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Abstract:  
 

The exponential increase in the utilisation of mobile robots in day-to-day life emphasizes 

the need for effective path-planning algorithms that allow them to navigate safely and 

reliably through unknown or known environments. Path planning is the procedure in 

which a prime and secure path needs to be determined for the robot to relocate from 

source to destination. Discovering a collision-free path may be the most difficult aspect 

for mobile robots to navigate. Several optimal path-planning techniques have been 

proposed until now for finding optimal paths from source to sink in the presence of 

obstacles, which are essential for cost-effectiveness in terms of time of traversal and 

resource utilization. This paper gives a critical review of classical, heuristic and hybrid 

path-planning techniques. Classical technologies such as Cell Decomposition, Potential 

Field Methods and Roadmap Methods are characterized by computation efficiencies 

which range from time complexity of O(nlogn) to O(n2), and these techniques have the 

limitation of being not suitable for dynamic environments. Heuristic techniques that 

provide more flexibility in dynamic environments include Bacterial Foraging 

Techniques, Particle Swarm Optimization, Genetic Algorithms ,Artificial Neural 

Networks, Fuzzy Logic, Ant Colony Optimization, and Particle Swarm Optimization. 

Ant Colony Optimization and Particle Swarm Optimization provide robust real-time 

adaptability with very high consumption in computational resources--typically under 

O(WL) and O(NL) time complexity, respectively. Hybrid techniques indicate that 

benefits from the classical and heuristic methods reduce the path length and enhance the 

energy efficiency comparatively to classical methods. Hybrid techniques generally have 

the order of time complexity, about O(n2), to find a balance between real-time 

adaptability and computational efficiency. Path length, smoothness, safety degree, etc., 

are important optimization criteria. It assesses Key optimization criteria, such as path 

length, smoothness, safety level, and energy efficiency. This paper also discusses the 

integration of robot modelling with path planning methodologies, emphasising the 

importance of considering robot dynamics and kinematics. Finally, the review discusses 

potential directions of research in this area with a roadmap for futuristic mobile robot 

path planning techniques.  

 

1. Introduction 
 

Mobile robots have become much more common in 

many applications, such as healthcare, agriculture, 

logistics, and manufacturing. Using path planning 

that is effective and reliable for the mobile robot is 

the basis for improving mobility. The process of path 

planning is important in controlling the mobile robot 

for optimal and safe trajectory identification from an 

origin to destination point. Finding a completely 

collision-free path is one of the difficult tasks in 

mobile robot navigation [1]. The challenge in this 

problem is to locate an optimal path while dealing 

with the environmental uncertainty. An environment 
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might be known or unknown; it is called a known 

environment only when the obstacles on the path are 

static. In contrast, if these particular obstacles on the 

course path are dynamic or changing from time to 

time, the navigation environment is treated as an 

unknown environment. The global strategy for 

navigation will be used to find a better path for 

known environments, depending upon already 

existing information, such as a detailed map. 

However, in unknown environments where no map 

is available, a local navigation approach is needed. 

This approach relies on real-time inputs from the 

robot's sensors to navigate safely through its 

environment. In the known as well as in the 

unknown environment, the robot has to determine a 

collision-free and shortest path from a starting point 

to a goal location [2]. Depending on the situation, 

there can be numerous different possible paths, and 

the objective of any path planning algorithm is to 

find the most optimal or at least a close-to-optimal 

path for a given scenario. This would be of great 

importance in situations such as rescue missions, 

where there is a high chance that a victim would need 

help under life-threatening circumstances. For 

known environments, the robot requires detailed 

information about its surroundings before planning a 

path [3]. The algorithm will consider this data, 

including the robot's position and nearby obstacles, 

to create the path connecting the start to the 

destination. In an unknown environment, prior 

knowledge is not a necessity since there are sensors 

that can identify the obstacles in real time [4]. 

However, finding the best possible route in such 

situations remains difficult. The path-planning 

strategies may be roughly classified as classical and 

heuristic; the further break-up is seen in figure 1. 

Classical techniques: Based on mathematical models 

and algorithms, optimal pathfinding is accomplished 

by exhausting all possible paths. Though classical 

techniques are efficient-and-optimal, time-

consuming generation of paths, especially against 

complex environments, is often incurred. Heuristic 

techniques involve trial-and-error methods utilizing 

rules and guidelines for closing in on a goal. As such, 

less efficient than classical techniques, but much 

more resilient, heuristic techniques provide effective 

performance throughout all environments because 

they can tackle all types of uncertainties. So, these 

strategies offer their own set of advantages and 

disadvantages. Combining multiple strategies can 

mitigate the disadvantages of two or more strategies. 

Researchers have focused more on this sector in the 

last three to four decades [5, 6]. Mobile robots have 

diverse applications, including household, 

manufacturing, healthcare, defence, space 

exploration, and so on [7]. In all these sectors, 

collision-free path planning is essential for mobile 

robots to accomplish their tasks. They rely on basic 

building blocks for navigation in all of these 

applications [5], as illustrated in figure 2. This paper 

focuses on wheeled mobile robots due to their 

widespread use in research and practical 

applications, as well as their ability to navigate 

different environments efficiently. 

 
Figure 1. Mobile Robot Navigation Strategies 
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Figure 2. Mobile Robot Navigation Building Blocks 

These robots can be equipped with sensors for 

obstacle detection and avoidance, making them 

excellent for testing path planning in both unknown 

and known environments. The choice is further 

motivated by their significant presence in literature 

and their relatively simple motion models, which 

allow researchers to concentrate on the algorithms 

themselves. While other types of robots, like legged 

and aerial models, exist, wheeled robots give a solid 

foundation for learning path-planning techniques. 

Their simplicity and versatility make them a useful 

platform for developing and testing algorithms.  

 

1.1 Main Contributions 

 The key contributions of this paper regarding 

mobile robot path-planning techniques include: 

Comprehensive Literature Survey: This paper 

surveys classical and heuristic planning techniques 

describing in detail more-than-100 studies. It also 

presents their advantages and disadvantages in terms 

of applications to mobile robot operation in known 

and unknown environments and later classifies them, 

evaluating these techniques by definition in relation 

to their practical application, especially concerning 

dynamics and unpredictability. Inclusive Algorithms 

with Time Complexities It significantly contributes 

by providing all-encompassing pseudocode and time 

complexity analysis for the various path planning 

methods, including the Potential Field Method, 

Roadmap Method, Cell Decomposition Method, 

Artificial Neural Networks, Fuzzy Logic, Genetic 

Algorithms, Ant Colony Optimization, Particle 

Swarm Optimization, and Bacterial Foraging 

Techniques. These algorithm-specific details will 

offer the researchers and practitioners insight on 

what is involved in bringing about computational 

costs during real-world applications.  

Robot Modelling and Path Planning: Another 

important contribution is the integration of robot 

modelling, particularly kinematic and dynamic 

models, with path-planning approaches. The 

research demonstrates how robot dynamics affect 

the feasibility and efficiency of the planned paths. 

This integration is essential for ensuring the 

development of path-planning algorithms that can be 

utilised in environments involving mobile robots 

with different mechanical and operational 

constraints. 

Critical Evaluation of Hybrid Approaches: The 

paper analyses hybrid path-planning techniques, 

which combine classical and heuristic methods to 

enhance performance in dynamic and uncertain 

environments. They show how to optimise these 

parameters, such as computation time and energy 

efficiency, with these hybrid approaches. How these 

strategies can achieve a balanced solution with real-

time adaptability without compromising any more 

accuracy or efficiency puts these strategies in line for 

use in complex real-world applications, which are 

presented in this paper. 

Optimisation Criteria: Key optimisation metrics 

such as smoothness, safety degree, path planning and 

energy efficiency are given as optimization criteria 

for evaluating path length algorithms. Here, the 

paper presents these critical optimisation metrics by 

which researchers and developers can accurately 

evaluate and compare the performance of different 

algorithms. 

Comparative Analysis: A comparative analysis of 

classical techniques is provided in this research 

paper, applying heuristic approaches, concentrating 

on the performance when working with different 

types of navigation environments. 

Future Research Directions: The paper concludes by 

outlining future research directions and identifying 

research gaps, including the development of 

adaptive, scalable, and computationally efficient 

hybrid algorithms for managing dynamic 

environments. These research directions provide a 

clear roadmap for advancing the field and addressing 

some of the current limitations of these techniques. 

 

1.2 Research Question 

The study is structured around several key questions 

that guide our investigation into mobile robot path 

planning: 

RQ1: How do current path planning techniques 

perform in known versus unknown environments? 

RQ2: How do optimization criteria such as 

smoothness, path length, safety degree, and energy 

efficiency influence the effectiveness of path 

planning techniques?  
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RQ3: How does the integration of kinematic and 

dynamic robot modelling influence the performance 

and accuracy of path-planning techniques?  

RQ4: What are the limitations of heuristic path 

planning and classical approaches in terms of 

adaptability to environmental uncertainties? 

RQ5: Can hybrid path planning approaches that 

integrate multiple algorithmic strategies offer 

superior performance in terms of efficiency, 

accuracy, and robustness? 

RQ6: What future directions can be explored to 

further the development of resilient path-planning 

mechanisms for mobile robots?  

 

1.3 Structure of Paper 

The second section of the paper discusses existing 

techniques of path planning for mobile robot 

navigation through a review of classical and 

heuristic methods. Robot modeling is the subject of 

Section 3; it highlights the value of kinematics and 

dynamics models in predicting and analyzing robot 

behavior for the purpose of path planning. Section 4 

elaborates on the optimization criteria in path 

planning such as path length, smoothness, safety 

degree, and energy efficiency. Section 5 deals with 

the classical techniques of path planning, such as 

Potential Field Method, Roadmap Method, Cell 

Decomposition Method, and where they work, 

advantages, and disadvantages. Section 6 contains 

heuristic methods like Artificial Neural Networks, 

Fuzzy Logic, Genetic Algorithms, Ant Colony 

Optimization, Particle Swarm Optimization, and the 

Bacterial Foraging Technique; principles behind 

them, applications, advantages, and disadvantages 

are mentioned. Comparative discussions between 

two techniques-classical and heuristic-are also 

presented in Section 7. The performance, strengths, 

and limitations of each technique in real scenarios 

will be discussed. Conclusively, Section 8 ends this 

paper by summarizing the results that would be 

concluded from the study and stating the 

significance of choosing suitable path-planning 

techniques and future research directions for 

enhancing the reliability and efficiency of such 

methods. 

 

2. Literature Review 

 
Mobile robot path planning is one core element of an 

autonomous navigation system that directs the robot 

to explore very complicated scenarios efficiently and 

safely. The different types of methodologies and 

algorithms developed to overcome various aspects 

of the path-planning problem are very many. Xiao et 

al. [8] have proposed one such method that integrates 

the distance metric from the robot to the target point 

into the repulsive function model and minimizes its 

adverse effect on the trajectory towards the target. 

Some other techniques include repulsive angle 

deflection and a virtual target point to deal with the 

local minima problem. Palacín et al. proposed a 

mobile delivery robot path-planning algorithm for a 

multi-floor building [9]. The proposed solution 

utilized a predetermined navigation tree coming 

from Dijkstra's algorithm to program the robot's 

pathway, assuming the existence of floor maps, 

origin and destination points known, self-

localization sensors, and remotely controlled 

elevators. The objective was to better estimate the 

overall distance of the delivery trip accurately. 

Emmi et al. showed the use of the Guiding Manager 

for the ground mobile robots in agriculture laser-

based application designed for weeding instruments 

[10]. The study indicated that controllers could 

efficiently work even in different field conditions 

such as loose soil, stones, and humidity. In this way, 

they wanted to improve the autonomy and efficiency 

of their mobile robots in agricultural applications. 

The typical path planning approaches were studied 

and developed intensively to take care of the 

problems related to dynamic environments, moving 

targets, and complicated terrain. Ojha et al. 

introduced a real-time obstacle avoidance algorithm 

for dynamic environments based on the Probabilistic 

Road Map technique and demonstrated its 

efficaciousness in determining optimal paths by 

robots [11]. Rocha et al. carried out an analysis of 

classical path planning strategies, comparing, and 

statistically evaluating pros and cons between 

algorithms for indoor and outdoor environments 

[12]. Thus, the study necessitates selecting the best 

appropriate path planning algorithm for individual 

mission requirements. The focal point of Sun et al. 

was local path planning for mobile robots using 

fuzzy dynamic window algorithm [13]. The work 

was to integrate global path information into the 

dynamic window approach intended to improve the 

robots' capability of navigating a variety of 

environments. The research emphasizes heuristic 

path planning for augmented autonomy and 

flexibility of robotic systems in authentic scenarios. 

Shah et al. have studied employing semantic 

guesswork generated by language models as a 

heuristic for planning algorithms into navigation 

problems [14]. By employing language models to 

help robots achieve their goals, the authors presented 

a novel technique to integrate heuristic information 

from natural language processing into path-planning 

strategies. The study brings up new potential for 

enhancing robot navigation using semantic cues as 

heuristic guidance. By employing heuristic 

information to path planning algorithms, researchers 

have been able to optimise navigation strategies, 

improve efficiency, and boost autonomy in complex 
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environments. While significant advances have been 

made in both classical and heuristic path-planning 

techniques, several challenges remain. Classical 

approaches, though optimal for static environments, 

struggle with real-time adaptability in dynamic 

environments. However, heuristic methods, despite 

their flexibility, often require high computational 

resources for effective implementation. The hybrid 

approach offers a promising balance but faces 

scalability issues, particularly in large-scale, real-

world applications. 

The summary of mobile robot path planning 

literature highlights significant advancements in 

mobile robot path planning. A key development. 

However, issues related to real-time adaptability, 

computational efficiency, and scalability in large-

scale, real-world applications remain areas of active 

research. Table 1 summarises the literature. 
While the literature showcases a variety of path-

planning algorithms, the effectiveness of these 

techniques heavily depends on how well the robot’s 

behaviour is modelled. Thus, the next section 

focuses on robot modelling, which is a fundamental 

component in understanding and predicting robot 

movements. The advantages and disadvantages of all 

the algorithms studied are given in tables 2 and 3. 

