

Copyright © IJCESEN

International Journal of Computational and Experimental

Science and ENgineering

(IJCESEN)

Vol. 11-No.1 (2025) pp. 464-474
http://www.ijcesen.com

ISSN: 2149-9144

 Research Article

Techniques for load balancing throughout the cloud: a comprehensive literature

analysis

Nimmy Francis1*, N. V. Balaji2

1Research Scholar, Department of Computer Science, Karpagam Academy of Higher Education, Coimbatore, India
* Corresponding Author Email: gardensenimmy@gmail.com- ORCID: 0000-0002-0254-5528

2Professor, Department of Computer Science, Karpagam Academy of Higher Education, Coimbatore, India
Email: fashdean@kahedu.edu.in- ORCID: 0009-0000-0373-4913

Article Info:

DOI: 10.22399/ijcesen.796

Received : 20 November 2024

Accepted : 12 January 2025

Keywords :

Cloud Computing,

Resource Utilization,

Over Load,

Load Balancing,

Fault Tolerance

Abstract:

Recently, "Cloud-Computing (CC)" has become increasingly common because it's a

new paradigm for handling massive challenges in a versatile and efficient way. CC is a

form of decentralized computation that uses an online network to facilitate the sharing

of various computational and computing resources among a large number of consumers,

most commonly referred to as "Cloud-Users (CUs)”. The burdens on the "Cloud-Server

(CS)" could be either light or too heavy, depending on how quickly the volume of CUs

and their demands are growing. Higher response times and high resource usage are two

of the many issues resulting from these conditions. To address these issues and enhance

CS efficiency, the "Load-Balancing (LB)" approaches are very effective. The goal of an

LB approach is to identify over-loading and under-loading CSs and distribute the

workload accordingly. Publications have employed numerous LB techniques to enhance

the broad effectiveness of CS solutions, boost confidence among end CUs, and ensure

effective governance and suitable CS. A successful LB technique distributes tasks

among the many CSs within the network, thereby increasing performance and

maximizing resource utilization. Experts have shown an abundance of engagement on

this issue and offered several remedies over the past decade. The primary goal of this

extensive review article is to examine different LB variables and provide a critical

analysis of current LB techniques. Additionally, this review article outlines the

requirements for a new LB technique and explores the challenges associated with LB in

the context of CC. Conventional LB techniques are insufficient because they ignore

operational efficiency and “Fault-Tolerance (FT)” measures. The present article, to

bridge the gaps in existing research, could assist academics in gaining more knowledge

about LB techniques within CC.

1. Introduction

Virtualization is a game-changer for CC innovation.

As mentioned earlier, there is a need for both

software and hardware solutions that can divide

physical infrastructure into several virtualization

scenarios, each of which may run independently yet

share the underlying tangible resources and

infrastructure. The integration of CC and

Virtualization platforms allows for extensive study

in all important disciplines and business

applications, as mentioned in several references [1].

The environment of support provided by many

"Cloud Service Providers (CSPs)" guarantees

consistency, which in turn points to the

development of the company at an economical rate,

and the automated process is appropriately matched

with real CU demands. The "Quality of Service

(QoS)" requirements of services delivered via the

cloud determine how challenging it must be to

provide sufficient resources to these services [2].

Traditional means of allocating resources become

ineffective in such an environment due to variation,

uncertainty, and resource dispersion. The sudden

uptick in interest in these platforms among CUs has

inspired the software development industry to

create and launch cloud-based, scalable software

applications. The system structure that CSPs make

accessible is highly dependent on the applications

that have been installed [3].

Numerous software developing entities have moved

their applications to independent CSP environments

http://dergipark.org.tr/en/pub/ijcesen
http://www.ijcesen.com

Nimmy Francis, N. V. Balaji/ IJCESEN 11-1(2025)464-474

465

since publicly available on-site sources of resources

are limited.

Those in charge of "Data-Centres (DCs)" or CSPs

have a responsibility to provide a higher level of

availability, performance, and the critical program

requirements for growth [4].

By distributing tasks across all available units for

processing, publicly accessible cloud load

distribution ensures that all computing resources

are used to their full potential. The LB within CC

typically is required, but in a more particular sense

[5]. There's a pressing requirement for LB within

CC due to the following issues: the CU demands

have been multifaceted, the flow of network traffic

to a CSP is undetermined and non-probability,

there's not a reliable resources assigner for CU

inquiries, jobs are not distributed throughout

resources for computing, which includes

dependence, and demand for resources fluctuate

according to CU demands. LB uses a network of

nodes for dispersing the load [6]. One of the main

goals of LB techniques is to choose tasks in a way

that reduces processing time as well as resource

usage within DCs. Every aspect of computational

resource virtualization is part of the enormous new

field that has emerged to investigate and create in

response to the compelling needs of CC. Since CC

provides an establishment that concentrates on

CUs, genuine CUs could increase their revenue by

concentrating on their numerous operations and

using an appropriate allocation of resources [7]. In

a typical CC LB process, there are two stages. In

the beginning, at the hierarchy of "Physical-

Machines (PMs)" (in which job migration occurs in

two distinct phases, inter-VM, and intra-VM), the

LB handles and allocates the workload within the

corresponding "Virtual-Machines (VMs)" (in which

each of the VMs uses different LB methods) [8].

