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Abstract:  
 

Recently, "Cloud-Computing (CC)" has become increasingly common because it's a 

new paradigm for handling massive challenges in a versatile and efficient way. CC is a 

form of decentralized computation that uses an online network to facilitate the sharing 

of various computational and computing resources among a large number of consumers, 

most commonly referred to as "Cloud-Users (CUs)”. The burdens on the "Cloud-Server 

(CS)" could be either light or too heavy, depending on how quickly the volume of CUs 

and their demands are growing. Higher response times and high resource usage are two 

of the many issues resulting from these conditions. To address these issues and enhance 

CS efficiency, the "Load-Balancing (LB)" approaches are very effective. The goal of an 

LB approach is to identify over-loading and under-loading CSs and distribute the 

workload accordingly. Publications have employed numerous LB techniques to enhance 

the broad effectiveness of CS solutions, boost confidence among end CUs, and ensure 

effective governance and suitable CS. A successful LB technique distributes tasks 

among the many CSs within the network, thereby increasing performance and 

maximizing resource utilization. Experts have shown an abundance of engagement on 

this issue and offered several remedies over the past decade. The primary goal of this 

extensive review article is to examine different LB variables and provide a critical 

analysis of current LB techniques. Additionally, this review article outlines the 

requirements for a new LB technique and explores the challenges associated with LB in 

the context of CC. Conventional LB techniques are insufficient because they ignore 

operational efficiency and “Fault-Tolerance (FT)” measures. The present article, to 

bridge the gaps in existing research, could assist academics in gaining more knowledge 

about LB techniques within CC. 

 

1. Introduction 
 

Virtualization is a game-changer for CC innovation. 

As mentioned earlier, there is a need for both 

software and hardware solutions that can divide 

physical infrastructure into several virtualization 

scenarios, each of which may run independently yet 

share the underlying tangible resources and 

infrastructure. The integration of CC and 

Virtualization platforms allows for extensive study 

in all important disciplines and business 

applications, as mentioned in several references [1]. 

The environment of support provided by many 

"Cloud Service Providers (CSPs)" guarantees 

consistency, which in turn points to the 

development of the company at an economical rate, 

and the automated process is appropriately matched 

with real CU demands. The "Quality of Service 

(QoS)" requirements of services delivered via the 

cloud determine how challenging it must be to 

provide sufficient resources to these services [2]. 

Traditional means of allocating resources become 

ineffective in such an environment due to variation, 

uncertainty, and resource dispersion. The sudden 

uptick in interest in these platforms among CUs has 

inspired the software development industry to 

create and launch cloud-based, scalable software 

applications. The system structure that CSPs make 

accessible is highly dependent on the applications 

that have been installed [3]. 

Numerous software developing entities have moved 

their applications to independent CSP environments 
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since publicly available on-site sources of resources 

are limited.  

Those in charge of "Data-Centres (DCs)" or CSPs 

have a responsibility to provide a higher level of 

availability, performance, and the critical program 

requirements for growth [4].  

By distributing tasks across all available units for 

processing, publicly accessible cloud load 

distribution ensures that all computing resources 

are used to their full potential. The LB within CC 

typically is required, but in a more particular sense 

[5]. There's a pressing requirement for LB within 

CC due to the following issues: the CU demands 

have been multifaceted, the flow of network traffic 

to a CSP is undetermined and non-probability, 

there's not a reliable resources assigner for CU 

inquiries, jobs are not distributed throughout 

resources for computing, which includes 

dependence, and demand for resources fluctuate 

according to CU demands. LB uses a network of 

nodes for dispersing the load [6]. One of the main 

goals of LB techniques is to choose tasks in a way 

that reduces processing time as well as resource 

usage within DCs. Every aspect of computational 

resource virtualization is part of the enormous new 

field that has emerged to investigate and create in 

response to the compelling needs of CC. Since CC 

provides an establishment that concentrates on 

CUs, genuine CUs could increase their revenue by 

concentrating on their numerous operations and 

using an appropriate allocation of resources [7]. In 

a typical CC LB process, there are two stages. In 

the beginning, at the hierarchy of "Physical-

Machines (PMs)" (in which job migration occurs in 

two distinct phases, inter-VM, and intra-VM), the 

LB handles and allocates the workload within the 

corresponding "Virtual-Machines (VMs)" (in which 

each of the VMs uses different LB methods) [8]. 