 

3. Robot Modelling 

 

Modelling holds a special place in mobile robot path 

planning being the base for the algorithms and 

simulation empirical and real practical 

implementation in this algorithm. Because with an 

accurate model, researchers and engineers can 

predict and analyze robot behaviour, leading to 

enhanced and reliable techniques for path planning 

[15]. However, in path planning, modality is almost 

entirely about the representation of the motion of the 

robot concerning its environment. These models 

serve various essential purposes: 

1. Prediction: Models allow us to predict the robot’s 

future state based on current inputs, which is 

important when planning feasible paths. 

2. Simulation: Before implementation in the real 

world, models allow one to test and validate path 

planning algorithms extensively in simulated 

environments without spending as much time and 

money. 

3. Algorithm Development: Currently, most path-

planning algorithms rely upon specific robot models, 

and hence, accurate modelling is important for 

algorithm effectiveness. 

4. Error Analysis: Analysis and measurement of the 

differences between the planned and executed paths 

can improve the planning approaches. 

5. Constraint Representation: Models can represent 

the physical limitations of the robot, like maximum 

velocity or turning radius, so planned paths can truly 

be executed. 

Kinematic and dynamic models are the two types of 

models used to plan the path of mobile robots. 

Kinematic models use a geometric perspective of the 

motion without considering forces, while dynamic 

models include mass, inertia, and force effects. 

Generally, the selection of a kinematic or dynamic 

model depends on the particular application 

requirements. Often simpler and computationally 

less expensive to solve, kinematic models are more 

suited to high-level path planning. While more 

complex dynamic models are more accurate for 

robot motion, their benefits come with increased 

complexity, which is preferable when creating 

applications that require precise path tracking or 

when handling high-speed movement. 

 

3.1. Kinematic Modelling 

Kinematic modeling with the help of practical and 

theoretical insights is a very important asset to 

mobile robots for path planning. Kinematic 

modeling describes the motion of a robot 

considering no forces or masses [16]. Kinematic 

modeling forms the backbone of global path 

planning, that is, planning a global path, and local 

path planning, namely, finding its way among the 

immediate obstacles.  

Most of the traditional path-planning techniques 

discussed in other sections of this article, such as 

potential field methods, roadmap methods, and cell 

decomposition, make extensive use of kinematic 

models to verify that the paths planned can actually 

be executed by the robot. Typically, kinematic 

models concerning wheeled mobile robots, which 

are the main objects of this discussion, model the 

robot in terms of position and orientation within a 

2D plane [17].  

The kinematic model for a differential drive wheeled 

robot can be defined by the following equations [18]: 

 

𝑥′ = 𝑣cos(𝜃)

𝑦′ = 𝑣sin(𝜃)

𝜃′ = 𝜔

  (1) 

Where, 

(𝑥′,𝑦′) is the robot’s position 

𝜃′ is the orientation angle 

𝑣 is linear velocity ω is the angular velocity 

These equations form the basis for several path-

planning algorithms covered in this paper. They 

allow researchers to focus on the geometric aspects 

of motion while abstracting away the complexities 

of robot dynamics. For robots with different drive 

systems, such as car-like robots or omnidirectional 

robots, the kinematic equations may change [19]. 

For instance, a car-like robot with a minimum 

turning radius R might be described as: 
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𝑥′ = 𝑣cos(𝜃)

𝑦′ = 𝑣sin(𝜃)

𝜃′ =
𝑣

𝑅
tan(𝜙)

 (2) 

Where, 

𝑅 is the minimum turning radius. 

𝜙 is the steering angle. 

Kinematic models are highly beneficial in path 

planning for various reasons: 

 

Simplicity: They are computationally efficient, 

making them appropriate for real-time planning. 

Sufficient for many applications: In cases where 

dynamics are less important (e.g., low-speed 

navigation), kinematic models often provide proper 

precision. Easy integration with sensors: Many 

sensors immediately offer position and orientation 

data, which aligns well with kinematic state 

representations. 

However, kinematic models have limitations. They 

don’t account for forces, mass, or inertia, which can 

become significant factors in high-speed operations, 

especially when dealing with heavy payloads. In 

such cases, dynamic modelling becomes important 

for appropriate path planning and control. 
 

Table 1. Summary 
 

 

Ref  

 Environment   Key Features   Challenges 

Addressed  

 Results/Findings   Future Research  

[8]   Dynamic   Addresses target 

inaccessibility and 

local extremities  

 Dynamic 

environmental 

changes  

 Demonstrates effective 

local path planning in 

dynamic environments 

using the improved 

algorithm  

 Improve efficiency 

in densely populated 

areas  

 [9]   Indoor (Multi-

Story)  

 Utilizes a 

navigation tree and 

Dijkstra’s 

algorithm  

 Navigating 

multi-level 

buildings  

 Path planning allows for 

dynamic recalculation and 

shortest path determination 

using a sparse graph  

 Implement the 

method using the 

APR-02 prototype 

and address door 

operations  

 

[10]  

 Agricultural   Control 

architecture for 

trajectory tracking  

 Various terrain 

conditions  

 Evaluated over different 

terrains with effective 

robot orientation and tool 

use  

 Validation on diverse 

platforms and real-

time soil condition 

analysis  

 

[11]  

 Dynamic   Reuses initial 

paths while 

addressing 

dynamic obstacles  

 Dynamic 

obstacle 

presence  

 Proposes a method for 

efficient local re-planning 

and continuity of paths  

 Testing the approach 

with various node 

configurations  

 

[12]  

 Indoor and 

Outdoor  

 Compares 

classical path 

planning 

algorithms  

 Algorithm 

selection for 

tasks  

 Highlights advantages and 

disadvantages of classical 

algorithms  

 Development of a 

benchmark 

framework for real-

world applications  

 

[13]  

 Dynamic   Improved obstacle 

avoidance through 

fuzzy logic  

 Dynamic 

environments  

 Outperforms traditional 

methods in obstacle 

avoidance and path 

planning  

 Further validation in 

complex 

environments  

 

[14]  

 Indoor   Utilizes language 

models for 

heuristic 

navigation  

 Limitations of 

cloud-hosted 

models  

 Suggests a method for 

improved navigation using 

language models  

 Exploration of 

applicability in 

different 

environments  

 

3.2. Dynamic Modelling 

Dynamic modelling is crucial for accurate robot 

motion representation. It considers forces and 

torques acting on the robot. This approach is more 

complex than kinematic modelling. It provides a 

complete description of robot behaviour. 

The general form of a dynamic model for a wheeled 

mobile robot is [15]: 

𝑀(𝑞)�̈� + 𝐶(𝑞, �̇�)�̇� + 𝐺(𝑞) = 𝐵(𝑞)𝜏 − 𝐴𝑇(𝑞)𝜆 (3) 
Where,  

�̈� is the vector of generalized coordinates  

𝑀(𝑞) is the inertia matrix  

(𝑞, �̇�) represents Coriolis and centrifugal forces  

𝐺(𝑞) is the gravitational force  

𝐵(𝑞) is the input transformation matrix  

𝜏 is the vector of actuator torques  

𝐴𝑇(𝑞)𝜆 represents constraint forces  

 

For a differential drive robot, the dynamic model can 

be simplified to: 
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𝑚�̈� = 𝐹𝑥

𝑚�̈� = 𝐹𝑦

𝐼�̈� = 𝜏

              (4) 

Where, 

𝑚 is the robot’s mass  

𝐼 is the moment of inertia  

𝐹𝑥 and 𝐹𝑦 are forces in x and y directions  

𝜏 is the torque 

Dynamic models offer several advantages:  

1.  They account for inertial effects.  

2.  They consider wheel slip and skid.  

3.  They allow for accurate trajectory tracking.  

4.  They enable energy-efficient path planning.  

However, dynamic models have limitations:   

1.   They are computationally expensive.  

2.   They require precise parameter identification. 

3. They can be overly complex for some 

applications. 

In path planning, dynamic models are used for:   

1.  Generating smooth and feasible trajectories.  

2.  Optimizing energy consumption.  

3.  Handling high-speed navigation scenarios.  

4.  Improving control in uneven terrains. 

 

With a solid understanding of robot modelling, it is 

essential to explore the criteria that guide the 

selection of optimal paths. The following section 

deals with the most important optimisation criteria, 

such as path length, smoothness, safety degree, and 

energy efficiency, to guarantee efficient and reliable 

robot navigation. 
 

4. Optimization Criteria for Path Planning 
 

The best-suited solution or ultimate goal for an 

algorithm designed for a robot is set under 

optimization criteria in path planning. These criteria 

are usually general and include shortest way, time or 

distance taken by the robot for a specific output, 

energy used while moving, as well as safety of robot 

itself or its environment.  

Optimization criteria prove to be most important 

factors with respect to path planning for mobile 

robots since these are the basis by which efficiency, 

safety, and interference-free navigation are judged in 

a robot.  

Choosing the most appropriate optimization criteria 

for a specific robot and environment allows 

developers to formulate path-planning algorithms 

that fit specific needs of the robot while improving 

its performance. Various parameters are involved in 

devising optimization criteria on path planning for 

mobile robots. In order to identify the optimal 

strategy, four basic requirements for optimization 

should be identified, according to [20]. 

 

4.1 Path Length (d) 

Path length optimization is one of the most important 

and popular criteria in planning the path. This 

implies that the effort should be made to find the 

shortest path between the two points with respect to 

the possible obstacles because it can be defined as 

finding the path for which the distance or time of 

travelling from the starting point to its destination is 

minimized. In most cases, a reduced path length 

directly leads to a smaller amount of time taken to 

travel along the path. The most important objective 

of this is the search for the shortest possible feasible 

path, which, in turn, means summing the distances 

of every individual event to the total event in the path 

from the starting point to its destination. Many 

methods exist to optimize distance loss: graph 

methods, the potential field, and sampling methods, 

to name a few. Each method has its advantages and 

disadvantages, and the technique chosen would 

depend on the specific application's need. The 

formula for this is as follows [21]: 

 

 𝑑 = √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2   (5) 
 In general  

𝑑 = ∑𝑛−1
𝑗=0 √(𝑥𝑗+1 − 𝑥𝑗)2 + (𝑦𝑗+1 − 𝑦𝑗)2             (6) 

Where in (2), 𝑛 is the number of nodes from the 

starting location to the goal location. 

 
4.2 Smoothness (Sp) 

Smoothness is another optimization criterion in path 

planning, which means finding a path that is not only 

free of obstacles but also as smooth as possible. A 

smooth path is preferred as it decreases the wear of 

the mechanical parts of the robot, increases stability, 

and simplifies the task of controlling the movements 

of the robot. In smoothness optimization, the task is 

to reduce the rate of change of velocity and 

acceleration along the motion path. The aim is to 

obtain a pattern that will not produce large jumps in 

the movement of the robot and will not make the 

robot unstable. Polynomial interpolation, splines and 

the Fourier series are among the mathematical 

strategies that can be applied to perform smoothness 

optimization. These methods should strive to come 

up with a path that is free from collision and, at the 

same time, is smooth, continuous, and differentiable. 

Smoothness optimization is used together with 

another criterion, such as the length of a path. For 

instance, sometimes, a path with minimum path 

length might not be continuous and therefore, adding 

another constraint, like a smooth path, could make 

the path better. 

Also, smoothness optimization is considered to be a 

significant part of path planning because only with 
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its help can one be sure of the stability, 

predictability, and safety of the motion of the robot. 

The smoothness criterion looks for a path that will 

remain straight as much as possible to do so. This 

approach is advantageous in the sense that energy is 

saved, as the mobile robot covers the distance 

directly, in contrast to a curved path, which requires 

a lot of energy. The following equation [22] is used 

to define the smoothness of a path. 

 

𝑠𝑝 = ∑𝑚
𝑗=1 (180∘ − 𝜃𝑗)          (7) 

Where, in (3), 𝑚 is the number of angles produced 

from the starting location to the goal location, 𝜃𝑗 is 

the angle value. 

 

4.3. Saftey Degree (Sd) 

Safety degree optimization criterion in path planning 

implies minimization of the probability of the 

occurrence of a collision between the robot and any 

obstacles in the environment. This criterion is 

significant because an object may be periodically or 

irregularly relocated. To prevent the robot from 

colliding with an obstacle and also to prevent any 

object that may be nearby from getting harmed in the 

process, it is necessary to use a path planning 

mechanism that will guide the robot and keep a safe 

distance from any obstacles. However, safety degree 

optimization may encompass other components, 

such as speed, acceleration, and jerk, in addition to 

collision avoidance. For example, a path that 

involves sudden changes in direction or speed may 

result in instability or damage to the robot or its 

cargo. Therefore, it is important to design a path that 

considers the robot’s physical capabilities and 

limitations, as well as any external constraints 

imposed by the environment or task requirements. 

Safety degree is also crucial to identify the directions 

that are free of collision, so it is relevant for 

environments where robots and humans coexist. 

Undoubtedly, path planning for safety has even 

greater importance for mobile robots when it is 

going to be performed in unknown spaces having a 

very high degree of freedom. Safety degree, which 

may be treated as the probability of collision, is 

defined as follows [21]: 

sd = ∑p=n
p=1 sp = {

0, ifd ≥ λ

∑n−1
k=1 eλ−dk , ifd < λ

      (8) 

Where in (4), d represents the shortest distance, and 

λ is the safety degree threshold. 

 

4.4. Energy Efficiency (E) 

Energy efficiency is a crucial factor in mobile robot 

path planning. It’s especially important for battery-

powered robots and long-duration missions. 

Energy efficiency can be represented as [23]: 

E = ∫
tf

t0
P(t)dt             (9) 

Where, 𝐸 is the total energy consumed, (𝑡) is the 

power consumption at time t, 𝑡0 is the start time, and 

tf is the finish time. 

The goal is to minimize E while achieving mission 

objectives. 

Factors affecting energy efficiency include: 

1. Motor power consumption 

2. Path length 

3. Terrain characteristics 

4. Robot velocity profile 

With a clear understanding of the optimization 

criteria, we proceed to explore the classical path 

planning techniques. This section presents a detailed 

analysis of techniques like the Potential Field, 

Roadmap, and Cell Decomposition techniques. It 

discusses how they are applied in path planning and 

their relative advantages and disadvantages. 

 

5. Classical Approach Techniques 

 

Classical approaches were initially popular for 

handling robot navigational tasks since artificial 

intelligence techniques were not yet developed. 

These are widely used techniques in mobile robot 

navigation that are based on pre-existing maps of the 

environment. This approach is suitable for known 

environments where the robot has prior knowledge 

about the environment and obstacles. In this 

approach, the path planning is performed offline, and 

the robot then follows the planned path. Potential 

fields, cell decomposition, and roadmap are the most 

important classical path-planning techniques. 