Several resources are needed to execute the CU

tasks known as Request-Generators, and these in

turn produce CU demands. Figure 1 shows how the

DC controller manages tasks.

Problem Statement: An increasingly significant

challenge in this context, the "Task-Scheduling

(TS)" concern is driving up costs as the volume of

CSPs as well as the workload on the CSs continue

to rise. Certain VMs can be largely utilized whereas

others stay insufficiently utilized when running TS

on them. Hence, an effective LB is necessary to

arrange the TS operation and distribute the

workload on CSs evenly [9]. LB maintains a

reputation for being an effective way of distributing

the load across all of the VMs within an

environment. By using this approach, the

developers can be confident that every single VM

handles about the same amount of work. It

eliminates load imbalances, that could lead to

network delays, and increases outcomes like speed,

speed of response, dependability, and usage of

resources. For many causes, the LB within the CC

context might malfunction or terminate. The

network becomes unavailable and CC's reputation

is diminished as a result. There are typically 4

primary areas where CC failures might manifest:

amongst CSPs, within CSPs, over CSPs alongside

CUs, and within CUs themselves. Additional

energy usage and financial losses might result from

CSP breakdowns. The time taken to respond for

necessary services may be increased if CUs

collapse [10]. A crucial and essential aspect of CC

involves FT. This allows the infrastructure to detect

the nature and precise spot of the problems and

strive to tolerate that, allowing cloud-based services

to be offered even when faults are present.

Paper Contribution: Multiple scholars in the last ten

years have investigated LB approaches in CC

settings, providing a firm groundwork for

comprehending the multiple facets of this problem.

Based on this research and observations, it seems

that the scientific literature lacks a comprehensive

and well-structured analysis of the existing LB

approaches. Consequently, this article aims to fill

this void by providing a structured and

comprehensive examination of current LB

approaches through the adoption of a methodical

strategy. Additionally, this study details the

successful initiatives in this area, compares them in

depth, identifies difficult challenges, as well as

finally, suggests ways ahead for research in this

particular domain.

To sum up, the primary objectives of this research

are:

• Making it clear ways to apply an organized

approach to this area of study.

• Researching and classifying LB tactics into 3

broad categories: Static-LB, Dynamic-LB, and

Hybrid-LB, while outlining the benefits and

drawbacks of each.

• Bringing attention to the challenging issues and

unanswered questions in this area to enhance

prior experiments.

Paper Organization: Section 2 provides a survey of

the current LB review published in CC, while

Section 3 reviews the methodologies of LB along

with its terminologies and unveils a few chosen LB

techniques. Section 4 compares and contrasts the

reviewed methods, identifies unresolved problems,

and suggests possible future developments and the

last Section 5 concludes this review article.

2. Related works:

The researchers classify and taxonomies TS articles

according to several LB techniques for CC in [11].

Nimmy Francis, N. V. Balaji/ IJCESEN 11-1(2025)464-474

466

Along with some limitations and unanswered

questions, the benefits and drawbacks of the LB

methods have also been detailed. However, they

neglected to discuss the LB computational

strategies, records, assessment methodologies, or

evaluation with other tools used for simulation.

Researchers in [12] provide a thorough analysis of

LB along with TS techniques within CC, along with

an ordering and categorization of multifaceted

systems. By outlining the problems and unanswered

questions, they were able to assess the findings of

the relevant studies that were selected.

Nevertheless, this review did not include the

following: the process for selecting articles, the

time frame of the chosen research, the systems'

characteristics, assessment methods, or

comparisons of the tools used for simulation.

Following outlining the standards for inclusion and

exclusion, the researchers of [13] examined 56

papers about fog-based TS. An overview of the

research was provided by noting the examined LB

approaches along with their merits and drawbacks.

Additionally, new initiatives and research

limitations in current solutions are also recognized.

On the other hand, assessment techniques haven't

been mentioned. The researchers in [14] examined

the CC's meta-heuristic methods for performing

LB. They classified and examined various LB

methods and taxonomies, as well as the benefits

and drawbacks of various procedures. In addition to

comparing commonly employed simulation

programs, they additionally emphasized open

concerns and potential developments. However, the

research does not take algorithmic techniques or

database assessment into account.

In their most recent analysis, the authors in [15]

examined Fog-Computing along with the “Internet-

of-Everything (IoE)”. After introducing the various

optimizing measures, they went on to categorize the

various LB approaches that are now available. To

find unanswered questions and potential avenues

for further research, the papers were reviewed.

There was an omission of information on the length

of the research and the procedure for selecting the

articles. Another omission from the survey was

information on the LB computations, databases,

assessment techniques, and simulation instruments

used.

3. Methodologies

3.1 Process of LB in CC

The main goal of LB remains to make sure that

none CS was under-load or over-load by properly

managing the load throughout each of the CSs. One

way to define LB is the practice of distributing a

load across many devices or networks of systems to

make the most efficient usage of available

resources and get the best possible total speed of

response. As an added advantage, it keeps resources

from being duplicated too much and shortens the

device's overall waiting time. With this procedure,

requests are dispersed within CSs to share and

handle information with no waiting. By shifting the

load from one device to another, LB enhances the

system's efficiency. Figure 2 depicts the LB process

within CC. LB offers a methodical approach to

distributing tasks evenly across the available

resources. During the case of a service outage, the

objective is to continue providing dependable

service through provisioning and de-provisioning

the system instance, while also making sufficient

usage of the resources. Furthermore, LB's goal is to

improve the efficiency of resources and decrease

the time for responding, leading to lower-cost,

higher-efficiency devices.

