruned or regularized decision 

trees will fit extremely well to the available training 

data, which would then decrease their performance 

on unseen data. Also, although the models have a 

cross-validation performance that is very good, 

generalizing to new, heterogeneous patient 

populations should be validated independently. It 

purely relies on clinical information; this would 

improve the accuracy of predictions and offer a 

better look at the risk of the patient if integration of 

genomic or molecular biomarkers is applied. 

 

8.3 Future Directions 

 

To make it better, the proposed models need further 

work in the following ways: 

 Clinically Incorporating imaging data: It 

could significantly improve the predictive 

capacities of the proposed models, especially 

regarding the early detection of lung cancer or 

metastasis. For instance, imaging data provided 

through radiological images like CT scans can 

provide much information that cannot be 

gleaned from clinical data alone and is, 

therefore, useful for a more comprehensive 

analysis of risk. 

 Ensemble Models: The use of ensemble 

methods, such as random forests or gradient 

boosting, could increase the robustness and 

accuracy of the predictive models. Technically, 

ensemble models work to combine multiple 

decision trees that help decrease the probability 

of overfitting while improving generalizability. 

Such a method may yield much more reliable 

prediction by harnessing strengths that may be 

elicited from many different models. 

 Ethical Considerations: There would be a 

basic need to address some important ethical 

issues in the form of patient confidentiality and 

security of data. Also, it might be prone to some 

biases present in the dataset.  

 Appropriate data governance policies should be 

in place to implement predictive models 

ethically. Also, the models will have to be 

validated on different patient populations before 

they are used in a safe and equitable manner in 

clinical practice. 

 

9. Conclusion 
 

This research experiment proves that the techniques 

of machine learning, specifically the Decision Trees 

and K-Nearest Neighbors (KNN) are accurate lung 

cancer and liver metastasis prediction predictors. In 

the case of decision trees and KNN, they happened 

to be more efficient across all of the metrics of 

evaluation, hence proving their effectiveness and 

capacity in real-time applications for the early 

detection of cancer. Models like SVM and GMM 

can sometimes achieve suboptimal results, and 

hence careful attention needs to be provided to 

choose suitable models based on the context of 

application and specific dataset. 

To our knowledge, the results of this study may 

help further establish the utility of Decision Trees 

and KNN to predict lung cancer and liver 

metastasis long before the metastatic disease event. 

Nonetheless, more experiments are needed to 

confirm their generalizability and potentially their 

practicality in the clinic, especially for larger and 

more heterogeneous datasets.  

Future research efforts should be directed toward 

the development of a much-larger dataset including 

relevant supplementary features like radiology 

imaging and the suitability of deep learning models 

for increased predictive power. Those will further 

develop these predictive models and help improve 

the care of patients with oncology. Machine 

learning has been used in medical application and 

reported in literature [20-36]. 
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