 

5.1. Potential Field Method 

This method generates a fictitious virtual force field 

that repulses the robot from obstacles and draws it 

toward the goal. The robot then follows the direction 

because of the resulting force to reach the goal. 

Khatib [24] was the first rather to put potential field 

methods to solve the obstacle algorithm for mobile 

robots during navigation. The mobile robot be 

pictured as a point and treated as a particle under the 

influence of an artificial potential field. The idea is 

that the robot will be pushed away from repulsive 

fields (obstacles) toward attractive fields (goal 

location), Figure 3 applies this concept in regard to a 

mobile robot navigation [25].  

The sensor finds a problem on a surface treatment, 

then exceeds the re-planning of the coverage path via 

the artificial potential approach on cost related to 

that [26]. Nevertheless, the problem in this approach 

is that it may get stuck in local optimum and hence 

becomes quite difficult to get the robot out of the 

dead zone.  
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In order to get rid of this limitation, proposed to 

address the problem of getting stuck at local minima 

by developing a potential field based on path cost 

and information gain, which helped a robot discover 

an optimal path for avoiding obstacles and reaching 

its goals[27]. An artificial potential source was used 

as a strategy directing formation and terrain 

coverage for a multirobot system [28]. Simulation 

results have shown that this method offered superior 

area coverage, together with real-time planning [29]. 

This is part of enhancing path planning via the use 

of the integrated decision tree concept under the 

artificial potential field method. It was improved 

obstacle avoidance performance through adaptive 

artificial potential fields applied to dual-arm 

robots[30]. It was developed in potential view of 

artificial fields and augmented reality, a local path 

planning algorithm to overcome local minima [31]. 

It was proposed gradient-based methods now with 

potential fields for navigation of mobile robots for 

obstacle avoidance problems [32].  Artificial 

potential fields have been combined with ant colony 

optimization algorithm which improves the 

efficiency of path planning and speed convergence 

[33]. A hybrid parallel-legged walking robot is 

coming out, the wheel-foot: An improved artificial 

potential field towards path planning for enhanced 

efficiency and better obstacle avoidance 

performance[34]. It was proposed new Membrane 

Evolutionary Artificial Potential Field (memEAPF) 

mobile Robot Path Planning method based on the 

combination of membrane computing with a genetic 

algorithm and APF technique[35]. The memEAPF 

constructs parameters to improve path length, 

smoothness, and safety from a single-layer 

membrane architecture. It incorporates membrane 

computing, mimicking compartmentalization and 

evolutionary principles of living cells, in minimizing 

path length effectively. The memEAPF that was 

developed has demonstrated effectiveness in both 

static and dynamic environments over existing 

potential-field-based path planning in terms of path 

length, safety, and computation efficiency. The 

authors did experimentation in twelve benchmark 

environments. The evidence was shown proving the 

memEAPF yields better results over other latest 

algorithms such as PEAPF, PBPF, and BPF. Not 

only that, but also the memEAPF algorithm utilizes 

parallel computing in a significant decrease 

computation time than all the other methods. 

The above approach has made a great impression 

among researchers, as it makes the platform 

proficient in handling both static and dynamic 

obstacles and also does not add many complications. 

Such a potential field method comes across lots of 

advantages, like computationally less expensive and 

easy to implement, while it also faces some 

limitations by falling in local minima paths, which 

mostly give suboptimal paths and cannot easily 

handle complex environments. There is no end to 

such modifications, and there are hybrid approaches 

to the potential field method with other techniques 

that have been suggested by scientists. These 

researchers have encouraged some good results for 

the performance and robustness of the potential field 

method in mobile robot path planning applications. 

Algorithm 1 provides pseudocode for the potential 

field approach. The goal location and obstacles are 

modeled as potential fields, and the total potential at 

each point is computed and the robot moves along 

the negated gradient until it comes to the goal 

position.  

 
Figure 3. Artificial Potential Field Illustration 

This algorithm has overall worst-case time 

complexity O(nm) because of the following: 

1.  Initialization takes O(1) constant time  

2. The outer while loop iterates up to n times 

depending on the distance to the goal. This 

contributes O(n) to the complexity.  

3. Inside the while loop, the for loop iterates over all 

m obstacles.  

This contributes O(m) to the complexity.  

Multiplying these together gives the overall worst 

case of O(nm). In conclusion, the algorithm has a 

worst-case time complexity of O(nm) due to the  
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Algorithm 1 Potential Field Method 

 

1: Procedure Potential Field Method 

2: Initialize goalLocation, obstacles[], 
currentLocation   

3: Initialize goal attraction potential function 𝑈𝑔()   

4: Initialize obstacle repulsion potential function 

𝑈𝑜()   
5: 𝑝𝑎𝑡ℎ ← [currentLocation]  
6: While currentLocation ≠ goalLocation do  

7:   𝑈total ← 0 Reset total potential   

8:   𝑈att ← 𝑈𝑔(goalLocation, currentLocation)   

9:   𝑈total ← 𝑈total + 𝑈att  

10:   For each obstacle in obstacles[] do   

11:     𝑈rep ← 𝑈𝑜(obstacle, currentLocation)   

12:     𝑈total ← 𝑈total + 𝑈rep   

13:   End for  

14:   𝐹 ← calculateForce(𝑈total)  

15:   currentLocation ← currentLocation + 𝐹  

16:  𝑝𝑎𝑡ℎ ← append(𝑝𝑎𝑡ℎ, currentLocation)  

17: End while 

18: Return 𝑝𝑎𝑡ℎ[] 
19: End procedure    

 

nested loop structure depending on the number of 

steps to the goal and the number of obstacles.Let us 

now examine the key advantages, disadvantages, 

and rationale for selecting the Potential Field 

Method (PFM).   

1. Advantages: The simplicity and computational 

efficiency of PFM make it ideal for real-time 

navigation, especially in environments with static 

obstacles. It is fast and easy to implement, making it 

well-suited for embedded systems with limited 

computational power.  

2. Disadvantages: A well-known issue with PFM is 

the possibility of getting stuck in local minima, 

where the robot may be unable to reach its goal. This 

method also struggles in dynamic environments 

where obstacles can change position unexpectedly, 

reducing its practical application for real-world 

mobile robots.  

3. Rationale for Selection: Despite its limitations, 

PFM remains a useful technique for basic obstacle 

avoidance and serves as a foundation upon which 

hybrid methods can improve.  

 

5.2. Roadmap Method 

Roadmaps are made up of a number of pathways 

which are collision free, and these paths are used to 

extract a route. Path planning is therefore limited to 

taking out the path from the start location to the goal 

location through a sequence of routes [36]. There are 

more methods to extract the best feasible path, which 

include visibility graphs and Voronoi. In the 

visibility graph method, you connect starting 

location and goal location through a map using 

nodes. Figure 4 shows a visibility graph with a blue 

line denoting the path from the start location to the 

goal location while the black region denotes 

obstacles [37]. To develop a visibility graph, all 

obstacles have to be represented as a polygon. 

Visibility graphs are very useful in environments 

where the obstacles would take polygonal forms 

[38]. However, the working of this strategy will be 

very significantly reduced in a highly dynamic 

environment. Using visibility graphs in the roadmap 

methods form the basis of [37]. However, a typical 

difficulty with visibility graphs is that the generated 

pathways make collisions with obstacles (polygons), 

potentially causing robot collisions. Therefore, 

putting into practice might be difficult. Voronoi 

diagrams shown in figure 5 are another roadmap 

approach used for robot path planning and can 

resolve this problem. Since graph edges will be built 

at the maximum possible distance from each other 

adjacent obstacles, thus the robot will be on the 

safest possible path [39]. 

 

 
Figure 4. Visibility Graph 

Algorithm 2 shows the pseudocode for 

implementing the visibility graph. The Visibility 

Graph algorithm creates a graph by connecting 

visible vertices, and then it searches this graph to 

find the shortest collision-free path. This algorithm 

has an overall worst-case time complexity of O (n2): 

1. Adding obstacle vertices is O(n) where n is the 

number of obstacle vertices 

2. Checking visibility between all pairs is O (n2) with 

nested loops 

3. Finding the shortest path is O (n2) using Dijkstra’s 

algorithm 

Therefore, the overall worst-case time complexity is 

O (n2) due to the nested looping through all vertices 

to check visibility. 
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Algorithm 2 Visibility Graph 

 

1: Procedure VisibilityGraph(start, goal, 

obstacles):  

2: V = {start, goal} 

3: For each o in obstacles: 

4:      V = V ∪ Vertex(o)                    

5: E = ∅ 

6: For each v₁  in V: 

7:     For each v₂  in V: 

8:         If Visible(v₁ , v₂ , obstacles): 

9:             E = E ∪ (v₁ , v₂ )             

10: path = ShortestPath(V, E, start, goal) 

11: Return path 

12: End procedure 

 

 
Figure 5. Voronoi Diagram 

The Algorithm 3 shows the pseudocode for 

implementing the Voronoi diagram. The Voronoi 

Diagram algorithm creates a diagram partitioning 

the free space based on obstacle distance. This 

algorithm has an overall worst-case time complexity 

of O(n log n): 

1. Constructing diagram: O(n log n) 

2. Finding start/goal regions: O(log n) with point 

location 

3. Traversing regions: O(n) with n regions 

Therefore, the overall worst-case time complexity is 

O(n log n), dominated by the Voronoi Diagram 

construction. From solving the optimality problem, 

it suggests a safe path planning method based on 

Voronoi diagrams according to the words of [40]. In 

addition, It was suggested new improvements that 

cause effectiveness in path planning aiming at 

efficiency and limitations such as abrupt turns and 

great loops in the Voronoi diagram [40]. It was 

hybridized the potential field method, visibility 

graph, and Voronoi diagram to achieve path 

optimization through hybrid approach [41]. But it is 

said that this method fails to find an optimized path. 

For successful path planning, It was proposed a 

hybrid strategy that uses a visibility graph and a 

Voronoi diagram to find an optimal path [42]. In an 

earthquake case, search and rescue missions can be 

nearly impossible because there can be presence of 

obstacles and the need to search a large area quickly. 

Due to the need for better solutions in search and 

rescue, several algorithms have suggested using 

probabilistic roadmaps (PRM). One such solution is 

the grid-based potential field PRM, which has been 

used in [43] search and rescue applications. It was 

suggested the integration of Probabilistic Roadmap 

(PRM) and the Artificial Bee Colony (ABC) 

algorithms in path planning [44]. This is an objective 

function that reflects the shortest length, safest, and 

smoothest pathing because it is safer and easier to 

move from one point to another without 

compromising on the total path length. By altering 

the parameters that control the possible path, 

including the angles of turns and the distances in 

between the possible waypoints, the efficiency of the 

path can be optimized together with the possible 

obstacles to the way. The integration of the two 

algorithms has a higher efficiency and reliability in 

solving problems in robotics and UAV applications. 

It was aimed at the narrow passages, it uses both 

particle swarm optimization (PSO) and probabilistic 

roadmap (PRM) to build the path planning [45]. The 

approach outlined in [45] involves sharing with the 

initial sampling points that were placed close to the 

obstacle the information about open space, and this 

makes those points to move in any direction in the 

free space during subsequent movements. This 

improves the connectivity of the undirected graph 

without an increment in the overall time taken for 

sampling. The simulation results indicate that the 

method proposed improves both sampling point 

efficiency and the success rate for path planning 

through narrow passages. 

Various forms of modifications and hybrids of the 

roadmap method are reviewed along with their result 

as much techniques for adding the efficiency, 

accuracy, and robustness of this method in various 

situations. The applications of such a method for 

path planning have shown good promise when used 

in either a known, unknown, or dynamic scenario. 

Other advantages of this approach are its 

applicability in problems that are high-dimensional 

and problems with many start and goal points. Some 

drawbacks are as follows: the construction of the 

roadmap is computationally expensive, it exhibits 

poor performance when the working space contains 

narrow passages and obstacles, and it depends on the 

choice of roadmap parameters. The reviewed papers 

offer novel solutions and insights to address these 
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limitations and further enhance the performance of 

the roadmap method in mobile robot navigation. 

 
Algorithm 3 Voronoi Diagram 

 

1: Procedure VoronoiDiagram (𝑠𝑡𝑎𝑟𝑡,
𝑔𝑜𝑎𝑙, 𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑠) 

2: 𝑉𝐷 ←
𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑉𝑜𝑟𝑜𝑛𝑜𝑖𝐷𝑖𝑎𝑔𝑟𝑎𝑚(𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑠)   

3: 𝑠𝑡𝑎𝑟𝑡𝑅𝑒𝑔𝑖𝑜𝑛 ← 𝑅𝑒𝑔𝑖𝑜𝑛(𝑠𝑡𝑎𝑟𝑡, 𝑉𝐷)  

4: 𝑔𝑜𝑎𝑙𝑅𝑒𝑔𝑖𝑜𝑛 ← 𝑅𝑒𝑔𝑖𝑜𝑛(𝑔𝑜𝑎𝑙, 𝑉𝐷)  

5: 𝑝𝑎𝑡ℎ ← []  
6: While (𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑅𝑒𝑔𝑖𝑜𝑛 ≠ 𝑔𝑜𝑎𝑙𝑅𝑒𝑔𝑖𝑜𝑛) 𝑑𝑜 

7:   𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑅𝑒𝑔𝑖𝑜𝑛 ←
𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑅𝑒𝑔𝑖𝑜𝑛)     

8:   𝑝𝑎𝑡ℎ. 𝑎𝑑𝑑(𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑(𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑅𝑒𝑔𝑖𝑜𝑛) 

9: End while 

10: Return path 

11: End Procedure  

 

Let us now examine the key advantages, 

disadvantages, and rationale for the Roadmap 

Method.   

1. Advantages: These methods efficiently handle 

environments with complex obstacle configurations. 

On the other hand, the visibility graph provides a 

direct path, whilst the Voronoi diagram guarantees 

that the robot takes the route safest from all 

surrounding obstacles by maintaining the maximum 

distance from them. 

2. Disadvantages: Visibility maps sometimes 

generate conflicts with obstacles on the robot's path, 

while Voronoi diagrams also do not produce optimal 

paths; thus necessitating subsequent adaptations. 

The computational complexity of constructing these 

roadmaps is another challenge, especially in 

dynamic or high-dimensional spaces.  