3.2 Types of LB

There are three types of LB in the CC context. They

are detailed in the following section:

Static-LB (SLB) Algorithms:

Before the actual running time of the tasks starts,

the SLB mechanisms disperse them among VMs.

Such techniques lead to inefficient use of resources

since they load certain VMs while they are

operating. Resources consumption is increased and

the number of "Service-Level-Agreement (SLA)"

breaches due to overloaded VMs is increased by

SLB techniques. Here are a few primary SLB

approaches:

Round-Robin (RR): The smallest job is chosen

and done firstly according to this SLB technique.

By reducing task waiting periods and hence

preventing deprivation, the shortest possible task

strategy improves the cloud's efficiency and gives

computations an edge against rival techniques.

After randomly selecting the hub, each node shall

receive its workspace distributed to it within an RR

fashion.

A benefit for DCs is that every single VM shares

identical processing capability. Task length,

resource significance, and capacity are not

considered in this RR method. Regardless, it's

possible that certain resources are being

overutilized, and it's also common for other

resources to sit idle.

Min-Min: All task-related information is accessible

from the prior phase of this SLB method. A list of

all unfinished tasks is the starting point for this

method. The amount of time required to do each

activity was calculated using this method.

Nimmy Francis, N. V. Balaji/ IJCESEN 11-1(2025)464-474

467

Figure 1. Overall LB system

Figure 2. The LB process within the CC

For every job, it selects the bare minimum of time

needed to finish. Out of all the tasks, it selects the

resource that takes the shortest time to finish.

Finally, this method creates a map for every job

that has been chosen. Once all non-allocated tasks

have been designated, this function terminates. The

most time-efficient task gets completed first using

this method, which can be an enormous advantage.

One potential downside of this strategy is the fact it

could result in the elimination of certain tasks.

Max-Min: When contrasted with the min-min

technique, this SLB methodology employs the

inverse strategy.

Here the highest priority tasks are carried out

initially. It works very comparable to the Min-Min

method, with the exception that this approach

chooses the highest priority after finding the jobs

with the shortest time for completion.

Dynamic-LB (DLB) Algorithms:
Throughout the execution of the task, the DLB

method updates the workload of VMs according to

the system's status and allocates accepted tasks to

Nimmy Francis, N. V. Balaji/ IJCESEN 11-1(2025)464-474

468

them. In an attempt to circumvent the shortcomings

of the SLB approaches, DLB disregards the prior

data about the system's status. Complexity abounds

in the DLB methods. In contrast to SLB methods,

nevertheless, these methods work better and have

higher FT.

Statistics-DLB Approaches: For optimal

workloads and to assess the system's efficiency,

these techniques are put into effect. Several QoS-

orientated methods have been suggested to enhance

the usage of resource efficiency.

Swarm-Behaviour Approaches: Two separate

branches of these approaches draw their inspiration

from smart biological processes: nature-oriented

and nature-inspired. Several "Swarm-Intelligent

(SI)" methods were recently suggested for DLB on

the cloud.

Evolution-Based Approaches: These strategies

have been demonstrated with the most sophisticated

and expansive search spaces within the particular

DLB techniques.

Hybrid-LB (HLB) Algorithms:
The characteristics of HLB strategies are a mix of

those of DLB along SLB techniques. Its purpose is

to ensure that CC features are always available to

CUs.

3.3 Different Types of Current LB Techniques

Current Techniques under SLB
The Standard-LB methods come under the SLB

category. In this section, some of the most used

SLB was reviewed as follows:

Randomized-Technique: It is not necessary to be

aware of the VM's current or historical load when

attempting to implement this technique's

recommended choice of VMs. This works well

when each VM takes on the same amount of work

from the system. Its static functioning is the reason

for this.

Threshold-Technique: After the creation of one

VM, the workload can be promptly distributed

using this SLB-oriented approach. Despite

transmitting any controlling codes, the choice of

VM is done immediately. VMs save one copy from

the load data. Min-load, Med-load, and High-load

are the three main types of load characterization.

Whenever a query reaches the CS, the BS correlates

the total of HTTP requests with the specified

threshold level. The workload condition goes into

overdrive when the current CU query frequency is

higher than a predetermined threshold. At the same

time, things are looking despairing for the

workload.

Opportunistic-LB Technique: While it's an SLB

method, the modern VM workload is not specified

anymore. It intends to keep each VM busy. It’s an

effort to keep all hubs active despite its lack of

knowledge of the present burden of each system.

There is an open-source program available for this

method, and it can display every transaction to a

support department. Every application is managed

by the CS according to a predetermined timeline.

The approach is tailored to comply with the

requirements set forth by the CU for the particular

procedures. Following that, intending to distribute

the workload evenly across the several CSs, cloud-

based DCs implement the opportunistic LB method.

