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Abstract:  
 

Classification of brain tumor plays a vital role in medical imaging for accurate diagnosis, 

treatment, and monitoring. Deep learning approaches have gained significant traction in 

this industry because of their ability to extract relevant features from medical images. The 

research suggests employing an ensemble classifier with a weighted voting mechanism 

to categorize glial cell brain malignancies such as Astrocytoma, Glioblastoma 

multiforme, Oligodendroglioma, and Ependymoma. The proposed ensemble technique 

employs three main classifiers: Convolutional Neural Network (CNN), Deep 

Convolutional Long Short Term Memory (C-LSTM), and Deep Convolutional Neural 

Network + Conditional Random Fields (DCNN+CRF). Deep learning algorithms require 

a huge amount of input data to avoid overfitting.  The Adaptive Progressive 

Convolutional Generative Adversarial Networks (APCGANs) are used to produce 

realistic artificial images to efficiently train the proposed methodology. Overall, the 

proposed ensemble method with weighted voting strategy consistently outperforms the 

other tested algorithms (CNN, C-LSTM, and DCNN+CRF). Ensemble method attained 

an accuracy of 99.4 %, recall - 99.1%, precision- 98.0%, and F1-score of 99.2%. 

Ensemble method consistently demonstrates superior performance in accurately 

classifying brain tumors, making it a promising algorithm for brain tumor analysis tasks. 

 

1. Introduction 
 

In 2020, World Health Organization (WHO) 

indicators demonstrate that there are 308,102 

individuals identified with brain tumors. Among all 

central nervous system tumors Brain tumors account 

for 85% to 90%. Brain tumors are graded 10th 

leading sources of death in adults and kids. In 2020 

it is assessed that 251,329 people were deceased with 

primary brain tumors worldwide [1].  Brain tumors 

are the utmost perplexing and multifaceted medical 

conditions to treat. Generally, they fall into two 

categories: primary and metastatic. Primary tumors 

originate within the brain, while metastatic tumors, 

in contrast, develop when cancer cells migrate from 

various parts of the body to the brain. The glial cells 

in the central nervous system, also known as 

neuroglia, provide support and protection to nerve 

cells. The cells are in different shapes, sizes, and 

categories, each with its own function. Glia is 

responsible for both the structural and physiological 

support of the nervous system. The neuroglia wipes 

deceased neurons, synchronize nerve impulses and 

normalize brain metabolism [2]. The tumors in the 

brain glial cells are termed as gliomas. Gliomas are 

the utmost common and death causing primary 

tumors. Gliomas are categorized in to diverse classes 

based on the glial cell it instigates from and their 

individualities [3]  

Astrocytoma, Glioblastoma multiforme, 

Medulloblastoma, Oligodendroglioma and 

Ependymoma are the categories of glial cell tumors. 

Astrocytoma belongs to a collection of brain tumors 

that instigate from star shaped cells called astrocytes. 

The grading of Astrocytomas depends on factors, 

like location, size and how far the tumor cells have 

spread. Grade I and II Astrocytomas grow slowly. 

Usually stay confined to areas of the brain. In 
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contrast Grade III and IV Astrocytomas are highly 

destructive. Spread rapidly causing neurological 

symptoms [4]. Glioblastoma multiforme (GBM) is 

the most common type of brain tumor, accounting 

for approximately half of all cases. It is characterized 

by tumor growth, patterns of growth and a high 

mortality rate. GBM tumors typically develop within 

the hemispheres of the brain. They are particularly 

challenging to treat due to their invasive nature. 

Medulloblastoma is the menacing brain tumor in 

children representing nearly 20% of all infantile 

brain tumors. It originates in the cerebellum. Often 

presents with symptoms such as headaches, 

vomiting and difficulties with coordination. 

Additionally it can lead to hydrocephalus—a 

condition characterized by an accumulation of fluid, 

in the brain. The type of brain tumor that develops 

from oligodendrocytes is called an 

oligodendroglioma. These cells play an important 

role in creating the myelin sheath that covers nerve 

fibers. This particular tumor tends to grow and 

commonly affects the temporal lobes of the brain. 