Several resources are needed to execute the CU 

tasks known as Request-Generators, and these in 

turn produce CU demands. Figure 1 shows how the 

DC controller manages tasks.  

Problem Statement: An increasingly significant 

challenge in this context, the "Task-Scheduling 

(TS)" concern is driving up costs as the volume of 

CSPs as well as the workload on the CSs continue 

to rise. Certain VMs can be largely utilized whereas 

others stay insufficiently utilized when running TS 

on them. Hence, an effective LB is necessary to 

arrange the TS operation and distribute the 

workload on CSs evenly [9]. LB maintains a 

reputation for being an effective way of distributing 

the load across all of the VMs within an 

environment. By using this approach, the 

developers can be confident that every single VM 

handles about the same amount of work. It 

eliminates load imbalances, that could lead to 

network delays, and increases outcomes like speed, 

speed of response, dependability, and usage of 

resources. For many causes, the LB within the CC 

context might malfunction or terminate. The 

network becomes unavailable and CC's reputation 

is diminished as a result. There are typically 4 

primary areas where CC failures might manifest: 

amongst CSPs, within CSPs, over CSPs alongside 

CUs, and within CUs themselves. Additional 

energy usage and financial losses might result from 

CSP breakdowns. The time taken to respond for 

necessary services may be increased if CUs 

collapse [10]. A crucial and essential aspect of CC 

involves FT. This allows the infrastructure to detect 

the nature and precise spot of the problems and 

strive to tolerate that, allowing cloud-based services 

to be offered even when faults are present. 

Paper Contribution: Multiple scholars in the last ten 

years have investigated LB approaches in CC 

settings, providing a firm groundwork for 

comprehending the multiple facets of this problem. 

Based on this research and observations, it seems 

that the scientific literature lacks a comprehensive 

and well-structured analysis of the existing LB 

approaches. Consequently, this article aims to fill 

this void by providing a structured and 

comprehensive examination of current LB 

approaches through the adoption of a methodical 

strategy. Additionally, this study details the 

successful initiatives in this area, compares them in 

depth, identifies difficult challenges, as well as 

finally, suggests ways ahead for research in this 

particular domain.  

To sum up, the primary objectives of this research 

are: 

• Making it clear ways to apply an organized 

approach to this area of study. 

• Researching and classifying LB tactics into 3 

broad categories: Static-LB, Dynamic-LB, and 

Hybrid-LB, while outlining the benefits and 

drawbacks of each.  

• Bringing attention to the challenging issues and 

unanswered questions in this area to enhance 

prior experiments. 

Paper Organization: Section 2 provides a survey of 

the current LB review published in CC, while 

Section 3 reviews the methodologies of LB along 

with its terminologies and unveils a few chosen LB 

techniques. Section 4 compares and contrasts the 

reviewed methods, identifies unresolved problems, 

and suggests possible future developments and the 

last Section 5 concludes this review article. 

 

2. Related works: 

 
The researchers classify and taxonomies TS articles 

according to several LB techniques for CC in [11]. 
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Along with some limitations and unanswered 

questions, the benefits and drawbacks of the LB 

methods have also been detailed. However, they 

neglected to discuss the LB computational 

strategies, records, assessment methodologies, or 

evaluation with other tools used for simulation.  

Researchers in [12] provide a thorough analysis of 

LB along with TS techniques within CC, along with 

an ordering and categorization of multifaceted 

systems. By outlining the problems and unanswered 

questions, they were able to assess the findings of 

the relevant studies that were selected. 

Nevertheless, this review did not include the 

following: the process for selecting articles, the 

time frame of the chosen research, the systems' 

characteristics, assessment methods, or 

comparisons of the tools used for simulation. 

Following outlining the standards for inclusion and 

exclusion, the researchers of [13] examined 56 

papers about fog-based TS. An overview of the 

research was provided by noting the examined LB 

approaches along with their merits and drawbacks. 

Additionally, new initiatives and research 

limitations in current solutions are also recognized. 