Throttled-LB: This method relies on the LB

keeping track of the availability and use of VM

indexes within a database. To complete the

assigned task, the CU asks the DC to locate an

appropriate VM. Because of the VM, the DC needs

an LB to manage it. Before allocating VMs to the

LB, the DC must execute a query. With the unlikely

scenario that not enough VMs were found, the LB

would head back to the DC to execute the CU's

request. Therefore, for the task to begin, the CU

will notify the LB to figure out the best VM to

carry out the required tasks.

Stochastic Hill-Climbing: A mediocre strategy for

problem-solving, this methodology is a variation of

the hill-climbing methodology. Because the

dispersed LB mechanism shown herein eliminates

the obstacle, improving the distribution of system

workloads has additionally been considered. The

route of giant-value is characterized by a similar

loop, which travels continually upwards or

backward. This halts when a neighbor with a higher

curiosity level is detected.

Equally-Spread Current-Execution: Every VM

was given priority for a certain task because of the

equitable distribution of tasks. The Spreading-

Spectrum technique is used here, and it involves

distributing the load among several VMs according

to the load intensity. The LB assigns the task to the

appropriate VM along with a little tweak to its

hardware, which increases the VM's output. One

aspect of this method is that it keeps track of VMs

also the volume of requests that are presently

assigned to them. VMs commence with no

allocations. It fails to allocate TS whenever there

are more requests than expected.

Join-Idle Queue (JIQ): Persistent online services

and large-scale shared infrastructures are both made

possible by it. The pooled dispatchers represent

how this method functions. By excluding the LB

service from the primary route, this technique

forces the optimum processor to notify the

dispatcher about its inactivity despite the absence of

task expertise regarding the application. All of JIQ's

pooled planners have an I-queue which stores a

group of CSs that aren't actively working. Over

random intervals after joining the network, newly

Nimmy Francis, N. V. Balaji/ IJCESEN 11-1(2025)464-474

469

arrived objects encounter schedulers and request to

be added to the idle method's I-queue.

Listing-Tasks: Numerous processes share the

available processing power as they execute in

parallel on several many-core devices used for

computing TS. It is difficult to optimize system

efficiency and usage of energy by allocating cores

to various activities. Considering time and energy

restrictions further complicates matters. A method

for determining before and post-power for parallel

processes that rely on lists was suggested, and it

works on both constant and periodic speed

durations. The method reduced calculation costs

and make-span. On the other hand, the transmission

costs remained larger.

Task-Priority: Recent developments in CC-based

IoT have made it possible for the creation of lower-

latency applications necessitating immediate

feedback. The VM which could do this job in the

least amount of time was used to complete it. The

use of multiple queues allowed it to resolve the

starving of lower-priority activities with resources

that were idle, which improved make span, reaction

time, usage of resources, and throughput. Although

this method cuts down on waiting and task

completion times, it was unable to accomplish LB

in a parallel fashion across several VMs.

Earliest-Deadline First (EDF): When it comes to

time-sensitive bag-of-tasks, the majority of

solutions overlook the ever-changing nature of

clouds. Considering a distributed setting, an EDF-

based scheduling method enhanced the volume of

time constraints met while reducing infrastructural

expenditure. The goal of developing this method

was to efficiently complete the tasks at hand while

keeping costs to a minimum. Whenever the

processing length of tasks got higher, however,

responding was prolonged.

Current Techniques under DLB
It’s difficult to solve the issue of dynamic TS across

a diverse context. In this section, some of the most

used DLB techniques were reviewed as follows:

Particle-Swarm Optimization (PSO): These

optimization techniques are very clever and mimic

the swarm-oriented behavior of animals. They are

called bionic-heuristic methods. To better manage

jobs and distribute the load, a framework for energy

usage was also included, along with an enhanced

PSO technique. Task execution times were

additionally lowered with a low-complexity binary

variant using the PSO technique. By using its

strengths in versatility, easy recognition, great

resilience, and exceptional performance in dynamic

contexts, PSO effectively resolves several problems

associated with paired optimization. When it comes

to fixing problems with differential restrictions, the

PSO method is inefficient.

Genetic-Algorithm (GA): Using principles from

genetics and selective breeding, it constitutes a

stochastic exploration method. A basic GA with

three activities: “Availability”, “Genetics”, and

“Replacing”. At its foundation is the process of

creating new generations through mutations and

crossovers, predicated on the idea that different

types of chromosomes need different types of

coding: “Binary-Coding”, “Tree-Coding”, or

“Numerical-Coding”. When trying to recreate the

actual process of genetic processes and the idea

regarding biological evolution put forward by

Charles Darwin, GA becomes the preferred natural

computation methodology. It makes an effort to

decrease the completion time of the tasks listed in

the waiting list simultaneously balancing the load

on the cloud's resources. It shortened the time while

increasing the size of process applications along

with the error frequency. However, it requires more

time on computational capabilities to handle huge

solutions.

Ant-Colony Optimization (ACO): The driving

force of this model is a cooperative group of ants

that, over many years, seeks to discover the optimal

manner to connect various locations, share

information through the sharing of pheromone

signals (like naturally occurring food-seeking ants),

and examines multiple options into a suitable

variable or topological data storage. In CC, the

ACO in LB manages the load and cuts down on

makespan. Every task is thought to be highly

computational and distinct from one another. In

addition, a plan for scalability was developed to

enhance TS and energy savings. Improving ACO's

convergence speed despite sacrificing solution

variation is possible by extending its linear

Weighted-Sum. Getting into regional optimum

problems the outputs can be accomplished when

dealing with the problem of large-scale

optimization that leads to poor algorithmic

efficiency.