3. Rationale for Selection: These techniques were 

included because of their ability to model complex 

environments and provide reliable path planning for 

both indoor and outdoor scenarios, particularly in 

static environments.  

  

5.3. Cell Decomposition Method 

This strategy partitions the environment into several 

non-overlapping cells, and it makes use of 

connectivity graphs in order to join them. The 

traversal is employed in order to plan a path from the 

starting location to the target location by checking 

those occupied cells, which can be identified as pure 

cells without any obstacles. The pure cell is made up 

of two new cells separated by the cell containing the 

obstacles, that is, it is recognized as a corrupted cell, 

which will then be included in the sequence while 

finding the optimal path from the starting place to 

the goal point. Such start and end cells in cell 

decomposition (CD) method corresponds to the 

location of the starting location leading to the goal 

location, as illustrated in figure 6. This strategy is 

formulated in [46] as a technique for real-time 

mobile robot path planning. It can be standed to be 

among these other examples of such method of robot 

motion planning [47]. Meanwhile, it was proposed a 

new approximate cell decomposition algorithm [48]. 

Planning space has been performed to develop a 

regular grid with a given shape and size [49], thus 

simplifying the implementation of approximate cell 

decomposition. It was presented a sensor-based cell 

CD model combined with a laser scanning strategy 

to handle mobile robot tasks in unknown 

environments [50]. The cell decomposition method 

is a strategy where the workspace is divided into 

smaller cells and the robot travels through the cells 

to reach the target location. The robot uses laser 

scanning to detect the obstacles in the cells and 

navigate around them. Another Research [51] 

compared various techniques for path planning 

based on cell decomposition. Researchers Iswanto et 

al. [52] used the CD approach together with fuzzy 

logic to develop a path-planning algorithm for aerial 

vehicles. The algorithm proposed demonstrates the 

possibility of using CD and other techniques for path 

planning for both mobile robots and aerial vehicles. 

Cell decomposition approaches have been adopted 

widely in path planning for several categories of 

vehicles, including unmanned aerial vehicles, for 

considerations such as shortest path, computation 

time, memory, safety, completeness, and optimality 

[53]. 

 

 
Figure 6. Cell Decomposition 
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Algorithm 4 Cell Decomposition 

 

1: Procedure CellDecomposition 

(𝑟𝑜𝑏𝑜𝑡_𝑝𝑜𝑠, 𝑔𝑜𝑎𝑙_𝑝𝑜𝑠, 𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑠) 

2: Initialize 𝑔𝑟𝑖𝑑_𝑚𝑎𝑝 as empty grid   

3: Mark 𝑟𝑜𝑏𝑜𝑡_𝑝𝑜𝑠 in 𝑔𝑟𝑖𝑑_𝑚𝑎𝑝   

4: Mark 𝑔𝑜𝑎𝑙_𝑝𝑜𝑠 in 𝑔𝑟𝑖𝑑_𝑚𝑎𝑝  

5: For each 𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒 in 𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑠 do 

6:  Mark cells as occupied in 𝑔𝑟𝑖𝑑_𝑚𝑎𝑝 where 

𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒 is located 

7: End for  

8: Decompose 𝑔𝑟𝑖𝑑_𝑚𝑎𝑝 into cells 

9: Initialize graph 𝐺 as empty 

10: For each 𝑐𝑒𝑙𝑙 in 𝑔𝑟𝑖𝑑_𝑚𝑎𝑝 do 

11:    If 𝑐𝑒𝑙𝑙 is free space then 

12:      Add 𝑐𝑒𝑙𝑙 as node to 𝐺 

13:    End if 

14: End for   

15: For each 𝑐𝑒𝑙𝑙 in 𝐺 do 

16:     For each 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 of 𝑐𝑒𝑙𝑙 do 

17:         If 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 is reachable then 

18:            Add edge between 𝑐𝑒𝑙𝑙 and 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 in 

𝐺 

19:         Enf if 

20:     End for 

21: End for     
22: 𝑝𝑎𝑡ℎ ← AStarSearch𝐺, 𝑟𝑜𝑏𝑜𝑡_𝑝𝑜𝑠, 𝑔𝑜𝑎𝑙_𝑝𝑜𝑠 

23: Return 𝑝𝑎𝑡ℎ 

24: End Procedure 

25: Function AStarSearch (𝐺, 𝑠𝑡𝑎𝑟𝑡, 𝑔𝑜𝑎𝑙) 
26: Initialize priority queue 𝑄 

27: Add 𝑠𝑡𝑎𝑟𝑡 to 𝑄 with priority 0 

28: Initialize 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠 dictionary 

29: Initialize 𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟𝑠 dictionary 

30: While 𝑄 is not empty do 

31:   𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← Pop minimum from 𝑄  

32:   If 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 == 𝑔𝑜𝑎𝑙 then 

33:   Break 

34:   End if 

35:   For each 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 of 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 do 

36:       If 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 in 𝐺 then 

37:         𝑑𝑖𝑠𝑡 ← 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠[𝑐𝑢𝑟𝑟𝑒𝑛𝑡] +
        𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑐𝑢𝑟𝑟𝑒𝑛𝑡, 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟) 

38:         if 𝑑𝑖𝑠𝑡 < 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠[𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟] then 

39:            𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠[𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟] ← 𝑑𝑖𝑠𝑡  

40:             Add 𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟𝑠[𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟] ←
                                      𝑐𝑢𝑟𝑟𝑒𝑛𝑡   

41:             Add 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 to 𝑄 with priority 𝑑𝑖𝑠𝑡 

42:         End if 

43:       End if 

44:    End for 

45: End while 

46: Return 

ConstructPath(𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟𝑠, 𝑠𝑡𝑎𝑟𝑡, 𝑔𝑜𝑎𝑙) 
47: End function 

 

The algorithms used in cell decomposition use path 

planning for mobile robots. Cell decomposition is a 

method of dividing the environment into non-

overlapping cells and connecting them to each other 

by means of connectivity graphs during path-

planning. The advantages of the cell decomposition 

method are flexibility in the complex environments 

and highly efficient in terms of method employed. 

The disadvantages of the method include failing to 

propagate dynamic obstacles, and dependence on the 

shape and size of that particular grid which was used 

to divide the environment. The simulation results for 

these algorithms depict that they are efficient and 

really easy to implement. It can handle a complex 

environment and provide a global path for it.      

Algorithm 4 describes Cell Decomposition process 

such as creating an environmental graph and joining 

adjacent cells by applying A* path planning 

involving a search for the minimum path from initial 

to goal points. The time complexity of the cell 

decomposition algorithm using A* search can be 

written as follows:   

1. Decomposing the grid map into cells is O(N), 

where N is the number of cells in the grid map.  

2. Creating the graph G of free cells is O(N) since 

we loop over all cells and add free ones to G.  

3. Connecting neighbouring free cells is O(V+E), 

where V is the number of free cells (nodes), and E is 

the number of edges between neighbouring free 

cells.  

4. The A* search is O(E + VlogV), assuming a 

binary heap priority queue is used. This is because 

each edge is examined once, and priority queue 

operations are O(logV).  

 So the overall time complexity is:  

O(N) + O(N) + O(V+E) + O(E + VlogV) 

= O(N + V + E + VlogV) 

Since E is O(V2) in the worst case for a grid graph, 

this simplifies to: 

O(N + V2 + VlogV) = O(N + V2)  

Where N is the number of grid cells, and V is the 

number of free cells. 

So, the overall worst-case time complexity is O(N + 

V2) for the cell decomposition with the A* path 

planning algorithm.                                                                             

Let us now examine the key advantages, 

disadvantages, and rationale for Cell 

Decomposition.   

1. Advantages: These methods are easy to apply and 

are capable of solving path-planning problems in 

complex environments and return global solutions. 

This makes convergence fast with the potential of 

simplifying large environments into several cells 

that can be easily navigated.  

2. Disadvantages: Cell decomposition is not so 

efficient with dynamic obstacles and demands much 

memory when working with large maps. The 

technique also offers geometrical and solution 

accuracy control in terms of a required grid density 

and overall computational expense.  

3. Rationale for Selection: Given the flexibility of 

this approach in dividing environments into smaller, 
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navigable sections, it was selected for its 

applicability to complex but static environments.  

Such a classical approach gives the very essence of 

path planning, having associated both advantages 

and disadvantages. For example, the Potential Field 

Method is fast and easy in computation and very 

good for low powered robots, but traps at local 

minima makes it unfit mostly for dynamic 

environments. Roadmap methods are flexible in 

high-dimensional spaces and guarantee collision 

avoidance, but present too high computational 

overheads and suffer from deadlock in narrow 

passages. By nature, cell decomposition generally 

provides a simple and easy-to-implement solution 

for the global path problem, but the algorithm is 

highly computationally intensive and not very 

adaptive for changes in the environment. One must 

bear in mind that classical methods are very good to 

implement but inflexible in the rapidly changing 

environment. Therefore, the next section details on 

heuristic approaches because they are more adapted 

to handling uncertainties and dynamic environments 

and can be the alternative way of mobile robot path 

planning. 

 

6. Heuristic Techniques 

 
Heuristic techniques are methods that can be 

employed to solve problems through efficient search 

techniques. One example is in path planning, where 

distances or costs between two nodes are generally 

computed using heuristics in order to guide a search 

for the best path from start to destination. Moreover, 

heuristic algorithms have always been proved 

superior to conventional ones in terms of path 

planning of mobile robot because of their efficiency 

in uncertainty related to the environment. Mobile 

robot path planning using QAPF learning can be 

regarded as the improved Q-learning combined with 

the Artificial Potential Field (APF) improvement by 

[54]. This overcomes the slowness associated with 

the traditional methodology of Q-learning and 

theoretically provides a superior learning rate and 

efficiency while performing path planning. The 

QAPF method allowed improvements of 18.83 % in 

path length efficiency, 169.75% in path smoothness, 

and 74.84% in training time compared to a Q-

learning technique, thus validating the performance 

of the method in both online and offline path 

planning applications. In this regard, these results 

signify the potential of how heuristic-based learning 

algorithms may further boost path planning in a 

dynamic environment. It was proposed a new 

method for AMR path planning, called Membrane 

Pseudo-Bacterial Potential Field (MemPBPF), 

which is based on membrane computing, pseudo-

bacterial genetic algorithm, and Artificial Potential 

Field (APF) approach[55]. Hybrid methods exceed 

standard algorithms in that they are capable of 

optimizing the performance of time complexity and 

path length, collision avoidance, and smoothness 

according to defined performance evaluations. Apart 

from that, the MemPBPF makes the design scalable 

for parallel computation on modern hardware such 

as GPUs. It represents, then, the best hope for use in 

both static and dynamic environments. Experiments 

have revealed MemPBPF to be superior in path 

efficiency, execution time, and overall success when 

compared to other potential field-based path 

planning algorithms. Here are the heuristic 

algorithms. 

6.1. Artificial Neural Network 

An artificial neural network is a smart algorithm 

constructed with various interlinked layers of 

processing nodes to offer differing outputs. It is 

made of three layers that are input, output, and the 

hidden layer, as shown in figure 7. For processing, 

the input layers interact with hidden layers first, and 

then within those hidden layers are connected to the 

output layer to obtain output. It was studied the 

application of artificial neural networks for solving 

problems associated with robotic path planning, 

thereby showing how they can enhance the 

performance of such systems [56]. Furthermore, 

most of the time artificial neural networks find 

applications when it comes to solving optimization 

search criteria and pattern recognition because they 

can reach optimum findings [38]. It was conducted a 

study on Self Supervised Learning with regard to the 

learning behavior of a robot while performing a 

certain task[57]. It was provided a hybrid technique 

in which a neural network and fuzzy logic work 

together to utilize both cognitive processes in the 

navigation of multi-mobile robots in chaotic 

environments [58]. It was introduced an artificial 

neural network-based path planner for single 

planning of multiple robots paths while avoiding 

obstacles in unknown environments[59]. However, 

there are certain restrictions attached to the approach 

of artificial neural networks, training terms 

associated with it may have to be huge volumes in 

some cases before obtaining statistically significant 

results [60]. For example, in supervised learning, 

minimizing the error between an actual output and 

its expected output usually becomes a difficult task. 

In study [61], there is introduction for a new concept 

known as artificial neural tissue control to the field 

addressing the coverage problem. Two more or less 

identical performance-oriented techniques were 

used as comparison benchmarks for the redesignable 

coverage with a reconfigurable robot: the 

feedforward neural network and adaptive neuro-

fuzzy inference system as can be seen in [62]. 
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Finally, it was tapped into a fuzzy inference system 

that does allow exploration of the trade-off between 

energy and area coverage[63]. In [64], innovative 

real-time, online path planning methods for highly 

cluttered and unknown environments were 

proposed. The suggested method is based on deep 

neural network (DNN) techniques on the process of 

developing pathways towards near-optimal path 

planning. It used a switching scheme and a line of 

sight check was executed in order to optimize the 

quality of the path and to enhance the planner's 

effectiveness further. The neural network approach 

proposed in [64] predicts the accessible areas where 

feasible paths might be found within a given 

environment. Such knowledge is then used in the 

planning of paths, with considerable improvement in 

performance. Furthermore, the neural network 

model here proposed can be extended to typical path 

planning algorithms. This paper proposed a 

methodology to plan inspection routes for substation 

robots [65]. The proposed system is based on an 

artificial neural network (ANN) system comprising 

a backpropagation neural network (BPNN), and 

which performs nonlinear fitting and prediction 

together with reinforcement Q-learning that 

incorporates tremendous online learning efficiency. 

Simulation results also suggest that the proposed 

method converges more quickly than the Artificial 

Potential Field (APF) method and the final value on 

convergence remains stable and does not vary so 

much with the best possible solution. The above 

papers propose various path-planning techniques 

that combine ANNs with different heuristic 

algorithms to optimize the path for mobile robots. 

ANN-based path planners have been developed to 

plan paths for multi-robots while avoiding obstacles 

in unknown environments. However, the training 

data required for producing statistically valid 

findings can be enormous, and minimizing the error 

between calculated and expected output is difficult 

in supervised learning. The results of these studies 

demonstrate that these hybrid approaches 

outperform traditional heuristic methods in terms of 

efficiency and path optimization.  