On the other hand, assessment techniques haven't 

been mentioned. The researchers in [14] examined 

the CC's meta-heuristic methods for performing 

LB. They classified and examined various LB 

methods and taxonomies, as well as the benefits 

and drawbacks of various procedures. In addition to 

comparing commonly employed simulation 

programs, they additionally emphasized open 

concerns and potential developments. However, the 

research does not take algorithmic techniques or 

database assessment into account.  

In their most recent analysis, the authors in [15] 

examined Fog-Computing along with the “Internet-

of-Everything (IoE)”. After introducing the various 

optimizing measures, they went on to categorize the 

various LB approaches that are now available. To 

find unanswered questions and potential avenues 

for further research, the papers were reviewed. 

There was an omission of information on the length 

of the research and the procedure for selecting the 

articles. Another omission from the survey was 

information on the LB computations, databases, 

assessment techniques, and simulation instruments 

used.  

 

3. Methodologies 
 

3.1 Process of LB in CC 

 

The main goal of LB remains to make sure that 

none CS was under-load or over-load by properly 

managing the load throughout each of the CSs. One 

way to define LB is the practice of distributing a 

load across many devices or networks of systems to 

make the most efficient usage of available 

resources and get the best possible total speed of 

response. As an added advantage, it keeps resources 

from being duplicated too much and shortens the 

device's overall waiting time. With this procedure, 

requests are dispersed within CSs to share and 

handle information with no waiting. By shifting the 

load from one device to another, LB enhances the 

system's efficiency. Figure 2 depicts the LB process 

within CC. LB offers a methodical approach to 

distributing tasks evenly across the available 

resources. During the case of a service outage, the 

objective is to continue providing dependable 

service through provisioning and de-provisioning 

the system instance, while also making sufficient 

usage of the resources. Furthermore, LB's goal is to 

improve the efficiency of resources and decrease 

the time for responding, leading to lower-cost, 

higher-efficiency devices. 

 

3.2 Types of LB 

 

There are three types of LB in the CC context. They 

are detailed in the following section: 

 

Static-LB (SLB) Algorithms: 

Before the actual running time of the tasks starts, 

the SLB mechanisms disperse them among VMs. 

Such techniques lead to inefficient use of resources 

since they load certain VMs while they are 

operating. Resources consumption is increased and 

the number of "Service-Level-Agreement (SLA)" 

breaches due to overloaded VMs is increased by 

SLB techniques. Here are a few primary SLB 

approaches:  

Round-Robin (RR): The smallest job is chosen 

and done firstly according to this SLB technique. 

By reducing task waiting periods and hence 

preventing deprivation, the shortest possible task 

strategy improves the cloud's efficiency and gives 

computations an edge against rival techniques. 

After randomly selecting the hub, each node shall 

receive its workspace distributed to it within an RR 

fashion.  

A benefit for DCs is that every single VM shares 

identical processing capability. Task length, 

resource significance, and capacity are not 

considered in this RR method. Regardless, it's 

possible that certain resources are being 

overutilized, and it's also common for other 

resources to sit idle. 

Min-Min: All task-related information is accessible 

from the prior phase of this SLB method. A list of 

all unfinished tasks is the starting point for this 

method. The amount of time required to do each 

activity was calculated using this method. 
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Figure 1. Overall LB system 

 
Figure 2. The LB process within the CC 

 

For every job, it selects the bare minimum of time 

needed to finish. Out of all the tasks, it selects the 

resource that takes the shortest time to finish. 

Finally, this method creates a map for every job 

that has been chosen. Once all non-allocated tasks 

have been designated, this function terminates. The 

most time-efficient task gets completed first using 

this method, which can be an enormous advantage. 

One potential downside of this strategy is the fact it 

could result in the elimination of certain tasks. 

Max-Min: When contrasted with the min-min 

technique, this SLB methodology employs the 

inverse strategy.  

Here the highest priority tasks are carried out 

initially. It works very comparable to the Min-Min 

method, with the exception that this approach 

chooses the highest priority after finding the jobs 

with the shortest time for completion. 

Dynamic-LB (DLB) Algorithms: 
Throughout the execution of the task, the DLB 

method updates the workload of VMs according to 

the system's status and allocates accepted tasks to 
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them. In an attempt to circumvent the shortcomings 

of the SLB approaches, DLB disregards the prior 

data about the system's status. Complexity abounds 

in the DLB methods. In contrast to SLB methods, 

nevertheless, these methods work better and have 

higher FT.  