Honey-Bee Foraging (HBF): Following the lead

of honeybees, this method maximizes output by

adjusting the amount of nectar (speed). Throughout

living in the colony, it is believed that they've got a

variety of duties to play. Bees that engage in

Active-Foraging search for food sources, then

return to the hive after gathering food. The scout-

bees actively investigate their environment in

search of fresh sources of food, which they are

accumulating on a VM table. Some of those

foraging-bees stop moving around at certain points

in time. This method is a kind of foraging that

could be included in the LB strategy for TS

operations within the CC. Results for autonomous

Nimmy Francis, N. V. Balaji/ IJCESEN 11-1(2025)464-474

470

TS were closer to ideal as a result of its quicker

convergence. With almost elevated CU request

volumes, yet, the delay becomes a significant issue.

Whale-Optimization (WO): TS keeps getting

increasingly complicated when the quantity of

assignments and resources increases. For optimal

energy usage and time, the WO approach is used as

an LB to TS. The main emphasis of this WO

approach is to mimic the way whales behave. While

opposition-based training has several advantages, it

may be operationally costly to evaluate all of the

possible alternatives. Additionally, it is noticeable

how Chaos-Theory increases the WO's overhead.

There will be a noticeable change to the algorithm's

complexity in time with even a little rise in its

parameters. The problems caused by the method's

excessive processing complexity may be reduced

by parallelization.

Simulated-Annealing (SA): SA is inspired by

solid-state annealing, which entails heating and

gradually cooling a material (such as glass or

metal) to remove and compress its internal tensions.

The process additionally becomes sensitive to CU

request frequency and bin quantity; therefore, it is

common for this approach to be frozen by local

restrictions and generate unwanted VM allocations.

Using a goal-programming strategy, the SA in LB

for CC reduces operation costs and delays. Latency

duration, timeline satisfaction, and accessibility

level constraints were all enhanced using a "Multi-

Objective SA (MOSA)" technique. Through

working together, they succeeded in accomplishing

several objectives, along it adding the aim of

accessibility level to better divide up CC work.

Still, this method came at a huge expense in terms

of communication.

Cuckoo-Search Optimization (CSO): A meta-

heuristic approach, the CSO method simulates the

actions of cuckoo birds in their native environment.

This approach finds the optimal solution while

balancing local and global analysis through the

support of parameter flipping. The results obtained

surpass those of the PSO.

(viii) Osmosis-LB (OLB): Ultimately, this OLB

approach aims to modify the load by reassigning

work to a succession of VMs. Decentralized Chord-

Overlays run by agents similar to ants are the

backbone of this LB mechanism. Every DC has its

unique implementation-specific features,

communicates with a list, and may do many jobs

concurrently.

Tabu-Search Optimization (TSO): As a global

optimum approach with a higher-grade optimizing

capacity, this TSO methodology aspires to mimic

human cognition. When utilized for problems like

allocation of resources and optimized performance,

it aims to point other methods away from falling

into the local optimum dilemma.

Reinforcement-Learning (RL): The massive

amounts of information produced by IoT gadgets

do not just overwhelm the CC system, additionally,

they cause latency to rise as a result of the large

number of hops. Because it impacts processing

speed and causes system crashes, using a VM that

is either too heavy or too light is consistently not an

option. An RL approach is used to include

scheduled upkeep within a diverse setting,

enhancing FT with the least cost. Two dynamic

programming-oriented issues are presented. The

issues have been transformed into RL-

approximated computational challenges. It

enhanced scheduling performance while decreasing

the computationally demanding nature of the

challenges. On the other hand, the tasks' latency

remained disregarded.

Current Techniques under HLB
The researchers suggested the hybrid approach in

[16] by combining PSO with "Fuzzy-Logic (FL)"

along with SA, resulting in FL-PSO and SA-PSO,

accordingly. TS was made even more effective by

combining the suggested methods alongside the

dynamic response queues methodology. Especially

for higher-dimensional situations, the innovative

methods were shown to be beneficial. This research

aimed at optimizing make-span, expenses, LB, time

spent waiting, usage of resources, and length of

queue simultaneously. However, the research did

not account for the delay.

For TS separate activities without causing them to

converge too soon, the researchers of [17]

suggested a hybrid technique that optimized the

“Dragonfly-Algorithm (DA)” using a combination

of the “Mexican-Hat Wavelet-Transform”, and a

“Biography-based Optimization-Migration”

procedure. Time to respond, operation, and SLA

breaches had all been improved by dynamically

scheduling the activities. Mutation process

performance may have been much better with the

correct weights.

Regarding a combination of approaches for TS, the

researchers suggested an updated “Henry-Gas

Solubility-Optimization (HGSO)” that employs

WOA and “Comprehensive-Opposition-Based

Learning (COBL)” [18]. Local searching was

enhanced by the WOA, while the worst-case

scenario was mitigated by the COBL. By

comparing it to WOA, HGSO, MFO, FA, PSO, and

SSA on both artificial and actual databases, the

suggested method outperformed its competitors in

terms of make-span and efficiency. However, every

method that was compared was the most basic

form.