Symptoms typically include seizures, headaches and 

various neurological problems [5]. Ependymomas 

are rare brain tumors that descend from ependymal 

cells lining the ventricles and spinal cord. They can 

manifest at any age and may exhibit a broad 

spectrum of neurological symptoms, contingent 

upon their location within the brain or spinal cord. 

For the purpose of diagnosis, prognosis, and 

treatment planning, it is essential to exactly 

categorize these brain tumors. While MRI and CT 

scans serve as ordinary instruments for visualizing 

brain tumors and evaluating their size, location, and 

morphology, advanced imaging modalities like 

diffusion tensor imaging (DTI) and perfusion 

imaging proffer additional glimpses into tumor 

growth and blood flow patterns. Machine learning 

techniques, predominantly convolutional neural 

networks (CNNs), have the capability in 

automatically categorizing brain cancers based on 

MRI data. Tough tumor classification is achieved by 

these techniques, which make advantage of MRI 

scan properties such texture, shape, and intensity [6]. 

By finding pertinent features in MRI scans, deep 

learning—and CNNs in particular—has been helpful 

in improving the classification accuracy of brain 

cancers. Ensemble learning methods, combines 

predictions from multiple models, have also proven 

effective in enhancing the precision of brain tumor 

classification. Using Transfer learning, the pre-

trained models are adapted for new tasks, further 

refines brain tumor categorization [7]. Recognizing 

brain tumors accurately is critical for effective 

treatment planning and eventually improving patient 

outcomes. Advanced imaging technologies, coupled 

with machine learning, deep learning, and ensemble 

learning, show promising ways to improve the 

accuracy of brain tumor classification. 

Ongoing research is required to develop even more 

accurate and robust categorization algorithms that 

can help doctors make well-informed decisions 

about patient treatment. Brain tumor forms such as 

Astrocytoma, Glioblastoma multiforme, 

Oligodendroglioma, and Ependymoma require a mix 

of imaging techniques, histological examination, 

and genetic study. These techniques provide useful 

information for diagnosing and determining the 

precise tumor type and grade, which aids in 

treatment decisions and prognosis evaluation. The 

proposed effort intends to build on existing research 

and approaches to improve the accuracy and 

heftiness of categorization models. Even with the 

multiple proposed strategies, distinguishing between 

different tumor classifications remains a significant 

difficulty. Furthermore, more efficient and scalable 

approaches for dealing with larger datasets are 

required. 

Based on the existing literature, multiple researchers 

have attempted brain tumor classification, outlining 

various groups such as glioma, meningioma, and 

pituitary tumors. [8-11]Others have pursued binary 

classification, distinguishing benign from malignant 

tumors [12-15]. Notably, some tumors originate in 

glial cells, including Astrocytoma, Glioblastoma 

multiforme, Medulloblastoma, Oligodendroglioma, 

and Ependymomas, and these can be particularly 

perilous, often resulting in fatality. Medulloblastoma 

is particularly prevalent in children. Our research is 

specifically centered on the classification of adult 

glial cell tumors. 

The primary objective of this ensemble model, 

featuring APCGANs, is to provide a methodology 

that facilitates the multiclass classification of glial 

cell tumors by analysing MRI sequences. The key 

components of our anticipated model are as follows: 

1. We propose an efficient method for 

classifying glial cell tumors into subtypes, including 

Astrocytoma, Glioblastoma multiforme, 

Oligodendroglioma, and Ependymomas. 

2. Pre-processing is undertaken to standardize 

intensities, and a registration algorithm is employed 

to align voxel size and orientation. 

3. Our method leverages multimodal data, 

specifically a 4D tensor encompassing all four MRI 

modalities for a single patient. 

4. To address the issue of limited data, we 

employ Adaptive Progressive Convolutional 

Generative Adversarial Networks (APCGAN) to 

generate realistic synthetic images. 

5. We employ an ensemble approach, 

combining CNN, C-LSTM, and DCNN+CRF with a 

weighted voting method to perform classification. 
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Overall, our proposed ensemble model with 

APCGANs for glial cell brain tumor classification is 

to advance the accuracy, robustness, efficiency, and 

scalability of the classification models to enable 

more accurate diagnosis and treatment planning for 

patients.  