Statistics-DLB Approaches: For optimal 

workloads and to assess the system's efficiency, 

these techniques are put into effect. Several QoS-

orientated methods have been suggested to enhance 

the usage of resource efficiency.  

Swarm-Behaviour Approaches: Two separate 

branches of these approaches draw their inspiration 

from smart biological processes: nature-oriented 

and nature-inspired. Several "Swarm-Intelligent 

(SI)" methods were recently suggested for DLB on 

the cloud. 

Evolution-Based Approaches: These strategies 

have been demonstrated with the most sophisticated 

and expansive search spaces within the particular 

DLB techniques.  

Hybrid-LB (HLB) Algorithms: 
The characteristics of HLB strategies are a mix of 

those of DLB along SLB techniques. Its purpose is 

to ensure that CC features are always available to 

CUs. 

 

3.3 Different Types of Current LB Techniques  

 

Current Techniques under SLB 
The Standard-LB methods come under the SLB 

category. In this section, some of the most used 

SLB was reviewed as follows: 

Randomized-Technique: It is not necessary to be 

aware of the VM's current or historical load when 

attempting to implement this technique's 

recommended choice of VMs. This works well 

when each VM takes on the same amount of work 

from the system. Its static functioning is the reason 

for this. 

Threshold-Technique: After the creation of one 

VM, the workload can be promptly distributed 

using this SLB-oriented approach. Despite 

transmitting any controlling codes, the choice of 

VM is done immediately. VMs save one copy from 

the load data. Min-load, Med-load, and High-load 

are the three main types of load characterization. 

Whenever a query reaches the CS, the BS correlates 

the total of HTTP requests with the specified 

threshold level. The workload condition goes into 

overdrive when the current CU query frequency is 

higher than a predetermined threshold. At the same 

time, things are looking despairing for the 

workload. 

Opportunistic-LB Technique: While it's an SLB 

method, the modern VM workload is not specified 

anymore. It intends to keep each VM busy. It’s an 

effort to keep all hubs active despite its lack of 

knowledge of the present burden of each system. 

There is an open-source program available for this 

method, and it can display every transaction to a 

support department. Every application is managed 

by the CS according to a predetermined timeline. 

The approach is tailored to comply with the 

requirements set forth by the CU for the particular 

procedures. Following that, intending to distribute 

the workload evenly across the several CSs, cloud-

based DCs implement the opportunistic LB method. 

Throttled-LB: This method relies on the LB 

keeping track of the availability and use of VM 

indexes within a database. To complete the 

assigned task, the CU asks the DC to locate an 

appropriate VM. Because of the VM, the DC needs 

an LB to manage it. Before allocating VMs to the 

LB, the DC must execute a query. With the unlikely 

scenario that not enough VMs were found, the LB 

would head back to the DC to execute the CU's 

request. Therefore, for the task to begin, the CU 

will notify the LB to figure out the best VM to 

carry out the required tasks. 

Stochastic Hill-Climbing: A mediocre strategy for 

problem-solving, this methodology is a variation of 

the hill-climbing methodology. Because the 

dispersed LB mechanism shown herein eliminates 

the obstacle, improving the distribution of system 

workloads has additionally been considered. The 

route of giant-value is characterized by a similar 

loop, which travels continually upwards or 

backward. This halts when a neighbor with a higher 

curiosity level is detected. 

Equally-Spread Current-Execution: Every VM 

was given priority for a certain task because of the 

equitable distribution of tasks. The Spreading-

Spectrum technique is used here, and it involves 

distributing the load among several VMs according 

to the load intensity. The LB assigns the task to the 

appropriate VM along with a little tweak to its 

hardware, which increases the VM's output. One 

aspect of this method is that it keeps track of VMs 

also the volume of requests that are presently 

assigned to them. VMs commence with no 

allocations. It fails to allocate TS whenever there 

are more requests than expected. 