 
Figure 7. Artificial Neural Network 

Algorithm 5 Artificial Neural Network 

 

1: Procedure NNPathPlanning 

(𝑠𝑡𝑎𝑟𝑡, 𝑔𝑜𝑎𝑙, 𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑠) 

2:  𝑛𝑒𝑡𝑤𝑜𝑟𝑘 ← 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝑁𝑁𝐴𝑟𝑐ℎ𝑖𝑡𝑒𝑐𝑡𝑢𝑟𝑒() 

3:  𝑖𝑛𝑝𝑢𝑡 ←
𝐸𝑛𝑐𝑜𝑑𝑒𝑆𝑡𝑎𝑡𝑒(𝑠𝑡𝑎𝑟𝑡, 𝑔𝑜𝑎𝑙, 𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑠) 

4:  𝑜𝑢𝑡𝑝𝑢𝑡 ← 𝑛𝑒𝑡𝑤𝑜𝑟𝑘. 𝑃𝑟𝑒𝑑𝑖𝑐𝑡(𝑖𝑛𝑝𝑢𝑡) 

5:        𝑾𝒉𝒊𝒍𝒆 𝑛𝑜𝑡_𝑟𝑒𝑎𝑐ℎ𝑒𝑑(𝑔𝑜𝑎𝑙) do 
6:         𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← 𝑔𝑒𝑡_𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒() 

7:         𝑖𝑛𝑝𝑢𝑡 ←
         𝐸𝑛𝑐𝑜𝑑𝑒𝑆𝑡𝑎𝑡𝑒(𝑐𝑢𝑟𝑟𝑒𝑛𝑡, 𝑔𝑜𝑎𝑙, 𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑠) 

8:         𝑎𝑐𝑡𝑖𝑜𝑛 ← 𝑛𝑒𝑡𝑤𝑜𝑟𝑘. 𝑃𝑟𝑒𝑑𝑖𝑐𝑡(𝑖𝑛𝑝𝑢𝑡) 

9:         𝐸𝑥𝑒𝑐𝑢𝑡𝑒𝐴𝑐𝑡𝑖𝑜𝑛(𝑎𝑐𝑡𝑖𝑜𝑛) 

10: End while 

11: Function InitializeNNArchitecture 

12:  𝑛𝑒𝑡𝑤𝑜𝑟𝑘. 𝑎𝑑𝑑(𝐼𝑛𝑝𝑢𝑡𝐿𝑎𝑦𝑒𝑟) Encode state 

13:  𝑛𝑒𝑡𝑤𝑜𝑟𝑘. 𝑎𝑑𝑑(𝐻𝑖𝑑𝑑𝑒𝑛𝐿𝑎𝑦𝑒𝑟𝑠) Fully 

connected 

14:  𝑛𝑒𝑡𝑤𝑜𝑟𝑘. 𝑎𝑑𝑑(𝑂𝑢𝑡𝑝𝑢𝑡𝐿𝑎𝑦𝑒𝑟) Decode actions 

15:  𝑛𝑒𝑡𝑤𝑜𝑟𝑘. 𝑐𝑜𝑚𝑝𝑖𝑙𝑒() Optimizer, loss 

16:  𝑛𝑒𝑡𝑤𝑜𝑟𝑘. 𝑓𝑖𝑡(𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔_𝑑𝑎𝑡𝑎) Train network 

17:  Return 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 

18: End Function 

The text that describes algorithms 5 for the pseudo-

code for artificial neural networks is all about using 

that network as robot path planning by training it on 

predicting actions that are collision-free at different 

configurations during driving toward a goal state 

starting from an initial state. These are the two 

significant portions of the time Complexity: 

prediction per step and the number of steps to be 

traveled for reaching the goal. 

1. The prediction is done by feeding forward in the 

network and is O(W) where ‘W’ is the number of 

weights in the network. 

2. Steps to goal: This is defined based on the size of 

the environment, and on optimal path length L.  

Hence, the overall time complexity per episode is 

O(W * L).  

Let us now look at the advantages, disadvantages, 

and the rationale for ANN.  

1. Advantages: ANN can learn from very complex 

environments and can improve with time, which 

qualifies ANN to be a powerful tool in the 

management of the unknown and dynamism. ANN 

is best suited for pattern recognition and path 

generation and can do this efficiently, near to 

optimal. 

2. Disadvantages: ANN needs a huge volume of data 

for training and very expensive computational 

resources, which may restrict their suitability for 

real-time applications. ANNs are also seen to be 

unpredictable in their performance without adequate 

training. 

3. Rationale for the Selection: ANNs were chosen 

for their flexibility and robustness in handling 

dynamic environments, especially in multi-robot 

navigation scenarios. 
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6.2. Fuzzy logic 

Zadeh [66] was the first to introduce the notion of 

fuzzy sets in 1965. Humans can perceive and 

complete navigation tasks without the need for 

accurate calculations. To create a mobile robot, one 

must imitate this ability [67]. Fuzzy logic has been 

used to handle various problems in both known and 

unknown environments [68]. It has been proposed 

some simulink model with fuzzy logic controller for 

collision free navigation of mobile robots in 

unknown environment [69]. Autonomous mobile 

robot with path planner using fuzzy logic with filter 

smoothing is incorporated in unknown environment 

[70]. It has been proposed a hybrid controller able to 

solve fundamental limitations for path planning 

where this robot may take the fastest path to reach its 

destination while avoiding any obstacles on its 

way[71]. Moreover, it creates available guidelines 

and decisions toward achieving intended results 

under various complicated conditions. Based on the 

simulation outcomes, the employment of the hybrid 

fuzzy technique suggested to enables the robot to 

navigate its way past barriers and reach its 

destination promptly and effectively [71]. It has been 

presented a layered approach for fuzzy motion 

planning that focuses on achieving specific goals 

while avoiding obstacles [72]. The experimentation 

states that the algorithm does quite well in its goal or 

target seeking and also avoids its obstacles quite 

easily along with having good performance in real-

time. While reasoning in terms of the environment, 

the new algorithm improves navigation of robots, 

thus mostly resembling human reasoning. The path 

planning of mobile robots is suggested through a 

grid partition technique in a T-S type fuzzy inference 

system [73]. By testing various scenarios via the V-

REP mobile simulator and model, simulation results 

prove that the robot is capable of doing any kind of 

terrain when applying the proposed method. 

Generally, the simulation results show that T-S type 

fuzzy inference system path planning model is 

superior in performance in each parameter. It has 

been concentrates on performance enhancement of a 

developing fuzzy logic controller for navigation of 

mobile robots in complicated environments having 

more than expected from two dynamic obstacles 

[74]. Then it can be further improved to handle 

unknown dynamic obstacles in indoor environments, 

where it uses sensor's onboard information. As part 

of the study, simulations in MATLAB were 

conducted in structured 2D environments to show 

that the controller achieves good robot navigation in 

both scenarios, thus proving validity of design [75]. 

A new approach is introduced for automated 

reasoning using fuzzy sets of vertical structured 

General Type-2 version; it is then extended to 

trajectory-planning of a mobile robot in the presence 

of dynamic obstacles. Proposed algorithm 

performance evaluation considered seven 

benchmark workspaces that accounted for specular 

reflection and multipath influence of sonar 

transducer. As determined from the results, the 

mechanism indeed outperformed other existing 

mechanisms as far as path length and computational 

overhead are concerned. It has been introduced a 

novel predictive control system for mobile robots 

that is independent of the robot’s dynamics and 

working environment [76]. A Type-3 fuzzy logic 

system is created to recognize mobile robot 

dynamics online. The developed predictive approach 

enhances accuracy and speed of convergence while 

simultaneously resolving uncertainties and taking 

control input limits into account. Furthermore, a 

chaotic-based approach was developed for secure 

path planning, which generated an unanticipated and 

complicated reference trajectory suitable for patrol 

mobile robot applications. 

Fuzzy logic is used in many studies related to mobile 

robot navigation and operates successfully through 

unknown and dynamic environments. The use of 

fuzzy logic mimics the ability of human beings to 

perceive and fill-up its task regarding navigation 

without having to rely solely on well-calculated 

determinations. Most of the proposed methods use 

fuzzy inference systems to analyze the risk inherent 

in all possible paths while selecting the one that is 

most appropriate. The advantage of fuzzy logic in 

path planning includes safe and efficient path 

generation. On the other hand, the disadvantages 

include the complexity in the models themselves as 

well as no easy way to decide what best rules and 

membership functions will be most appropriate. 

These fuzzy logic approaches will be promising in 

planning paths for mobile robots in unknown and 

dynamic environments. 

 
Algorithm 6 Fuzzy Logic Path Planning 

 

1: Procudure Fuzzy Logic Path Planning 

(𝑠𝑡𝑎𝑟𝑡, 𝑔𝑜𝑎𝑙, 𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑠) 

2:  𝑓𝑢𝑧𝑧𝑖𝑓𝑖𝑒𝑟 ← 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝐹𝑢𝑧𝑧𝑖𝑓𝑖𝑒𝑟()  

3:  𝑟𝑢𝑙𝑒𝑏𝑎𝑠𝑒 ← 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝑅𝑢𝑙𝑒𝑏𝑎𝑠𝑒()  

4:  𝑑𝑒𝑓𝑢𝑧𝑧𝑖𝑓𝑖𝑒𝑟 ← 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝐷𝑒𝑓𝑢𝑧𝑧𝑖𝑓𝑖𝑒𝑟() 
5:  𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← 𝑠𝑡𝑎𝑟𝑡 

6:  While 𝑛𝑜𝑡_𝑟𝑒𝑎𝑐ℎ𝑒𝑑(𝑔𝑜𝑎𝑙) do 

7:         𝑖𝑛𝑝𝑢𝑡𝑠 ←
        𝐸𝑛𝑐𝑜𝑑𝑒𝑆𝑡𝑎𝑡𝑒(𝑐𝑢𝑟𝑟𝑒𝑛𝑡, 𝑔𝑜𝑎𝑙, 𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑠) 

8:         𝑓𝑢𝑧𝑧𝑦𝑖𝑛𝑝𝑢𝑡𝑠 ←

        𝑓𝑢𝑧𝑧𝑖𝑓𝑖𝑒𝑟. 𝐹𝑢𝑧𝑧𝑖𝑓𝑦(𝑖𝑛𝑝𝑢𝑡𝑠) 

9:        𝑓𝑢𝑧𝑧𝑦𝑜𝑢𝑡𝑝𝑢𝑡 ←

        𝑟𝑢𝑙𝑒𝑏𝑎𝑠𝑒. 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑅𝑢𝑙𝑒𝑠(𝑓𝑢𝑧𝑧𝑦_𝑖𝑛𝑝𝑢𝑡𝑠) 

10:        𝑐𝑟𝑖𝑠𝑝𝑜𝑢𝑡𝑝𝑢𝑡 ←

        𝑑𝑒𝑓𝑢𝑧𝑧𝑖𝑓𝑖𝑒𝑟. 𝐷𝑒𝑓𝑢𝑧𝑧𝑖𝑓𝑦(𝑓𝑢𝑧𝑧𝑦_𝑜𝑢𝑡𝑝𝑢𝑡) 

11:        𝑎𝑐𝑡𝑖𝑜𝑛 ← 𝐷𝑒𝑐𝑜𝑑𝑒𝐴𝑐𝑡𝑖𝑜𝑛(𝑐𝑟𝑖𝑠𝑝_𝑜𝑢𝑡𝑝𝑢𝑡) 
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12:        𝐸𝑥𝑒𝑐𝑢𝑡𝑒𝐴𝑐𝑡𝑖𝑜𝑛(𝑎𝑐𝑡𝑖𝑜𝑛) 
13:       𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← 𝑔𝑒𝑡_𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒() 

14:  End while 

15: End procedure 

 

Algorithm 6 describes pseudocode illustrated for 

fuzzy-based path planning, which is a rule-based 

soft-trained approach to robot path planning based 

on fuzzy sets and rules. Overall, the time complexity 

of fuzzy logic path planning algorithm is O(L), in 

which L is a measure of length from the start to a 

goal position.This can be derived as follows: 

In each iteration of the main loop, the following 

operations are performed: 

1. Encoding the state inputs (O(n), where n is the 

number of input features). 

2. Fuzzification of inputs (O(n)). 

3. Evaluating the rule base (O(m), where m is the 

number of rules). 

4. Defuzzification (O(p), where p is the number of 

discretized output fuzzy sets) 

5. Decoding the action (O(1), assuming constant 

time operation). 

Given that n, m, and p are constant (not depending 

on the growth with the problem size), the algorithm's 

time complexity for executing each iteration is O(1). 

The main loop runs until the goal is achieved, and 

the number of iterations depends on the length of the 

path denoted by L. Thus, the final run time for the 

algorithm becomes O(L * 1) = O(L), meaning that it 

is linear in the length of the path L that lies between 

the start position and the goal. 

Let us now examine the key advantages, 

disadvantages, and rationale for Fuzzy Logic. 

1. Advantages: Fuzzy logic mimics human decision-

making, allowing the robot to navigate efficiently in 

environments with uncertainties. It handles 

imprecise data well and enables smooth, collision-

free navigation. 

2. Disadvantages: Designing effective fuzzy rules 

and membership functions is challenging and often 

requires domain expertise. Furthermore, its 

complexity increases with the number of variables 

involved. 

3. Rationale for Selection: Fuzzy logic is ideal for 

scenarios where precise measurements are not 

available, making it a valuable addition for uncertain 

or imprecise environments. 

 

6.3. Genetic Algorithm 

The genetic algorithm, now a highly popularly 

recognized search-based optimization technique, has 

been initially discovered by Bremermann [77] in 

1958. However, the first introduction of genetic 

algorithms to the field of computer science is 

attributed to Holland [78] in 1975. Genetic 

algorithms make use of the process whereby all 

possible solutions to a problem are encoded into 

chromosomes and undergo some of the following 

basic processes: selection, crossover, and mutation 

[79]. A path planning method is based on genetic 

algorithms that utilize chromosomes with variable 

lengths. Likewise, it was suggested applying genetic 

algorithms for navigation with a mobile robot in 

known environments [80]. Introduced herein [80] is 

a global path planner that employs genetic 

algorithms reducing the length of binary strings by 

converting 2D points to 1D points. As of now, 

existing studies mainly applied genetic algorithms to 

navigate in known environments, while it was 

proposed a method for navigation in the presence of 

obstacles in an unknown environment [81]. To 

further enhance robot path planning outcomes, 

numerous researchers have explored combining 

genetic algorithms with other intelligent algorithms, 

leading to the development of hybrid techniques 

with the potential for improved performance and 

adaptability. A hybrid methodology combining 

genetic algorithm and fuzzy logic is provided for the 

monitoring of moving object [82]. Genetic algorithm 

has an excellent global search capability for area 

coverage, but in return it will decrease the stability 

due to large search space complexity which causes 

long computation times [83]. In contrast, while the 

first one [84] discusses the generation of global and 

multiple local area coverage paths using the 

Simulated Annealing (SA) algorithm and GA 

algorithm respectively, the time taken for executing 

both algorithms in parallel is reduced in terms of 

computational costs. To overcome the shortcomings 

of the simple genetic algorithm (SGA) in mobile 

robot route planning, such as pathways that are too 

smooth, prone to local optima, and have an unstable 

algorithm, the improved genetic algorithm (IGA) is 

proposed [85]. 