 

2. Related Works and Motivation 

 

Currently, deep learning techniques are being 

explored to cultivate more exact and well-organized 

methods for classifying brain tumors. For example, 

researchers are using convolutional neural networks 

(CNNs) which examine MRI scans and 

differentiates tumors with high accuracy. In terms of 

research, plentiful studies have been performed to 

develop and refine the classification of these brain 

tumors. For example, a 2016 study published in 

Neuro-Oncology used a combination of molecular 

and imaging data to develop a new classification 

system for gliomas. Another study published in 

Scientific Reports in 2020 used deep learning 

techniques to classify gliomas based on MRI 

imaging data. Overall, the classification of 

Astrocytoma, Glioblastoma multiforme, 

Medulloblastoma, Oligodendroglioma, and 

Ependymomas has evolved significantly over the 

years. With continued research and technological 

advancements, it is likely that more accurate and 

efficient methods for classification will be 

developed in the future. 

Currently, many researchers are using an ensemble 

learning strategy because it gives better results 

compared to the methods we use now. Zahoor et al. 

[8] introduced the DHL-DC framework for the 

analysis of MR images to detect tumors. The 

framework contains two phases. As a first step, 

ensemble classifiers with deep-boosted features 

space (DBFS-EC) are offered in identifying tumors. 

As a second step hybrid features fusion grounded 

brain tumor detection (HFF-BTC) is implemented in 

the direction of categorizing tumors into different 

classes. Authors fused static and dynamic features to 

create a feature space. The dynamic features are 

excavated with CNN and the static attributes are 

mined with a histogram of gradient feature 

descriptors. The author’s mentioned that the 

framework outclassed the state-of-the-art procedures 

by an accurateness of 99.20%. 

In reference [9], a study unraveled a groundbreaking 

hybrid methodology for categorizing tumors within 

3D MR images. Initially, the input images undergo a 

transformative normalization process using a min-

max normalization approach, followed by a dynamic 

resizing technique to amplify performance. The 

ingenious researchers crafted a fusion model that 

melds a 3D CNN with Long Short Term Memory 

(LSTM) networks, where every layer enveloped by 

a time-distributed function. Significantly, all MRI 

sequences are amalgamated into a singular input 

dataset, defying convention. To evaluate the awe-

inspiring efficacy of this process, they harnessed K-

fold cross-validation, delving into an array of K 

values, and the outcome was nothing short of 

astonishing—an accuracy of a mind-boggling 

98.90%. In reference [10], another study divulged an 

enthralling exploration, where the ingenious 

researchers harnessed the power of a available 

Inceptionv3 model to extract useful attributes from 

the data, thereby unfurling a score vector of 

extraordinary proportions. This score vector, a 

veritable treasure trove of information, was then 

thrust into the depths of a quantum variational 

network, where it unfurled its enigmatic prowess in 

classifying tumors into multiple categories. In 

addition to this enthralling feat, the authors deployed 

a formidable model known as SegNetwork, a master 

of its craft, capable of delineating and isolating the 

healthy tissues from the tumor region. Authors in 

[11] implemented preprocessing and post processing 

with MRA-UNet to achieve higher accurateness. 

Authors in [12] employed a transfer learning strategy 

for tumor detection. Preprocessing was utilized as 

the initial step, including data augmentation for the 

input data. Multiple available models were 

employed to excerpt features, and these traits were 

then passed to various classifiers. The accuracy of 

feature extractor and classifier was evaluated by 

means of 10-fold cross-validation, and concluded 

that VGG19-SVM yielded highest performance. In 

[13], a hybrid deep learning model combining CNN 

and LSTM was proposed. Preprocessing involved 

normalization, resizing, extreme points are 

calculated to crop images and noise removal through 

erosion and dilation. The features are extracted with 

CNN and a hybrid CNN-LSTM method was 

employed for binary classification. This hybrid 

model reached an accuracy of 99.1%. 

Murthy et al. [14] proposed an ensemble 

classification methodology for tumor classification. 