Nimmy Francis, N. V. Balaji/ IJCESEN 11-1(2025)464-474

471

In their proposal for a hybrid scheme, the

researchers of [19] used opposition-based learning

and “Differential-Evolution (DE)” to create a

revised “Fire-Works Algorithm (FWA)”. DE

eschewed local optimal solutions, but opposition-

based learning enabled a diverse collection of

alternatives. By reducing make-span and expense

while enhancing the usage of resources, the

approach achieved effectiveness. Having said that,

the researcher claims that the suggested method is

not resilient to node outages and task transfer.

The researchers suggested a hybrid model called

"Hybrid-Firebug and Tunicate-Optimization

(HFTO)" that may improve LB and reduce the

duration it took to complete tasks [20]. Various

VMs were put together and the loads have been

organized according to their characteristics. It’s

improved speed, reaction time, make-span, and FT

as well. Workloads were distributed to VMs

according to their peak needs. VMs that had

minimal CPU usage received lighter tasks, whereas

those that had substantial CPU usage were given

computation-intensive ones. Despite having

relatively few resources, the method managed to

enhance both make-span and complexity of

computation. The workload that had been

simulated, however, remained undisclosed.

4. Discussion of the study

4.1 Limitations of LB within CC

Among the several difficulties that CC must

overcome, LB stands out as an extremely pressing

issue that requires immediate action. Finding an

improved way of using cloud resources requires

balanced consideration for concerns which include

migrating VMs, privacy of VMs, QoS by CS, and

the efficient use of resources. The following are

some LB concerns:

Geographically Distributed VMs: Most DCs of

the CSP have been distributed so that CUs may

access them from anywhere. To efficiently handle

CU requests, the dynamically dispersed VMs

within those DCs act like a consolidated network.

While there are several LB methods out there, they

all have their limitations and fail to account for

important factors like network and communication

delays, VM spectrum, CU space, and resources that

are accessible. Some techniques aren't well-suited

to very distant locations, making it difficult to run

VMs there.

Isolated Failure Point: Particular LB techniques

have been suggested by researchers for cases where

a single consolidated VM makes LB choices rather

than a distributed set of VMs. A computer system

as a whole is vulnerable to failures in critical

components.

Migrating VMs: It is possible to construct several

VMs upon a single PM by using virtualization.

Such VMs were independent in design and had

diverse configurations. It's reasonable to use an LB

approach to move every VM to a distant place if a

PM is overwhelmed.

Diverse VMs: As part of their preliminary

investigation, the writers have suggested using

uniform VMs throughout LB. The CUs of CC

require an adaptive switch, that can only be

implemented on diverse VMs to achieve network

efficiency and decrease reaction time.

Data Management: CC solved the problem of

traditional storage systems, which were expensive

and resource-intensive. There are no control

difficulties when CUs maintain information

heterogeneously within the cloud. Duplicating

saved information is essential for optimal

accessibility as well as information continuity since

storage continues to grow at an exponential rate.

Scalability of LB: The capacity to quickly scale up

or down is only one of the many benefits of using

cloud-based services, which also provide on-

demand scaling. When designing a robust LB, keep

in mind the ever-evolving demands of computing,

storage, device topological structure, etc.

Level of Method's Complexity: Methods for CC

need to be easy to implement and work quickly.

Improving the cloud's effectiveness and quality is

the goal of a resilient algorithm.

Autonomous provisioning of services: The ability

to autonomously allocate or assign resources

constitutes a crucial feature of CC. The question

thus becomes how to make use of or withdraw from

cloud-based services while preserving an identical

level of productivity as traditional systems while

making optimal use of available resources.

Energy Efficiency: One advantage regarding

energy administration is the usage of the cloud,

which promotes economy on the scale. Reduced

energy consumption is the single most critical

factor that will enable an international market to

function in which publicly traded enterprises

contribute to a common fund instead of competing

privately.

4.2 Future Paths of Research

These findings show that there are still many open

questions in this field that require further

investigation. The research found ways to improve

the LB methods for future studies, which would

optimize the CC operations. Here are some of them:

• The majority of studies take place in a simulated

setting; numerous techniques are being

Nimmy Francis, N. V. Balaji/ IJCESEN 11-1(2025)464-474

472

developed to simulate the CC setting, however

putting them into action in real-time can be quite

difficult; hence, relatively limited techniques

have found practical use in this setting. When

developing techniques that might encounter

problems in real time, it is possible to take

advantage of open-source infrastructures like

Open-Stack and Cloud-Foundry.

• Rapidly vertically growing CSs within the cloud

DC, tasks with high priority due to be executed,

shifts in processes, machine setups, and other

circumstances could all complicate the

technique. To address these concerns and

enhance scaling, efficiency, and speed, an

effective structure is necessary.

• Due to its periodic nature and lack of data

storage, scheduling-aware LB techniques like

Round-Robin cause an unequal allocation of

workload across VMs.

• To make processes that are both lightweight and

capable of overcoming hybridization issues, it is

possible to combine SLB methods with DLB

methods which are influenced by nature or

alternative methods; however, this merges the

system's complexity.

• With the success of CC usage in healthcare, the

community stands to gain from the development

of a health-specific, optimal LB mechanism.