The above papers highlight the importance of 

evaluating fitness using appropriate cost or fitness 

functions and exploring different combinations of 

genetic algorithm parameters to improve the 

performance of the algorithm. Some studies have 

proposed hybrid techniques that combine genetic 

algorithms with other intelligence algorithms to 

improve outcomes. The advantages of genetic 

algorithms include their ability to handle complex 

problems and the potential for global optimization. 

However, the drawbacks include their reliance on a 

fixed fitness function and the difficulty in 

determining the optimal parameters for the genetic 

operations. Algorithm 7 presents a genetic algorithm 

in its pseudo-code, a population-based heuristic 

optimization approach based on the model of natural 

selection. The genetic algorithm for path planning 

has an overall time complexity of O(N * L), where 
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Algorithm 7 Genetic Algorithm for Path Planning 

 

1: Procedure GAPathPlanning 

(𝑠𝑡𝑎𝑟𝑡, 𝑔𝑜𝑎𝑙, 𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑠) 

2:  𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 ← 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛()  

3:  𝑓𝑖𝑡𝑛𝑒𝑠𝑠 ← 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛) 

4:  While 𝑛𝑜𝑡_𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑑() 

5:         𝑛𝑒𝑤_𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 ← {} 

6:        For 𝑖 ← 1 to 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛_𝑠𝑖𝑧𝑒/2 do 
7:                                   𝑝𝑎𝑟𝑒𝑛𝑡1, 𝑝𝑎𝑟𝑒𝑛𝑡2 ←

               𝑆𝑒𝑙𝑒𝑐𝑡𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛, 𝑓𝑖𝑡𝑛𝑒𝑠𝑠)                                                 

              𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔1, 𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔2 ←
              𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟(𝑝𝑎𝑟𝑒𝑛𝑡_1, 𝑝𝑎𝑟𝑒𝑛𝑡_2)  

8:              𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔_1 ←
𝑀𝑢𝑡𝑎𝑡𝑒(𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔_1)   

9:             𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔_2 ← 𝑀𝑢𝑡𝑎𝑡𝑒(𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔_2)  
10:             𝑛𝑒𝑤𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 ← 𝑛𝑒𝑤𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 ∪

            {𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔_1, 𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔_2}  

11:        End for 

12:   𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 ← 𝑛𝑒𝑤_𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 

13:   𝑓𝑖𝑡𝑛𝑒𝑠𝑠 ← 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛) 

14: End while 

15: 𝑏𝑒𝑠𝑡_𝑝𝑎𝑡ℎ
← 𝐺𝑒𝑡𝐵𝑒𝑠𝑡𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛, 𝑓𝑖𝑡𝑛𝑒𝑠𝑠) 

16:  Return 𝑏𝑒𝑠𝑡_𝑝𝑎𝑡ℎ 

17:  End procedure 

 

N is the population size, and L is the path length, 

assuming a constant number of generations. Let us 

now examine the key advantages, disadvantages, 

and the rationale for Genetic Algorithm (GA). 

1. Advantages: GAs excel in global optimization, 

offering robust solutions for complex environments. 

They are capable of finding solutions which are 

gradually modified over time and does better than 

many other algorithms in avoiding local minimum 

traps. 

2. Disadvantages: The literature reveals that GAs 

can be more or less demanding in computation time 

and may depend on the choice of parameters such as 

population size and mutation rates. 

3. Rationale for Selection: The global search 

capabilities of GAs make them highly effective for 

complex environments with many potential 

obstacles; hence their inclusion in this review. 

 

6.4. Ant Colony Optimization 

The basic principle of ant colony behavior is that 

every ant while looking for food will deposit 

pheromone, an excretion on the way to provide a 

reference and will sense emissions from other ants. 

Such pheromones permit ants to communicate and 

establish routes between them. Also, ants will then, 

while traveling through the pathways more 

pheromone-concentrated than certain other paths, 

naturally reach that destination and add more 

pheromone in that direction, raising the pheromone 

concentration even further. After a while, the total 

concentration of pheromones on the shorter path will 

then be followed by an increase in the number of ants 

that adopt it, while the pheromones for the other 

paths become less and less until finally there are 

none. In the end, the whole ant colony converges to 

the best path. The ant colony algorithm flowchart 

can be visualized in figure 8 [86]. The ant colony 

algorithm was introduced as a population-based 

approach by Marco Dorigo [87]. It was proposed 

avoidance of collision using an ant colony algorithm 

among multi-robots in a well-known environment 

[88]. The authors [89] have made some 

improvements over the algorithm [88] to increase its 

speed of convergence. It was described ant colony 

algorithm for the navigation of mobile robots in 

unknown environments [90]. In addressing mobile 

robot path planning, it was introduced a novel 

approach known as the chaotic ant colony system 

[91]. This method not only outperforms 

conventional ant colony techniques in terms of 

success but also enhances the overall scope of global 

search capabilities. It was proposed a modified 

version of the Ant Colony Optimization algorithm 

which incorporates a pheromone updating rule to 

avoid getting stuck in local minima [92]. This aids in 

exploring a wider search space and resulting in 

discovering more optimal solutions. It was made use 

of the ACO algorithm to achieve optimization in 

sub-areas coverage based on the distance matrix 

[93]. The concept is established that, when distances 

of the sub-areas are taken into consideration, the 

ACO algorithm should be able to establish the most 

efficient routes for completing coverage. Such 

mapping can be employed in various usage, such as 

environmental monitoring or robotic navigation. It 

was proposed a travel salesman problem solution 

based on block sequences' optimization through an 

ACO algorithm[94].  In this way, the algorithm 

locates the blocks with such linkage that will 

minimize overall distance travel by a particular 

individual thereby increasing the fitness of the 

overall solution. The global inspection routing 

optimization, based on the ACO algorithm, is 

discussed in elsewhere [28]. The algorithm produces 

optimized inspection routes across industrial 

environments with many constraints such as the 

following- minimum path length, inspection time, 

etc. An improved version of the conventional ant 

colony algorithm has been proposed for mobile robot 

path planning in [95] in order to address 

convergence precision issues and early local 

optimum trapping. It is the widest and positively 

reinforced approach in computing among other 

algorithms in robot path planning. However, 

stinging limitations include very slow search speed 

and early convergence. Such advanced terminal 

distance index-based multi-step ant colony 

optimization (TDIMSACO) has been recommended 
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for the purpose of mobile robot path planning to 

upgrade the total efficiency of the ACO [96]. 

ACO algorithms are actually important because they 

were used in the following way: to capture all points 

into consideration, multi-robot path planning was 

performed in dynamic environments through the 

population-based technique of ant colony 

optimization (ACO). The core concept of ACO is 

that an ant will, upon returning to the bundle, release 

pheromones along its selected path as a reference for 

other ants when they venture out again. Ants 

communicate using pheromones and then 

autonomously determine pathways. ACO algorithms 

consider multiple cases, including dynamic 

environments with moving obstacles and local 

minima, unknown environments with obstacles and 

moving obstacles, and multiple robots with time 

constraints. The advantages of ACO include 

effective collision avoidance and global search 

capabilities. However, the disadvantages of ACO 

include the time-consuming process of releasing and 

sensing pheromones and the difficulty of handling 

environments. Some ACO algorithms have been 

proposed with improvements, such as an adaptive 

parameter update mechanism, dynamic obstacle 

prediction mechanism, and hybrid algorithms that 

combine the genetic algorithm and ACO.  

 
Algorithm 8 Ant Colony Optimization for Path Planning 

 

1: Procedure ACOPathPlanning 

(𝑠𝑡𝑎𝑟𝑡, 𝑔𝑜𝑎𝑙, 𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑠) 

2:   𝑝ℎ𝑒𝑟𝑜𝑚𝑜𝑛𝑒_𝑚𝑎𝑝 ←
𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝑃ℎ𝑒𝑟𝑜𝑚𝑜𝑛𝑒𝑀𝑎𝑝()  

3:   For 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 ← 1 to 𝑚𝑎𝑥_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 do 
4:        𝑎𝑛𝑡_𝑝𝑎𝑡ℎ𝑠 ← {} 

5:       For 𝑎𝑛𝑡 ← 1 to 𝑛𝑢𝑚_𝑎𝑛𝑡𝑠 do 

6:            𝑝𝑎𝑡ℎ ←
           𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑃𝑎𝑡ℎ(𝑠𝑡𝑎𝑟𝑡, 𝑔𝑜𝑎𝑙, 𝑝ℎ𝑒𝑟𝑜𝑚𝑜𝑛𝑒_𝑚𝑎𝑝, 𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑠)     

                              𝑎𝑛𝑡𝑝𝑎𝑡ℎ𝑠 ← 𝑎𝑛𝑡𝑝𝑎𝑡ℎ𝑠 ∪   {𝑝𝑎𝑡ℎ}  

7:        End for 

8:        𝑝ℎ𝑒𝑟𝑜𝑚𝑜𝑛𝑒𝑚𝑎𝑝 ←

       𝑈𝑝𝑑𝑎𝑡𝑒𝑃ℎ𝑒𝑟𝑜𝑚𝑜𝑛𝑒𝑀𝑎𝑝(𝑝ℎ𝑒𝑟𝑜𝑚𝑜𝑛𝑒_𝑚𝑎𝑝, 𝑎𝑛𝑡_𝑝𝑎𝑡ℎ𝑠) 
9:    End for 

10:    𝑏𝑒𝑠𝑡_𝑝𝑎𝑡ℎ ← 𝐺𝑒𝑡𝐵𝑒𝑠𝑡𝑃𝑎𝑡ℎ(𝑎𝑛𝑡_𝑝𝑎𝑡ℎ𝑠) 

11:    Return 𝑏𝑒𝑠𝑡_𝑝𝑎𝑡ℎ 

12: End procedure 

13: FunctionConstructPath

 (𝑠𝑡𝑎𝑟𝑡, 𝑔𝑜𝑎𝑙, 𝑝ℎ𝑒𝑟𝑜𝑚𝑜𝑛𝑒_𝑚𝑎𝑝, 𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑠)   

14:          𝑝𝑎𝑡ℎ ← {𝑠𝑡𝑎𝑟𝑡}   

15:          𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← 𝑠𝑡𝑎𝑟𝑡 

16:         While 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ≠ 𝑔𝑜𝑎𝑙 do   

17:               𝑛𝑒𝑥𝑡 ←
              𝑆𝑒𝑙𝑒𝑐𝑡𝑁𝑒𝑥𝑡𝑁𝑜𝑑𝑒(𝑐𝑢𝑟𝑟𝑒𝑛𝑡, 𝑝ℎ𝑒𝑟𝑜𝑚𝑜𝑛𝑒_𝑚𝑎𝑝, 𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑠)     

                                𝑝𝑎𝑡ℎ ← 𝑝𝑎𝑡ℎ ∪ {𝑛𝑒𝑥𝑡}   

18:               𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← 𝑛𝑒𝑥𝑡  

19:          End While   

20:          Return 𝑝𝑎𝑡ℎ  

21: End function 

 
Figure 8. Ant Colony Algorithm Flowchart [86] 

This shows the pseudo-code of Ant Colony 

Optimization algorithm in algorithm eight: Time 

complexity of Ant Colony Optimization algorithm 

on the whole is O(I * K * N2) for different 

parameters where N is the number of nodes, K is the 

number of ants and I is the number of iterations. Now 

let's discuss the merits as well as demerits of Ant 

Colony Optimization (ACO)-based methods. 

1. Advantages: ACO technique excels in multi-agent 

systems for its capability to find globally optimal 

paths through positive feedback mechanisms. ACO 

is particularly effective in avoiding obstacles and 

finding the shortest path by optimizing its search 

space based on prior solutions. 
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2. Disadvantages: ACO can suffer from slow 

convergence and is computationally expensive, 

especially when applied to larger or highly complex 

environments. The process of depositing and 

evaporating pheromones requires many iterations to 

converge, making it time-consuming. 

3. Rationale for Selection: ACO is chosen for its 

strong performance in multi-robot systems and its 

effective use in dynamic environments, where real-

time obstacle avoidance is critical. 

 

6.5. Particle Swarm Optimization 

A very well-known particle swarm optimization 

(PSO) was created in 1995 by Eberhart and Kennedy 

[84]. It imitates the behavior of social animals but 

does not have a group leader to achieve its aims. For 

example, when a flock of birds goes out to forage for 

sustenance, it requires no leaders; birds are just 

following the nearest bird to the food source. The 

result, thus, desired is effective communication with 

the rest of the birds. Recently, PSO is applied to 

solving robot path planning problems. PSO 

flowchart is shown in figure 9 [97]. Researchers in 

[98] used PSO to model a solution for localization in 

robot navigation in a highly dynamic environment. 

It was proposed a multi-objective optimization for an 

obstacle avoidance problem using particle swarm 

optimization in unknown environment [99]. It was 

introduced a modified version of PSO for tackling 

cul-de-sac problems during obstacle avoidance in 

robots[100]. In the field of multi-robot search 

optimization, it was applied PSO-based algorithms 

in their local neighbourhood versions, obtaining 

results that outperformed the genetic algorithm 

[101]. Contrasted this method with PSO-based robot 

obstacle avoidance for known and unknown 

environment navigation [101]. Particle PSO 

successfully implemented humanoid robot 

navigation [103] and Aerial robot navigation in a 3D 

unknown environment [104]. The optimization is 

made through PSO method which gives the optimum 

path globally under the provided user path 

configuration [105]. It is proved through simulated 

results that the proposed scheme can generate the 

robot's path at very short time with no collisions 

from the start state to the goal state. It was compared 

applicable methods such as fuzzy logic, neural 

network, genetic algorithm, and PSO to report their 

individual findings on the best navigation path and 

bring out the mixed performance of fuzzy logic with 

PSO in travelling distance [106]. By employing a set 

of sampled paths with the PSO mechanism in [107], 

the cost associated with a coverage path is optimized 

in terms of quality and efficiency. The global best 

particle then updates the particle exploration with 

least cost picked from the camera view, which helps 

to overcome the problem of premature convergence. 