The methodology includes preprocessing of the 

images through the application of a median filter to 

eradicate blare and histogram equalization for 

contrast improvement. Authors introduce a 

Segmentation using an Adaptive Fuzzy Deformable 

Fusion (AFDF) approach that associates snake 

deformable approach in addition to Fuzzy C-Means 

Clustering (FCM). For the purposes of classification, 

authors implemented Ensemble Classification with 

Optimized Convolutional Neural Network with 

(OCNN-EC). In a similar vein, Kriti Raj et al. [15] 

propose an ensemble scheme for multi-class 

categorization of tumors, specifically Meningioma, 

Astrocytoma, Oligodendroglioma and Glioblastoma 
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multiforme. The authors employ fusion of feature 

mining approaches, Discrete Wavelet Transform 

(DWT) with Gradient Grey Level Co-occurrence 

Matrix (GLCM), and other based on Grey Level Run 

Length Matrix (GLRLM), DWT and Local Binary 

Pattern (LBP). 

Furthermore, S.A. Nawaz et al. [16] develop a 

framework for the classification of tumors in to 

multiple classes. Authors enhance MR images using 

a Kernel-Sobel-Low Pass (K-S-L) filter. To generate 

Region of interest (ROI) segmentation is 

accomplished through Threshold and clustering-

based methods. Gradient features and Texture 

features are mined from the ROI to create a feature 

vector. Choose the most significant attributes from 

the feature-vector employing the correlation-based 

feature selection (CFS) procedure. These features 

are fed to multiple classifiers (MLP, J48, MB, and 

RT) through 10-fold cross-validation to access the 

performance. S. Asif et al. [17] presented a Transfer 

learning methodology in which four pre-trained 

models are utilized to excerpt features along with 

weights from a large dataset and these learning’s are 

used to categorize tumors from a small dataset. They 

used multiple optimizers and 3 dense layers with a 

soft-max classifier. The authors implemented data 

augmentation and hyper parameter tuning to attain 

extraordinary performance. 

Suchismita Das et al. [18] introduced a two-step 

ensemble deep architecture for tumor subdivision. In 

the first step, all the MRI modalities (FLAIR, T1, 

T1ce, and T2) are passed as input to the three diverse 

schematic segmentation algorithms (Encoder-

Decoder, SegNet, and UNet) for generating feature 

maps. The feature maps were fused to produce a 

single maximized feature map to carry out 

segmentation. The model has been validated on 

TICA 2017 dataset. Kang, J et al. [19] designed a 

completely programmed fusion approach for brain 

tumor grouping. The classification is performed in 

three phases. 1. Deep features are extracted 

employing pre-trained models. 2. Topmost three 

features are carefully chosen using machine learning 

models. 3. Created an ensemble model to achieve 

perfect classification. The model is assessed on two 

public datasets. Garge et al. [20] wished for a binary 

classification of tumors into benign or malignant. To 

reach this, the authors used a hybrid ensemble 

approach by combing 3 base learners (KNN, RF, and 

DT) with the majority voting method. Images are 

segmented with Otsu’s thresholding process and 

thirteen features are mined using PCA and SWT 

(stationary wavelet transforms). 

P. Ramya et al. [21] implemented an ensemble 

learning method to accomplish segmentation and for 

further classification. The process utilized laplacian 

cellular automata filter to eradicate the Gaussian 

noise, the instrumental noise that may be added 

during scanning. To perform segmentation authors 

formed an ensemble of three clustering algorithms 

(K-means, Gaussian mixture model clustering, and 

Fuzzy based clustering) using the consensus 

ensemble function. A deep super classifier is 

proposed to organize the images into multiple 

classes. The proposal is tested on TICA 2015 

dataset. In their study, Rezae et al. [22] projected an 

ensemble classifier with weighted voting method. 

The authors employed median and Wiener filters for 

the purposes of de-noising and image enhancement. 