• Both TS and LB issues are thought of as being

NP-hard. While methods that draw inspiration

from nature are making significant progress,

there remain numerous unresolved issues. For

example, how to create the best fitness-function

to accurately assess potential resources and

guarantee scalability for activities with changing

resource needs.

• Following a regional LB process, QoS-based LB

ensures an appropriate level of service

regardless of whether resources are available or

not. However, when trying to overcome the

aforementioned obstacles, results in substantial

management of overheads that need thorough

scenario assessment.

• While suggesting an efficient approach for use

in a cloud setting that processes data in real-

time, the FT variable is often disregarded by

many existing LB approaches.

5. Conclusions

A crucial component of the CC field, LB serves to

enhance the allocation of workloads and the

administration of resources, to minimize the

system's overall reaction time. Numerous methods

and techniques are being developed to handle LB-

related issues, including allocating resources,

migrating tasks, and optimizing the utilization of

resources. Various approaches within the LB

adhering CC field were investigated in this present

research. Researchers have looked at the problems

with LB and studied the solutions thoroughly in the

past few decades. Problems with the migration of

VMs and FT issues, among others, persist within

the CC context despite the presentation of several

solutions. With the help of this literature review,

researchers have a lot of space to create cutting-

edge LB approaches that work well in CC settings.

A large portion of the survey dedicates itself to

discussing the SLB, DLB, and HLB methods.

Academics may find this investigation useful for

discovering LB-related research difficulties, such as

how to reduce reaction time and prevent VM

failures, as it includes a review of present and

previous LB methods. In addition, it made specific

recommendations for future studies that should lead

to the development of an ideal LB method that can

address all problems with current LB techniques

and work in a real-world CC setting. Cloud

Computing has been studied and reported in the

literature [21-28].

Author Statements:

 Ethical approval: The conducted research is

not related to either human or animal use.

 Conflict of interest: The authors declare that

they have no known competing financial

interests or personal relationships that could

have appeared to influence the work reported in

this paper

 Acknowledgement: The authors declare that

they have nobody or no-company to

acknowledge.

 Author contributions: The authors declare that

they have equal right on this paper.

 Funding information: The authors declare that

there is no funding to be acknowledged.

 Data availability statement: The data that

support the findings of this study are available

on request from the corresponding author. The

data are not publicly available due to privacy or

ethical restrictions.

References

[1]S. Mangalampalli, (2023). Cloud computing and

virtualization, Convergence of Cloud with AI for

Big Data Analytics: Foundations and Innovation,

2023, pp. 13–40.

[2]A. Sunyaev, (2020). Cloud computing, Internet

Computing: Principles of Distributed Systems and

Emerging Internet-Based Technologies. 2020, pp.

195–236.

Nimmy Francis, N. V. Balaji/ IJCESEN 11-1(2025)464-474

473

[3]X. Fu, Y. Sun, H. Wang, and H. Li, (2023). Task

scheduling of cloud computing based on hybrid

particle swarm algorithm and genetic algorithm,

Cluster Comput., 26(5);2479–2488.

[4]M. H. Shirvani, (2023). An energy-efficient topology-

aware virtual machine placement in cloud

datacenters: A multi-objective discrete Jaya

optimization, Sustain. Comput., Informat. Syst.,

38,100856.

[5]S. Mangalampalli, G. R. Karri, M. Kumar, O. I.

Khalaf, C. A. T. Romero, and G. A. Sahib,

(2024).DRLBTSA: Deep reinforcement learning

based task scheduling algorithm in cloud

computing, Multimedia Tools Appl., 83(3);8359–

8387.

[6]H. Mikram, S. El Kafhali, and Y. Saadi, (2024)

HEPGA: A new effective hybrid algorithm for

scientific workflow scheduling in cloud computing

environment, Simul. Model. Pract. Theory,

130;102864.

[7]S. Iftikhar, M. M. M. Ahmad, S. Tuli, D. Chowdhury,

M. Xu, S. S. Gill, and S. Uhlig, (2023) HunterPlus:

AI-based energy-efficient task scheduling for

cloud–fog computing environments, Internet

Things, 21;100667.

[8]P. Pirozmand, (2023). An improved particle swarm

optimization algorithm for task scheduling in cloud

computing, J. Ambient Intell. Humanized Comput.,

14(4);4313–4327,

[9]J. Elcock and N. Edward, (2023). An efficient ACO-

based algorithm for task scheduling in

heterogeneous multiprocessing environments,

Array, 17;100280.

[10]Y. Cheng, Z. Cao, X. Zhang, Q. Cao, and D. Zhang,

(2023). Multi-objective dynamic task scheduling

optimization algorithm based on deep

reinforcement learning, J. Supercomput., pp. 1–29.

[11]A. Amini Motlagh, A. Movaghar, and A. M.

Rahmani, (2020). Task scheduling mechanisms in

cloud computing: A systematic review, Int. J.

Commun. Syst., 33(6);e4302.

[12]M. Hosseinzadeh, M. Y. Ghafour, H. K. Hama, B.