However, the time taken for the computations done 

by this technique is always high even with the above 

enhancements, especially so in the case of larger 

model sizes. 

Since particle swarm optimization also offers 

efficient and effective search optimal solutions from 

the specific search space, several articles have used 

it in mobile robotics path planning. They have 

already successfully applied it in different areas, 

including robotics, such as robotics navigation, 

obstacle detection and avoidance, and multi-robot 

search optimization. However, PSO has some 

drawbacks for instance it is not very effective in 

dynamic environments. To counter this, many 

researchers have come up with different modified 

versions of the PSO algorithms which include the 

dynamic adaptation of parameters, multi-output 

fitness function, and a local search. Some of these 

algorithms also employ other methods, for instance 

artificial neural networks in its operations. 

Traditional algorithms are outperformed by these 

algorithms in path length, obstacle avoidance, and 

computational efficiency.  

 
Figure 9. Particle Swarm Optimization Flowchart [97] 

Algorithm 9 offers the pseudocode for the particle 

swarm optimization algorithm. The overall time 

complexity of the Particle Swarm Optimization 

algorithm is O(N * L), where N is the number of 

particles in the swarm, and L is the path length 

(number of points).  

 
Algorithm 9 Particle Swarm Optimization for Path 

Planning 

 

1: Procedure PSOPathPlanning 

(𝑠𝑡𝑎𝑟𝑡, 𝑔𝑜𝑎𝑙, 𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑠) 

2:  𝑠𝑤𝑎𝑟𝑚 ←
𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝑆𝑤𝑎𝑟𝑚(𝑠𝑡𝑎𝑟𝑡, 𝑔𝑜𝑎𝑙, 𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑠)  

3:  For 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 ← 1 to 𝑚𝑎𝑥_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 do 



Shoaib Mohd Nasti,  Zahoor Ahmad Najar,  Mohammad Ahsan Chishti / IJCESEN 11-1(2025)10-39 

 

30 

 

4:     For 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 ← 1 to 𝑛𝑢𝑚_𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 do 
5:          𝑓𝑖𝑡𝑛𝑒𝑠𝑠 ←

          𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒. 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛)  

6:          𝑰𝒇 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 < 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒. 𝑏𝑒𝑠𝑡_𝑓𝑖𝑡𝑛𝑒𝑠𝑠 

then 
7:             𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒. 𝑏𝑒𝑠𝑡𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ←

              𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒. 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 
8:             𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒. 𝑏𝑒𝑠𝑡_𝑓𝑖𝑡𝑛𝑒𝑠𝑠 ← 𝑓𝑖𝑡𝑛𝑒𝑠𝑠  

9:          End if 

10:          If 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 < 𝑠𝑤𝑎𝑟𝑚. 𝑔𝑙𝑜𝑏𝑎𝑙𝑏𝑒𝑠𝑡𝑓𝑖𝑡𝑛𝑒𝑠𝑠
 

then         

                 𝑠𝑤𝑎𝑟𝑚. 𝑔𝑙𝑜𝑏𝑎𝑙𝑏𝑒𝑠𝑡𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛
←

                 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒. 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛   

11:                 𝑠𝑤𝑎𝑟𝑚. 𝑔𝑙𝑜𝑏𝑎𝑙_𝑏𝑒𝑠𝑡_𝑓𝑖𝑡𝑛𝑒𝑠𝑠 ←
𝑓𝑖𝑡𝑛𝑒𝑠𝑠   

12:          End if 

13:      End for 

14:      For 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 ← 1 to 𝑛𝑢𝑚_𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 do   
15:          𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒. 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 ← 𝑈𝑝𝑑𝑎𝑡𝑒𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 

16:         𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒. 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ← 𝑈𝑝𝑑𝑎𝑡𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛  

17:     End for 

18:  End for 

19:  𝑏𝑒𝑠𝑡_𝑝𝑎𝑡ℎ ← 𝑠𝑤𝑎𝑟𝑚. 𝑔𝑙𝑜𝑏𝑎𝑙_𝑏𝑒𝑠𝑡_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 

20:  Return 𝑏𝑒𝑠𝑡_𝑝𝑎𝑡ℎ 

21: End procedure 

 

Let us now examine the key advantages, 

disadvantages, and rationale for Particle Swarm 

Optimization (PSO).   

1. Advantages: PSO is effective in dynamic and 

noisy environments, providing robust solutions for 

mobile robot navigation and obstacle avoidance. 

PSO is computationally efficient and can quickly 

converge to a solution.  

2. Disadvantages: PSO may experience premature 

convergence, particularly in environments with 

many local minima. It requires careful parameter 

tuning to avoid suboptimal solutions. Also, it 

struggles in highly dynamic environments without 

modifications that incorporate adaptive strategies.  

3. Rationale for Selection: PSO is selected due to its 

balance between exploration and exploitation in path 

planning. It is well-suited for real-time applications 

and environments with moderate uncertainty.  

 

6.6. Bacterial Foraging Optimization 

A unique nature-inspired optimization methodology 

based on E.coli and M. Xan bacteria was proposed 

by Passino in 2002 [108]. These microorganisms 

hunt nutrient sources as they elevate the energy yield 

per unit time. According to Xiao-dan Liang et al., 

[109], such a robot bears semblance to the 

bacterium, governing optimal movement gratuitous 

of obstacle between starting and destination points in 

an ambit bounded by obstacles.  

It was first used bacterial foraging optimization for 

mobile robot navigation in a known environment 

[110]. It was enhanced classical bacterial foraging 

optimization, adding improvements to the planning 

of paths for wheeled robots [111]. It was derived a 

bacterial foraging optimization technique in a multi-

robot navigation environment [112].  

The bacterial foraging optimization technique is 

hence very applicable to path planning because it 

uses a non-linear fitness function for decision 

making [113]. Hence, it can be executed in a short 

time in a realistic complex real-world environment. 

The bacterial foraging optimization (BFO) 

algorithm is an optimization algorithm that draws its 

inspiration from nature and is used in mobile robot 

path planning applications. It is found to be efficient 

in finding the optimum path, whether in a 

predetermined or unknown environment or in a 

dynamic environment that may even change while 

the path is being drawn due to the movements of 

some obstacles.  

However, some of the disadvantages are the use of 

sensors for the mapping and detection of obstacles 

and the need for a non-linear fitness function that 

could involve an extensive amount of computation. 

Improvement over BFO has been suggested by a 

number of researchers, such as the introduction of 

new operators to enhance searchability and 

convergence speed or modifications to how bacteria 

update their positions by taking into consideration 

the information on the best possible position. The 

experimental results showed that these modified 

algorithms outperformed existing ones. 

Algorithm 10 shows the pseudo-code for the 

Bacterial Foraging Optimization algorithm. 

Time Complexity Analysis: 

Let N be the population size, L be the path length 

(number of points), I be the number of iterations, C 

be the maximum number of chemotaxis steps, and R 

be the maximum number of reproduction steps. 

Population Initialization: O(N * L) 

Fitness Evaluation (per bacterium, per iteration): 

O(L) (assuming path cost is computed in linear time) 

Chemotaxis Loop (per bacterium, per iteration): O(C 

* L) 

Reproduction Loop (per bacterium, per iteration): 

O(R * L) 

Elimination-Dispersal Loop (per bacterium, per 

iteration): O(L) The total time complexity for one 

iteration is O(N * (C * L + R * L + L)). 

Since the algorithm runs for I iterations, the overall 

time complexity is O(I * N * (C * L + R * L + L)). 

In practice, the number of chemotaxis steps C, 

reproduction steps R, and iterations I are often 

limited by maximum values or convergence criteria 

so that the complexity can be approximated as O(N 

* L). 

 
Algorithm 10  Bacterial Foraging Optimization for Path 

Planning 
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1: Procedure 

BFOPathPlanning (𝑠𝑡𝑎𝑟𝑡, 𝑔𝑜𝑎𝑙, 𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑠) 

2:  𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 ← 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝐵𝑎𝑐𝑡𝑒𝑟𝑖𝑎𝑙𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛()  

3:  𝑓𝑖𝑡𝑛𝑒𝑠𝑠 ← 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛) 

4:  For 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 ← 1 to 𝑚𝑎𝑥_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 do 

5:       𝑛𝑒𝑤_𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 ← {} 

6:      For 𝑏𝑎𝑐𝑡𝑒𝑟𝑖𝑢𝑚 ← 1 to 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛_𝑠𝑖𝑧𝑒 do 

7:           𝑛𝑒𝑤𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ←

            𝐶ℎ𝑒𝑚𝑜𝑡𝑎𝑥𝑖𝑠𝐿𝑜𝑜𝑝(𝑏𝑎𝑐𝑡𝑒𝑟𝑖𝑢𝑚. 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛)           

              𝑛𝑒𝑤𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ←

             𝑅𝑒𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝐿𝑜𝑜𝑝(𝑛𝑒𝑤_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛) 

8:           𝑛𝑒𝑤𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ←

          𝐸𝑙𝑖𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝐷𝑖𝑠𝑝𝑒𝑟𝑠𝑎𝑙𝐿𝑜𝑜𝑝(𝑛𝑒𝑤_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛)     

           𝑛𝑒𝑤𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 ← 𝑛𝑒𝑤𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 ∪

           {𝑛𝑒𝑤_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛} 

9:       End for  

10:       𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 ← 𝑛𝑒𝑤_𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛   

11:       𝑓𝑖𝑡𝑛𝑒𝑠𝑠 ← 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛) 

12:  End for 

13:  𝑏𝑒𝑠𝑡_𝑝𝑎𝑡ℎ ←
𝐺𝑒𝑡𝐵𝑒𝑠𝑡𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛, 𝑓𝑖𝑡𝑛𝑒𝑠𝑠) 

14:  Return 𝑏𝑒𝑠𝑡_𝑝𝑎𝑡ℎ 

15:  Function ChemotaxisLoop(𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛) 

16:      For 𝑠𝑡𝑒𝑝 ← 1 to 𝑚𝑎𝑥_𝑐ℎ𝑒𝑚𝑜𝑡𝑎𝑥𝑖𝑠_𝑠𝑡𝑒𝑝𝑠 do 

17:              𝑛𝑒𝑤𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ←

               𝑇𝑢𝑚𝑏𝑙𝑒𝑂𝑟𝑆𝑤𝑖𝑚(𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛, 𝑓𝑖𝑡𝑛𝑒𝑠𝑠)          

                  𝒊𝒇 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑛𝑒𝑤𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛) <

                   𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛) 𝒕𝒉𝒆𝒏   

18:                 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ← 𝑛𝑒𝑤_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛     

19:              End if 

20:          End for 

21:           Return 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛  

22:  End function 

23:  Function ReproductionLoop𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛   

24       𝑛𝑒𝑤𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ←

       𝑅𝑒𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔(𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛, 𝑓𝑖𝑡𝑛𝑒𝑠𝑠)                  

            𝒓𝒆𝒕𝒖𝒓𝒏 𝑛𝑒𝑤_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛  

25:  End function 

26:  Function EliminationDispersalLoop(𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛)  

27    𝑛𝑒𝑤𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ←

   𝐸𝑙𝑖𝑚𝑖𝑛𝑎𝑡𝑒𝑂𝑟𝐷𝑖𝑠𝑝𝑒𝑟𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛, 𝑓𝑖𝑡𝑛𝑒𝑠𝑠)      

   𝒓𝒆𝒕𝒖𝒓𝒏 𝑛𝑒𝑤_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 

28:   End function  

 

Let us now examine the key advantages, 

disadvantages, and rationale for Bacterial Foraging 

Optimization (BFO). 

1. Advantages: BFO can balance exploration and 

exploitation, preventing the algorithm from getting 

trapped in local minima. 

2. Disadvantages: The convergence rate of BFO is 

relatively slow, particularly in environments with 

many local minima. Also, BFO relies on a non-linear 

fitness function, which can require significant 

computational resources, especially when applied to 

larger environments or complex tasks. 

3. Rationale for Selection: BFO was chosen for its 

ability to handle non-linear, multi-objective 

optimization problems in dynamic environments, 

making it highly suitable for mobile robot navigation 

tasks in unknown environments. 

The advantages and disadvantages of heuristic 

approaches are presented in table 3. 

 
 

 

Table 2. Advantages & Disadvantages of Classical Approach  
S.No   Technique   Advantages  Disadvantages 

1   Potential Field 

Method  

 Simple and easy to implement, requiring 

no complex algorithms. It also has 

relatively simple computations, making it 

suitable for low-powered computers or 

embedded systems. Moreover, it is fast and 

efficient, making it ideal for applications 

that require speed.  

 One of the major drawbacks is the possibility 

of encountering local minima, leading to the 

algorithm getting stuck in a particular region 

without finding an optimal solution. 

Additionally, it does not consider dynamic 

changes in the environment, such as obstacles 

or moving objects, which may cause 

unexpected results. 

 2   Roadmap 

Method  

 Requires less time to reach goal location 

using Visibility graph and good collision 

avoidance capability in Voronoi graph 

method. Moreover, the roadmap method 

can handle complex and high-dimensional 

spaces and multiple start and goal points. It 

also has good computational efficiency.  

 The robot collision problem in Visibility 

Graph approach, and non-optimality and non-

convergence in Voronoi Graph method. 

Moreover, some other limitations include the 

computational complexity of constructing the 

roadmap, the difficulty of handling narrow 

passages and obstacles, and sensitivity to the 

selection of roadmap parameters.  

3   Cell 

Decomposition 

Method  

 Very fast convergent. Straightforward to 

implement. It can handle complex 

environments and can provide a global 

path.  

 High-dimensional configuration spaces 

require intensive computation. It also 

requires a lot of memory and can be difficult 

to scale for large environments. 
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Table 3. Advantages & Disadvantages of Heuristic Approach 
S.No   Technique    

Merits   

 

Demerits  

1   Neural Network 

Technique 

 It is a commonly used path planning 

technique to learn and model complex and 

nonlinear relationships. 

Good at learning complex, non-linear 

relationships between inputs and outputs. 

Can generalize well to unseen data. 

Can handle noisy or incomplete data. 

Can be trained using online or offline 

methods. 