In order to segment tumors from healthy tissues, a 

linear kernel function along with support vector 

machine (SVM) was involved. Statistical features 

are mined by means of Dominant Gray Level Run 

Length Matrix (DRLM), Gray Level Co-occurrence 

Matrix (GLCM), and Bag of Words (BoW) 

approach. Differential Evolution framework was 

applied to determine essential features from the 

feature vector. An ensemble classifier was 

constructed using three base learners, namely 

weighted kernel SVM, histogram intersection kernel 

SVM and K-nearest neighbors (KNN). 

Classification was performed using the weighted 

voting method. Several authors have implemented 

innumerable ways and means to address brain tumor 

classification.  

 

3. Proposed Method 

 

Over the last decade, numerous researchers have 

increasingly embraced deep learning techniques to 

address challenges in image classification. Among 

these methods, Convolutional Neural Networks 

(CNN) stand out as the most successful and efficient 

approach in the field of computer vision. CNN finds 

application in diverse areas such as pattern 

recognition, object detection, picture segmentation, 

and image classification. The remarkable 

achievements of CNN have prompted many 

researchers to conduct their studies using this 

methodology, resulting in a surge of simulations in 

recent literature [23]. In this work, we propose a 

novel approach that leverages an ensemble of three 

distinct classifiers: CNN, C-LSTM, and DCNN with 

CRF, employing a weighted voting strategy for 

optimal results. Figure 1 illustrates the architecture 

of the proposed method. The ensemble method is 

aimed to combine the results of three classifiers 

using a weighted voting mechanism, ensuring 

accuracy and precision in the final outcomes. 

The workflow starts with a pre-processing step, 

which consist of intensity normalization and the 

merging of all four modalities (T1, T2, T1CE, and 

FLAIR). This merging results in multimodal data, 

effectively increasing the available data for training. 
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To further improve the dataset for training, we 

employ the Adaptive Progressive Convolutional 

Generative Adversarial Network (APCGAN) to 

generate synthetic images. This augmentation 

process enhances the robustness and effectiveness of 

the proposed method, improving its performance in 

image classification tasks. 

 

3.1 Dataset  

 

The experiments operate on REMBRANDT dataset, 

a collection of Molecular Brain Neoplasia Data 

available from the Cancer Imaging Archive (TCIA), 

a freely accessible data repository [24]. This dataset 

was collaboratively developed by Thomas Henry 

Ford Hospitals (Detroit, MI, USA) and Jefferson 

University (Philadelphia, PA, USA). TCIA-

REMBRANDT data comprises magnetic resonance 

imaging (MRI) scans along with clinical 

information, presenting a diverse range of tumor 

types and multiple MRI sequences, such as FLAIR 

(Fluid-Attenuated Inversion Recovery), T2-

weighted, T1-weighted, and T1 post-contrast 

images. The dataset comprises MRI data from 130 

patients, classified into four distinct brain tumor 

categories: Ependymoma (EPI), Oligodendroglioma 

(OLI), Astrocytoma (AST), and Glioblastoma-

multiforme (GBM). The distribution of samples 

across each tumor type is as follows: GBM: 539 

samples; OLI: 349 samples; AST: 557 samples; EPI: 

431 samples; and normal: 1041 samples [25]. Figure 

2 displays sample images from the REMBRANDT 

dataset. 

 

3.2 Data Pre-processing and data augmentation 

 

Improving data quality for classification tasks begins 

with a crucial initial step: data pre-processing. This 

step holds a key role in enhancing the overall 

performance of the model. Within the dataset, all 

MRI sequences undergo resizing and intensity 

normalization. This is imperative due to variations in 

image intensity across different MRI scans, arising 

from distinct imaging protocols and parameters. 