Join-Idle Queue (JIQ): Persistent online services 

and large-scale shared infrastructures are both made 

possible by it. The pooled dispatchers represent 

how this method functions. By excluding the LB 

service from the primary route, this technique 

forces the optimum processor to notify the 

dispatcher about its inactivity despite the absence of 

task expertise regarding the application. All of JIQ's 

pooled planners have an I-queue which stores a 

group of CSs that aren't actively working. Over 

random intervals after joining the network, newly 
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arrived objects encounter schedulers and request to 

be added to the idle method's I-queue. 

Listing-Tasks: Numerous processes share the 

available processing power as they execute in 

parallel on several many-core devices used for 

computing TS. It is difficult to optimize system 

efficiency and usage of energy by allocating cores 

to various activities. Considering time and energy 

restrictions further complicates matters. A method 

for determining before and post-power for parallel 

processes that rely on lists was suggested, and it 

works on both constant and periodic speed 

durations. The method reduced calculation costs 

and make-span. On the other hand, the transmission 

costs remained larger. 

Task-Priority: Recent developments in CC-based 

IoT have made it possible for the creation of lower-

latency applications necessitating immediate 

feedback. The VM which could do this job in the 

least amount of time was used to complete it. The 

use of multiple queues allowed it to resolve the 

starving of lower-priority activities with resources 

that were idle, which improved make span, reaction 

time, usage of resources, and throughput. Although 

this method cuts down on waiting and task 

completion times, it was unable to accomplish LB 

in a parallel fashion across several VMs.  

Earliest-Deadline First (EDF): When it comes to 

time-sensitive bag-of-tasks, the majority of 

solutions overlook the ever-changing nature of 

clouds. Considering a distributed setting, an EDF-

based scheduling method enhanced the volume of 

time constraints met while reducing infrastructural 

expenditure. The goal of developing this method 

was to efficiently complete the tasks at hand while 

keeping costs to a minimum. Whenever the 

processing length of tasks got higher, however, 

responding was prolonged.  

 

Current Techniques under DLB 
It’s difficult to solve the issue of dynamic TS across 

a diverse context. In this section, some of the most 

used DLB techniques were reviewed as follows: 

Particle-Swarm Optimization (PSO): These 

optimization techniques are very clever and mimic 

the swarm-oriented behavior of animals. They are 

called bionic-heuristic methods. To better manage 

jobs and distribute the load, a framework for energy 

usage was also included, along with an enhanced 

PSO technique. Task execution times were 

additionally lowered with a low-complexity binary 

variant using the PSO technique. By using its 

strengths in versatility, easy recognition, great 

resilience, and exceptional performance in dynamic 

contexts, PSO effectively resolves several problems 

associated with paired optimization. When it comes 

to fixing problems with differential restrictions, the 

PSO method is inefficient. 

Genetic-Algorithm (GA): Using principles from 

genetics and selective breeding, it constitutes a 

stochastic exploration method. A basic GA with 

three activities: “Availability”, “Genetics”, and 

“Replacing”. At its foundation is the process of 

creating new generations through mutations and 

crossovers, predicated on the idea that different 

types of chromosomes need different types of 

coding: “Binary-Coding”, “Tree-Coding”, or 

“Numerical-Coding”. When trying to recreate the 

actual process of genetic processes and the idea 

regarding biological evolution put forward by 

Charles Darwin, GA becomes the preferred natural 

computation methodology. It makes an effort to 

decrease the completion time of the tasks listed in 

the waiting list simultaneously balancing the load 

on the cloud's resources. It shortened the time while 

increasing the size of process applications along 

with the error frequency. However, it requires more 

time on computational capabilities to handle huge 

solutions. 

Ant-Colony Optimization (ACO): The driving 

force of this model is a cooperative group of ants 

that, over many years, seeks to discover the optimal 

manner to connect various locations, share 

information through the sharing of pheromone 

signals (like naturally occurring food-seeking ants), 

and examines multiple options into a suitable 

variable or topological data storage. In CC, the 

ACO in LB manages the load and cuts down on 

makespan. Every task is thought to be highly 

computational and distinct from one another. In 

addition, a plan for scalability was developed to 

enhance TS and energy savings. Improving ACO's 

convergence speed despite sacrificing solution 

variation is possible by extending its linear 

Weighted-Sum. Getting into regional optimum 

problems the outputs can be accomplished when 

dealing with the problem of large-scale 

optimization that leads to poor algorithmic 

efficiency. 