Can learn from multiple inputs and multiple 

outputs simultaneously. 

Requires a lot of data to train accurately. 

Can be slow to train. 

Can suffer from overfitting or underfitting if not 

properly tuned. 

Can be difficult to interpret how the network arrived at 

a particular decision. 

Time complexity is high, and convergence occurs very 

soon. 

Moreover, developing a neural network architecture to 

describe a dynamic environment is challenging. 

2 Fuzzy Logic 

Technique 

Can handle imprecise or uncertain data. 

Can deal with incomplete or ambiguous 

information. 

Can be applied to a wide range of problems. 

Can be easily integrated with other 

techniques. 

Provides a transparent and interpretable way 

of decision making. 

It is ideal for complex autonomous mobile 

robots. 

Can be computationally expensive. 

Requires domain expertise in order to define the fuzzy 

sets and rules properly. 

Can be sensitive to changes in input scaling or 

fuzzification methods. 

May require tuning of the fuzzy sets and rules in order 

to achieve optimal results. 

May not be suitable for problems where precise control 

or decision-making is required. 

3. Genetic 

Algorithm 

It is robust, and it has high search efficiency. 

Can handle non-linear and non-

differentiable functions. 

Can find the global optimum rather than 

getting trapped in a local optimum. 

Can provide a diverse set of solutions. 

Can handle noisy or incomplete data. 

Can work well for large, complex problems. 

Moreover, it is also able to solve problems 

with multiple objectives. 

Can be computationally expensive. 

 Can get trapped in local optima if the population size 

or mutation rate is not properly tuned. 

Can take a long time to converge on an optimal 

solution. 

May require a large amount of computational 

resources in order to explore the solution space 

effectively. 

Can suffer from premature convergence if diversity is 

not maintained in the population. 

4 Ant Colony 

Optimization 

Can handle non-linear and non-

differentiable functions. 

Can find the global optimum rather than 

getting trapped in a local optimum. 

Can handle multiple objective functions. 

Can provide a diverse set of solutions. 

Can work well for large, complex problems. 

Can adapt to dynamic environments. 

Can be computationally expensive. 

May require a large number of iterations to converge 

on an optimal solution. 

May require domain expertise in order to set the 

parameters appropriately. 

Can be sensitive to changes in the environment or 

problem formulation. 

Can suffer from premature convergence if diversity is 

not maintained in the population. 

5 Particle Swarm 

Optimization 

Can handle non-linear and non-

differentiable functions. 

Can find the global optimum rather than 

getting trapped in a local optimum. 

Can handle multiple objective functions. 

Can provide a diverse set of solutions. 

Can work well for large, complex problems. 

Can adapt to dynamic environments. 

Can be computationall expensive. May 

require a large  number of iterations to converge on an 

optimal solution. 

May require tuning of the swarm parameters in order 

to achieve optimal results. 

Can be sensitive to changes in the environment or 

problem formulation. 

Can suffer from premature convergence if diversity is 

not maintained in the population. 

6 Bacterial 

Foraging 

Technique 

Efficient optimization of multimodal, non-

convex, and noisy functions. 

Can handle various optimization problems, 

including multi objective optimization. 

Requires fewer evaluations of the objective 

function, computationally cost-effective. 

Balances between exploration and 

exploitation of the search space to prevent 

getting stuck in local minima. 

Slow convergence rate, especially in complex 

problems with many local minima. 

Lacks a strong theoretical foundation, which can make 

it difficult to understand and analyze the behaviour of 

the algorithm. 

Performance can be sensitive to parameter values, and 

the optimal values can be problem-dependent. 

 

While heuristic techniques demonstrate substantial 

advantages, particularly in dealing with dynamic and 

uncertain environments, they also introduce 

complexities such as high memory and computational 

costs. These factors make it essential to evaluate their 

effectiveness alongside classical techniques. The 

following section discusses how these methods 

compare in terms of real-world applicability, 

highlighting their strengths and weaknesses across 

different environments. 
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7. Discussion 

 
The comparison of heuristic and classical approaches 

is presented in table 4. The implementation of 

classical approaches is easy. However, classical 

approaches have several drawbacks, including the 

inability to handle maximum uncertainty, entrapment 

in local minima, the need for exact environmental 

information, and so on. When using the classical 

technique, there is always a question about whether a 

solution will be found or whether such a solution 

exists. However, many researchers have attempted to 

improve the classical algorithms. However, these 

strategies do not outperform heuristic approaches in 

real-world problems. Moreover, classical approaches 

require initial information about the working 

environment. So, they are often deployed for 

navigation in a known environment. Furthermore, 

classical algorithms have low memory requirements, 

which makes them common and appropriate 

algorithms for low cost mobile robots. On the 

contrary, heuristic techniques that can deal with high 

levels of uncertainty are used for navigation in 

unknown environments. Heuristic techniques are 

better than classical techniques. However, they also 

have several disadvantages, such as being highly 

time-consuming and large memory requirements, 

which are incompatible with low-cost robots. But in 

terms of pure classical approaches, the potential field 

method outperforms roadmap and cell decomposition 

methods in known environments for navigation. Still, 

the hybrid approach of cell decomposition has been 

used significantly more than that of potential field 

and roadmap method in recent years. Today, heuristic 

techniques are gaining more popularity and usage 

than classical techniques used in indoors or outdoors 

because they could be very efficient in known and 

unknown environments. From these, however, many 

heuristic approaches were developed and used in an 

unknown environment where dynamically moving 

obstacles are present. Moreover, newly developed 

heuristic methods such as bacterial foraging 

optimization algorithm and particle swarm 

optimization have also been successful in an 

unknown environment where the movement of 

obstacles is dynamic. Many researchers have used the 

hybrid approach to deal with complex problems. 

Additionally, the review finds the establishment of 

hybridization of algorithms with the most suitable 

optimization criteria to be the most convenient way 

of performance enhancement. Nevertheless, it may be 

possible to achieve various optimal results by 

hybridizing algorithms. Rather, challenges may arise 

when attempting to hybridize incompatible 

approaches. The yield from combining two 

incompatible algorithms could be even worse than 

employing each separately.  

Combined approaches have come up with state-of-

the-art mobile robot techniques for navigation which 

have paved way for drastic improvement in path 

planning as far as dynamic and unknown 

environments are concerned. However, existing 

techniques like Potential Field Method (PFM), 

Roadmap Methods and Cell Decomposition are quite 

static in nature, and they show limitations in dynamic 

environments like local minima as well as having 

large computational complexity in high-dimensional 

spaces. Innovations in hybrid methods using heuristic 

algorithms such as Particle Swarm Optimization 

(PSO), Genetic Algorithms (GA), and Ant Colony 

Optimization (ACO) have shown exceptional 

promise in making such configurations adaptable, 

computationally efficient and globally optimizing 

compared to classical methods. Such a technique 

under consideration is Membrane Evolutionary 

Artificial Potential Field (memEAPF), which 

combines membrane computing with genetic 

algorithms. This technique surpasses the classical 

methodologies, such as PFM and Cell 

Decomposition, in dealing with local minima very 

effectively while providing a very long path and 

enhanced safety and computational efficiency. The 

memEAPF technique surpasses other methods in case 

of dynamic environments because it catered for real-

time planning constraints and lesser computation 

times. PSO has also been hybridized with Artificial 

Neural Networks (ANNs) to even augment the 

adaptability and performance efficiency of 

navigation systems within dynamic environments. 

PSO effectively and globally optimizes such 

navigation applications in the resolution of cul-de-sac 

type of problems typically encountered during the 

obstacle avoidance tasks. ANNs learned with 

dynamic environments typical of using investment 

strategies over time have thus greatly enhanced these 

systems' efficiency and applicability for various uses 

in mobile robot navigation. The newest development 

also incorporates Fuzzy Logic systems with PSO, 

showing great promise for optimized navigation 

paths even in unknown environments; for example, 

such fuzzy systems can be used to optimize path 

efficiency because they can treat uncertainty or 

imprecise data very well. After discussing the of 

classical and heuristic approaches, it is clear that 

choosing the right method is crucial for effective 

robot navigation. The following conclusion will 

summarize these insights and suggest areas for future 

research. 

 

8. Conclusion and Future Research Directions 
 

So, this paper has studied classical and heuristic path-

planning techniques of mobile robots in known and 

unknown environments from comprehensive 
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Table 4 Comparison of Classical and Heuristic Path 

Planning 

S.No. Criteria Classical 

Path 

Planning 

Heuristic Path 

Planning 

1   Efficiency in 

Known 

Environments  

 High   Medium  

2   Efficiency in 

Unknown 

Environments  

 Low   High  

3   Ability to 

handle 

uncertainty  

 Limited   High 

4   Ability to 

avoid local 

minima  

 Limited   High  

5   Application 

Range  

 Limited   Wide  

6   Intelligence   Low   High  

 

 

perspectives. Our findings say that path-planning 

algorithms should be selected for a particular 

operation and needs to stress on the parallelism to be 

balanced against computation efficiency, 

adaptability, and real-time operation in dynamic 

environments. Classical algorithms are found to be 

well-suited for static and structured environments, 

delivering computationally efficient solutions. 

However, their limitations in real-time adaptability 

and dealing with dynamic obstacles limit their 

applicability in unknown environments. Heuristic 

approaches demonstrated better results in 

environments with high uncertainty. These 

algorithms are exceptional in solving any problem 

and are able to emerge with strong solutions in 

dynamic and unstructured environments in which 

conventional methods cannot provide a solution. 

Their computational intensity can, however, pose 

hurdles for applications intending to operate in real-

time and at a large scale. Again, the paper emphasized 

that more studies were continuing to show the 

increasing demand for hybrid approaches comprising 

classical and heuristic methods. Hybrid approaches 

not only balance the computing efficiency of classical 

algorithms with the adaptability of heuristic methods, 

but they also offer increased performance in terms of 

path optimisation, obstacle avoidance, and 

scalability. These techniques provide an appropriate 

solution for applications in autonomous robots, 

multi-robot coordination, and complex industrial 

environments where dynamic, real-time decision-

making is crucial. The paper also emphasised the 

importance of optimisation criteria such as path 

length, smoothness, safety, and energy efficiency. 

These criteria are particularly significant in mission-

critical applications such as search-and-rescue, where 

the ability to navigate unknown environments 

quickly and safely can be a matter of life and death. 

In industrial automation, energy efficient path 

planning becomes essential, particularly for long-

duration or resource-constrained missions. The future 

of mobile robot navigation lies in scalable, adaptive, 

and computationally efficient solutions capable of 

navigating the increasing complexity and dynamism 

of real-world environments. The scope for further 

research in mobile robot path planning holds 

tremendous potential for advancing the field of 

robotics. The following key areas represent 

promising avenues for future investigation and 

development: 

1. Real-world Implementation and Testing: Future 

research should focus on bridging the gap between 

simulation and real-world application. This includes 

building and testing algorithms in complex, 

unpredictable environments that closely replicate the 

real-world scenario. Researchers should examine 

aspects such as different terrain, dynamic obstacles 

and changing weather conditions. Long-term studies 

in different environments will be important to 

validate the robustness and adaptability of path-

planning algorithms. 

2. Multi-robot Systems and Swarm Intelligence: As 

the deployment of numerous robots becomes more 

frequent, there’s a pressing need for advanced 

algorithms that can efficiently manage swarms of 

robots. This research direction should examine 

decentralized decision-making processes, task 

distribution mechanisms, and collision avoidance 

among robots. Investigators should also investigate 

ways to maximize the collective behaviour of robot 

swarms to achieve difficult tasks that single robots 

cannot accomplish. 

3. Hybrid Algorithms and Fusion of Techniques: The 

development of hybrid algorithms that combine the 

strengths of classical and heuristic approaches is a 

viable route for research. Scientists should research 

creative approaches to merge algorithms, which 

could lead to algorithms that are both 

computationally efficient and capable of handling 

complex, dynamic environments. 

4. Advanced Machine Learning incorporation: The 

incorporation of advanced machine learning 

techniques into path planning algorithms offers 

remarkable possibilities. Research should focus on 

utilizing reinforcement learning for adaptive path 

planning, applying deep learning for increased 

environmental understanding, and studying transfer 

learning to apply knowledge obtained in one 

environment to different environments. The 

development of algorithms that can learn and 

improve their performance over time in varying 

conditions will be particularly valuable. 
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5. Energy-aware and Resource-efficient Planning: As 

mobile robots are increasingly deployed for long-

duration missions, energy conservation becomes 

critical. Future research should build algorithms that 

not only optimize for path length and safety but also 

account for energy consumption. This could require 

establishing precise energy models of robots, 

incorporating terrain-dependent energy costs, and 

developing multi-objective optimization techniques 

that balance energy efficiency with other 

performance objectives. 

6. Human-Robot Interaction and Social Navigation: 

With robots increasingly working in human-

populated situations, research into socially aware 

navigation is essential. This entails designing 

algorithms that can predict human behaviour and 

handle dynamic environments without causing 

discomfort to humans. Researchers should also 

explore how robots can effectively communicate 

their intentions to humans and how human feedback 

can be incorporated into path-planning decisions in 

real-time. 

7. Cognitive Mapping and Semantic Understanding: 

Future research should focus on enabling robots to 

create more sophisticated representations of their 

environments. This includes developing algorithms 

for semantic mapping, where robots not only build 

geometric maps but also understand the function and 

context of different spaces. Research in this area 

could lead to improved decision-making in path 

planning, allowing robots to prioritize paths based on 

a better understanding of their environment. 

8. Bio-inspired and Novel Optimization Techniques: 

There’s significant potential in investigating new bio-

inspired algorithms for path planning. Researchers 

should examine algorithms inspired by various 

biological systems beyond the typically employed ant 

colony or particle swarm optimizations. This could 

include studying the navigation strategies of 

migratory birds, the foraging behaviour of other 

insects, or even the decision-making processes in 

microbial communities. 

9. Integration with Emerging Technologies: Future 

studies should also investigate how path planning 

algorithms might integrate with and take advantage 

of emerging technologies. This involves examining 

how 5G and future communication technologies will 

enable more effective multi-robot coordination, how 

edge computing can be used for more responsive 

planning, and how developments in sensor 

technologies can be incorporated to increase 

environmental perception and mapping. 

By pursuing these research directions, the field of 

mobile robot path planning can make significant 

advancements towards developing more intelligent 

and efficient robots capable of functioning 

independently in increasingly complex and dynamic 

environments. 
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