Each MRI sequence distinctly captures certain tumor 

characteristics. Relying solely on the classification 

with a single MRI sequence may yield suboptimal 

performance. Recognizing that each MRI sequence 

contributes essential features, a comprehensive 

approach considers all sequences. By amalgamating 

information from multiple sequences, crucial 

features are extracted, leading to an improvement in 

model performance. Consequently, post pre-

processing, the images are merged to form 

multimodal data. This integration enhances the 

dataset's richness and aids in achieving more robust 

and accurate classification outcomes. The algorithm 

to generate multimodal data from MRI sequences is 

given below 

 

Data augmentation 

Deep learning procedures necessitate gigantic 

amount of data to design the model and to avoid over 

fitting. Limited available data is the drawback in 

health care. To overcome this drawback and to create 

 
 

 

 
Figure 1. The global picture of proposed brain tumor classification process. AST: Astrocytoma, GBM: Glioblastoma 

multiforme, OLI: Oligodendroglioma, EPI: Ependymoma 
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Figure 2. Sample images from REMBRANDT dataset 

 

 
Figure 3. Sample images from dataset 1 

 

 
Figure 4. Adaptive Progressive Convolutional Generative Adversarial Networks 
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Figure 5: Sample images generated using APCGAN 
 

 

 

Figure 6. Pie charts showing the sample distribution in dataset1 and dataset2 

 

 

Algorithm 1: Incorporating multimodal data 

Input: MRI sequences (T1-weighted, contrast-enhanced T1-weighted, T2-weighted, and FLAIR) of same 

patient. 

Step 1: Preprocess the MRI images to ensure they are in the same orientation and voxel size. 

Step 2: Apply intensity normalization to each MRI modality. 

Step 3: Use a registration algorithm to align (same orientation and voxel size) the MRI modalities. 

Step 4: Concatenate the registered MRI modalities into a 4D tensor. 

Output: A 4D tensor containing all four MRI modalities for a single patient. 

A Registration algorithm is used to align the orientation and voxel size of the images. 

 

Algorithm 2: Registration algorithm 

Input: Load MRI Modalities A and B. Let the modalities be represented A(x,y,z) and B(x,y,z), where x,y, 

and z denote the spatial coordinates in the image volume. 

Step1: Check and Correct the Orientation of the Images 

a. If both images are in the neurological orientation, proceed. 
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b. If not, perform orientation correction: 

a. Determine the rotation angles Θ for A and B to align them to the neurological orientation. 

Compute the orientation difference ΔΘ with respect to a standard orientation. 

b. Apply the rotation or transformation to both images: 

A′(x′,y′,z′)=R(ΘA)⋅A(x,y,z) 

B′(x′,y′,z′)=R(ΘB)⋅B(x,y,z) 

Where A′ and B′ are the reoriented images, and R(Θ) is the rotation or affine transformation 

matrix applied to each point (x,y,z) in the images. 

Step2: Normalize the Voxel Size 

a. Check if the voxel sizes of both images A and B are the same. 

b. If the voxel sizes are the same, skip this step. 

c. If not, perform voxel size normalization: 

i. Calculate the voxel size (dx,dy,dz) for each image. 

ii. Identify the image with the larger voxel size, say dxA,dyA,dzA for A and dxB,dyB,dzB for B. 

iii. Resample the image with the larger voxel size to match the voxel size of the other image: 

A′′(x′′,y′′,z′′)=Interpolate(A′(x′,y′,z′),dxtarget,dytarget,dztarget) 

B′′(x′′,y′′,z′′)=Interpolate(B′(x′,y′,z′), dxtarget,dytarget,dztarget) 

Where A′′ and B′′ are the images with normalized voxel sizes, and 

dxtarget,dytarget,dztarget are the target voxel dimensions, chosen based on the smaller 

voxel sizes between A′ and B′. The nearest neighbor interpolation function is 

applied. 

Output: The MRI modalities A and B are now in the same orientation and voxel size, allowing for proper 

integration of multimodal data. 

 

new training examples we apply data augmentation. 

Data augmentation applies random and controlled 

transformations to available images to create new 

training samples. This technique is useful to 

theatrically surge the size and diversity of the dataset 

using different transformations [26]. For the optimal 

training and validation of our model, we established 

two datasets named dataset1and dataset2. The 

RAMBRANDT dataset forms the core of both 

datasets. In the creation of dataset1, we applied 

classical augmentation methods, including width 

shifting, height shifting, shear intensity, horizontal 

flip, and vertical flip. Post-augmentation, the sample 

distribution in dataset1 is as follows: GBM: 1417 

samples; OLI: 1147 samples; AST: 1354 samples; 

EPI: 1455 samples; and normal: 1641 samples. The 

sample images from dataset1 are shown in figure3. 