Honey-Bee Foraging (HBF): Following the lead 

of honeybees, this method maximizes output by 

adjusting the amount of nectar (speed). Throughout 

living in the colony, it is believed that they've got a 

variety of duties to play. Bees that engage in 

Active-Foraging search for food sources, then 

return to the hive after gathering food. The scout-

bees actively investigate their environment in 

search of fresh sources of food, which they are 

accumulating on a VM table. Some of those 

foraging-bees stop moving around at certain points 

in time. This method is a kind of foraging that 

could be included in the LB strategy for TS 

operations within the CC. Results for autonomous 
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TS were closer to ideal as a result of its quicker 

convergence. With almost elevated CU request 

volumes, yet, the delay becomes a significant issue. 

Whale-Optimization (WO): TS keeps getting 

increasingly complicated when the quantity of 

assignments and resources increases. For optimal 

energy usage and time, the WO approach is used as 

an LB to TS. The main emphasis of this WO 

approach is to mimic the way whales behave. While 

opposition-based training has several advantages, it 

may be operationally costly to evaluate all of the 

possible alternatives. Additionally, it is noticeable 

how Chaos-Theory increases the WO's overhead. 

There will be a noticeable change to the algorithm's 

complexity in time with even a little rise in its 

parameters. The problems caused by the method's 

excessive processing complexity may be reduced 

by parallelization. 

Simulated-Annealing (SA): SA is inspired by 

solid-state annealing, which entails heating and 

gradually cooling a material (such as glass or 

metal) to remove and compress its internal tensions. 

The process additionally becomes sensitive to CU 

request frequency and bin quantity; therefore, it is 

common for this approach to be frozen by local 

restrictions and generate unwanted VM allocations. 

Using a goal-programming strategy, the SA in LB 

for CC reduces operation costs and delays. Latency 

duration, timeline satisfaction, and accessibility 

level constraints were all enhanced using a "Multi-

Objective SA (MOSA)" technique. Through 

working together, they succeeded in accomplishing 

several objectives, along it adding the aim of 

accessibility level to better divide up CC work. 

Still, this method came at a huge expense in terms 

of communication. 

Cuckoo-Search Optimization (CSO): A meta-

heuristic approach, the CSO method simulates the 

actions of cuckoo birds in their native environment. 

This approach finds the optimal solution while 

balancing local and global analysis through the 

support of parameter flipping. The results obtained 

surpass those of the PSO. 

(viii) Osmosis-LB (OLB): Ultimately, this OLB 

approach aims to modify the load by reassigning 

work to a succession of VMs. Decentralized Chord-

Overlays run by agents similar to ants are the 

backbone of this LB mechanism. Every DC has its 

unique implementation-specific features, 

communicates with a list, and may do many jobs 

concurrently. 

Tabu-Search Optimization (TSO): As a global 

optimum approach with a higher-grade optimizing 

capacity, this TSO methodology aspires to mimic 

human cognition. When utilized for problems like 

allocation of resources and optimized performance, 

it aims to point other methods away from falling 

into the local optimum dilemma. 

Reinforcement-Learning (RL): The massive 

amounts of information produced by IoT gadgets 

do not just overwhelm the CC system, additionally, 

they cause latency to rise as a result of the large 

number of hops. Because it impacts processing 

speed and causes system crashes, using a VM that 

is either too heavy or too light is consistently not an 

option. An RL approach is used to include 

scheduled upkeep within a diverse setting, 

enhancing FT with the least cost. Two dynamic 

programming-oriented issues are presented. The 

issues have been transformed into RL-

approximated computational challenges. It 

enhanced scheduling performance while decreasing 

the computationally demanding nature of the 

challenges. On the other hand, the tasks' latency 

remained disregarded.  

 

Current Techniques under HLB 
The researchers suggested the hybrid approach in 

[16] by combining PSO with "Fuzzy-Logic (FL)" 

along with SA, resulting in FL-PSO and SA-PSO, 

accordingly. TS was made even more effective by 

combining the suggested methods alongside the 

dynamic response queues methodology. Especially 

for higher-dimensional situations, the innovative 

methods were shown to be beneficial. This research 

aimed at optimizing make-span, expenses, LB, time 

spent waiting, usage of resources, and length of 

queue simultaneously. However, the research did 

not account for the delay. 