Vo, and A. Khoshnevis, (2021). Multi-objective

task and workflow scheduling approaches in cloud

computing: A comprehensive review, J. Grid

Comput., 18(3),327–356

[13]N. Kaur, A. Kumar, and R. Kumar, (2021). A

systematic review on task scheduling in fog

computing: Taxonomy, tools, challenges, and

future directions. Concurrency Comput., Pract.

Exper., 33(21);e6432.

[14]E. H. Houssein, A. G. Gad, Y. M. Wazery, and P. N.

Suganthan, (2021). Task scheduling in cloud

computing based on meta-heuristics: Review,

taxonomy, open challenges, and future trends,

Swarm Evol. Comput., 62;100841.

[15]B. Jamil, H. Ijaz, M. Shojafar, K. Munir, and R.

Buyya, (2022). Resource allocation and task

scheduling in fog computing and Internet of

everything environments: A taxonomy, review, and

future directions, ACM Comput. Surveys, 54(11);1–

38.

[16]H. Ben Alla, S. Ben Alla, A. Touhafi, and A. Ezzati,

(2018). A novel task scheduling approach based on

dynamic queues and hybrid meta-heuristic

algorithms for cloud computing environment,

Cluster Comput., 21(4);1797–1820

[17]M. R. Shirani and F. Safi-Esfahani, (2021). Dynamic

scheduling of tasks in cloud computing applying

dragonfly algorithm, biogeography-based

optimization algorithm and Mexican hat wavelet, J.

Supercomput., 77(2);1214–1272

[18]M. A. Elaziz and I. Attiya, (2021). An improved

Henry gas solubility optimization algorithm for

task scheduling in cloud computing, Artif.Intell.

Rev., 54(5);3599–3637.

[19]A. M. Yadav, K. N. Tripathi, and S. C. Sharma,

(2022). An enhanced multi-objective fireworks

algorithm for task scheduling in fog computing

environment, Cluster Comput., 25(2);983–998.

[20]M. Nanjappan, G. Natesan, and P. Krishnadoss,

(2023). HFTO: Hybrid firebug tunicate optimizer

for fault tolerance and dynamic task scheduling in

cloud computing, Wireless Pers. Commun.,

129(1);323–344.

[21]Iqbal, A., Shaima Qureshi, & Mohammad Ahsan

Chishti. (2025). Bringing Context into IoT: Vision

and Research Challenges. International Journal of

Computational and Experimental Science and

Engineering, 11(1).

https://doi.org/10.22399/ijcesen.760

[22]M. Revathi, K. Manju, B. Chitradevi, B.

Senthilkumaran, T. Suresh, & A. Sathiya. (2025).

Metaheuristic-Driven Optimization for Efficient

Resource Allocation in Cloud Environments.

International Journal of Computational and

Experimental Science and Engineering, 11(1).

https://doi.org/10.22399/ijcesen.831

[23]YAKUT , Önder. (2023). Diabetes Prediction Using

Colab Notebook Based Machine Learning

Methods. International Journal of Computational

and Experimental Science and Engineering, 9(1),

36–41. Retrieved from

https://ijcesen.com/index.php/ijcesen/article/view/1

87

[24]S.P. Lalitha, & A. Murugan. (2024). Performance

Analysis of Priority Generation System for

Multimedia Video using ANFIS Classifier.

International Journal of Computational and

Experimental Science and Engineering, 10(4).

https://doi.org/10.22399/ijcesen.707

[25]BENTAJER, A., HEDABOU , M., ENNAAMA, F.,

& ELFEZAZİ , S. (2020). Development of Design

for Enhancing Trust in Cloud’s SPI Stack.

International Journal of Computational and

Experimental Science and Engineering, 6(1), 13–

18. Retrieved from

https://ijcesen.com/index.php/ijcesen/article/view/1

09

[26]Pattanaik, B. C., Sahoo, B. kumar, Pati, B., &

Pradhan, A. (2024). Enhancing Fault Tolerance in

Cloud Computing using Modified Deep Q-Network

(M-DQN) for Optimal Load Balancing.

International Journal of Computational and

https://doi.org/10.22399/ijcesen.760
https://doi.org/10.22399/ijcesen.831
https://ijcesen.com/index.php/ijcesen/article/view/187
https://ijcesen.com/index.php/ijcesen/article/view/187
https://doi.org/10.22399/ijcesen.707
https://ijcesen.com/index.php/ijcesen/article/view/109
https://ijcesen.com/index.php/ijcesen/article/view/109

Nimmy Francis, N. V. Balaji/ IJCESEN 11-1(2025)464-474

474

Experimental Science and Engineering, 10(4).

https://doi.org/10.22399/ijcesen.601

[27]Sankari, A. S., & S. Vimalanand. (2024). Biased

Random Sampling with Firefly Optimization (BRS-

FO) based on Load Balancing for Virtual Machine

Migration in Cloud Computing. International

Journal of Computational and Experimental

Science and Engineering, 10(4).

https://doi.org/10.22399/ijcesen.753

[28]V. Ananthakrishna, & Chandra Shekhar Yadav.

(2025). QP-ChainSZKP: A Quantum-Proof

Blockchain Framework for Scalable and Secure

Cloud Applications. International Journal of

Computational and Experimental Science and

Engineering, 11(1).

https://doi.org/10.22399/ijcesen.718

https://doi.org/10.22399/ijcesen.601
https://doi.org/10.22399/ijcesen.753