For TS separate activities without causing them to 

converge too soon, the researchers of [17] 

suggested a hybrid technique that optimized the 

“Dragonfly-Algorithm (DA)” using a combination 

of the “Mexican-Hat Wavelet-Transform”, and a 

“Biography-based Optimization-Migration” 

procedure. Time to respond, operation, and SLA 

breaches had all been improved by dynamically 

scheduling the activities. Mutation process 

performance may have been much better with the 

correct weights.  

Regarding a combination of approaches for TS, the 

researchers suggested an updated “Henry-Gas 

Solubility-Optimization (HGSO)” that employs 

WOA and “Comprehensive-Opposition-Based 

Learning (COBL)” [18]. Local searching was 

enhanced by the WOA, while the worst-case 

scenario was mitigated by the COBL. By 

comparing it to WOA, HGSO, MFO, FA, PSO, and 

SSA on both artificial and actual databases, the 

suggested method outperformed its competitors in 

terms of make-span and efficiency. However, every 

method that was compared was the most basic 

form. 



Nimmy Francis, N. V. Balaji/ IJCESEN 11-1(2025)464-474 

 

471 

 

In their proposal for a hybrid scheme, the 

researchers of [19] used opposition-based learning 

and “Differential-Evolution (DE)” to create a 

revised “Fire-Works Algorithm (FWA)”. DE 

eschewed local optimal solutions, but opposition-

based learning enabled a diverse collection of 

alternatives. By reducing make-span and expense 

while enhancing the usage of resources, the 

approach achieved effectiveness. Having said that, 

the researcher claims that the suggested method is 

not resilient to node outages and task transfer. 

The researchers suggested a hybrid model called 

"Hybrid-Firebug and Tunicate-Optimization 

(HFTO)" that may improve LB and reduce the 

duration it took to complete tasks [20]. Various 

VMs were put together and the loads have been 

organized according to their characteristics. It’s 

improved speed, reaction time, make-span, and FT 

as well. Workloads were distributed to VMs 

according to their peak needs. VMs that had 

minimal CPU usage received lighter tasks, whereas 

those that had substantial CPU usage were given 

computation-intensive ones. Despite having 

relatively few resources, the method managed to 

enhance both make-span and complexity of 

computation. The workload that had been 

simulated, however, remained undisclosed. 

 

4. Discussion of the study 
 

4.1 Limitations of LB within CC 

 

Among the several difficulties that CC must 

overcome, LB stands out as an extremely pressing 

issue that requires immediate action. Finding an 

improved way of using cloud resources requires 

balanced consideration for concerns which include 

migrating VMs, privacy of VMs, QoS by CS, and 

the efficient use of resources. The following are 

some LB concerns: 

Geographically Distributed VMs: Most DCs of 

the CSP have been distributed so that CUs may 

access them from anywhere. To efficiently handle 

CU requests, the dynamically dispersed VMs 

within those DCs act like a consolidated network. 

While there are several LB methods out there, they 

all have their limitations and fail to account for 

important factors like network and communication 

delays, VM spectrum, CU space, and resources that 

are accessible. Some techniques aren't well-suited 

to very distant locations, making it difficult to run 

VMs there. 

Isolated Failure Point: Particular LB techniques 

have been suggested by researchers for cases where 

a single consolidated VM makes LB choices rather 

than a distributed set of VMs. A computer system 

as a whole is vulnerable to failures in critical 

components. 

Migrating VMs: It is possible to construct several 

VMs upon a single PM by using virtualization. 

Such VMs were independent in design and had 

diverse configurations. It's reasonable to use an LB 

approach to move every VM to a distant place if a 

PM is overwhelmed. 

Diverse VMs: As part of their preliminary 

investigation, the writers have suggested using 

uniform VMs throughout LB. The CUs of CC 

require an adaptive switch, that can only be 

implemented on diverse VMs to achieve network 

efficiency and decrease reaction time. 

Data Management: CC solved the problem of 

traditional storage systems, which were expensive 

and resource-intensive. There are no control 

difficulties when CUs maintain information 

heterogeneously within the cloud. Duplicating 

saved information is essential for optimal 

accessibility as well as information continuity since 

storage continues to grow at an exponential rate. 

Scalability of LB: The capacity to quickly scale up 

or down is only one of the many benefits of using 

cloud-based services, which also provide on-

demand scaling. When designing a robust LB, keep 

in mind the ever-evolving demands of computing, 

storage, device topological structure, etc.  

Level of Method's Complexity: Methods for CC 

need to be easy to implement and work quickly. 

Improving the cloud's effectiveness and quality is 

the goal of a resilient algorithm. 

Autonomous provisioning of services: The ability 

to autonomously allocate or assign resources 

constitutes a crucial feature of CC. The question 

thus becomes how to make use of or withdraw from 

cloud-based services while preserving an identical 

level of productivity as traditional systems while 

making optimal use of available resources. 

Energy Efficiency: One advantage regarding 

energy administration is the usage of the cloud, 

which promotes economy on the scale. Reduced 

energy consumption is the single most critical 

factor that will enable an international market to 

function in which publicly traded enterprises 

contribute to a common fund instead of competing 

privately. 

 

4.2 Future Paths of Research 

 

These findings show that there are still many open 

questions in this field that require further 

investigation. The research found ways to improve 

the LB methods for future studies, which would 

optimize the CC operations. Here are some of them: 

• The majority of studies take place in a simulated 

setting; numerous techniques are being 
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developed to simulate the CC setting, however 

putting them into action in real-time can be quite 

difficult; hence, relatively limited techniques 

have found practical use in this setting. When 

developing techniques that might encounter 

problems in real time, it is possible to take 

advantage of open-source infrastructures like 

Open-Stack and Cloud-Foundry. 

• Rapidly vertically growing CSs within the cloud 

DC, tasks with high priority due to be executed, 

shifts in processes, machine setups, and other 

circumstances could all complicate the 

technique. To address these concerns and 

enhance scaling, efficiency, and speed, an 

effective structure is necessary. 

• Due to its periodic nature and lack of data 

storage, scheduling-aware LB techniques like 

Round-Robin cause an unequal allocation of 

workload across VMs.  

• To make processes that are both lightweight and 

capable of overcoming hybridization issues, it is 

possible to combine SLB methods with DLB 

methods which are influenced by nature or 

alternative methods; however, this merges the 

system's complexity.  

• With the success of CC usage in healthcare, the 

community stands to gain from the development 

of a health-specific, optimal LB mechanism.  

• Both TS and LB issues are thought of as being 

NP-hard. While methods that draw inspiration 

from nature are making significant progress, 

there remain numerous unresolved issues. For 

example, how to create the best fitness-function 

to accurately assess potential resources and 

guarantee scalability for activities with changing 

resource needs. 

• Following a regional LB process, QoS-based LB 

ensures an appropriate level of service 

regardless of whether resources are available or 

not. However, when trying to overcome the 

aforementioned obstacles, results in substantial 

management of overheads that need thorough 

scenario assessment. 

• While suggesting an efficient approach for use 

in a cloud setting that processes data in real-

time, the FT variable is often disregarded by 

many existing LB approaches. 

 

5. Conclusions 
 

A crucial component of the CC field, LB serves to 

enhance the allocation of workloads and the 

administration of resources, to minimize the 

system's overall reaction time. Numerous methods 

and techniques are being developed to handle LB-

related issues, including allocating resources, 

migrating tasks, and optimizing the utilization of 

resources. Various approaches within the LB 

adhering CC field were investigated in this present 

research. Researchers have looked at the problems 

with LB and studied the solutions thoroughly in the 

past few decades. Problems with the migration of 

VMs and FT issues, among others, persist within 

the CC context despite the presentation of several 

solutions. With the help of this literature review, 

researchers have a lot of space to create cutting-

edge LB approaches that work well in CC settings. 

A large portion of the survey dedicates itself to 

discussing the SLB, DLB, and HLB methods. 

Academics may find this investigation useful for 

discovering LB-related research difficulties, such as 

how to reduce reaction time and prevent VM 

failures, as it includes a review of present and 

previous LB methods. In addition, it made specific 

recommendations for future studies that should lead 

to the development of an ideal LB method that can 

address all problems with current LB techniques 

and work in a real-world CC setting. Cloud 

Computing has been studied and reported in the 

literature [21-28]. 
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