 

The generation of dataset2 is facilitated through the 

implementation of Adaptive Progressive 

Convolutional Generative Adversarial Networks 

(APCGAN). In 2014, Goodfellow and colleagues 

introduced a framework for generative adversarial 

networks (GANs). These networks aim to produce 

authentic images capable of deceiving a 

discriminator network, which distinguishes between 

original and replicated images [27]. The proposed 

approach leverages APCGAN shown in figure 4, a 

specialized GAN architecture, to synthesize high-

resolution images. Specifically tailored for 

generating realistic tumor images, APCGAN 

exhibits progressive growth and adaptability 

throughout the training and generative processes. 

The model commences with a modestly scaled 

generator and discriminator, gradually augmenting 

their complexity as the training advances [28]. 

Figure 5 displays the sample images generated by 

APCGAN from dataset2, while Figure 6 presents a 

pie chart illustrating the distribution of samples 

between dataset1 and dataset2. 

APCGAN embraces progressive growing 

mechanism where it starts spawning low-resolution 

images and progressively increases the quality of 

images in the course of training. It also incorporates 

adaptive mechanism to adjust the network 

architecture and handles variations in image 

complexity [29]. When the discriminatory network 

is in the active state, it reduces the cross-entropy to 

the smallest possible value. The cost function is 

defined as follows in terms of mathematics: 

                              

        , log 1 log 1i i i i iH x y y D x y D x    
 

(1) 

The loss is computed as follows for an "n" number 

of iterations: 
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        , log 1 log 1
N N

N

i i i i i ii n
i n i n

H x y y D x y D x


 

    
 

(2)                

 

Various multi-stage generative techniques have been 

proposed. For instance, the Composite GAN uses 

numerous generators to spawn distinct portions of an 

image. On the other hand, the ensemble methods use 

numerous training procedures to produce realistic 

images [30]. Researchers have started using GANs 

in medical imaging to perform image-to-image 

translation, which includes segmentation, cross 

modality translation, and super-resolution imaging. 

A recent study conducted by a team of researchers 

revealed that they can perform whole-MR image 

augmentation using a GAN [31] 

 

3.3 Ensemble of CNN, C-LSTM and DCNN+CRF 

with weighted voting 

 

Ensemble learning is a deep learning methodology, 

which associates multiple individual models, 

referred to as base learners or base classifiers, in 

order to obtain more accurate and robust results 

compared to any individual model. The underlying 

concept of this learning approach is to leverage the 

prophecies of various models, such that the powers 

of certain models can reimburse for the flaws of 

others, ultimately resulting in enhanced overall 

performance. Algorithm 3 gives the detailed 

working of ensemble model with weighted voting 

approach. The ensemble classifiers, similar to single 

classifiers, are robust classifiers due to the utilization 

of weights to assess the accuracy of an individual 

classifier on a specific or complete subset of the 

dataset [32]. 

The weighted voting approach integrates the outputs 

of multiple classifiers using a weighted voting 

scheme. The weights assigned to every classifier can 

be determined centred on individual performance. 

The operation of the anticipated ensemble method 

with weighted voting is depicted in figure 7. 

 

 

 
Figure 7. Ensemble of CNN, C-LSTM and DCNN+CRF 

with weighted voting strategy 

 

 
Figure 8. The architecture of deep C-LSTM method for multi class classification 

 

 

 

Table 1. Performance analysis of different algorithms on dataset1 

 

Algorithm Dataset Accuracy Precision Recall F1-Score 

Convolutional Neural Network (CNN) Dataset1 0.824 0.791 0.850 0.811 

Convolutional Long-Short-Term 

Memory (C-LSTM) 
Dataset1 0.851 0.823 0.851 0.861 

Deep Convolutional Neural Network + 

Conditional Random Fields 

(DCNN+CRF) 

Dataset1 0.894 0.857 0.890 0.891 

Ensemble of CNN, C-LSTM and DCNN 

+ CRF with weighted voting 
Dataset1 0.939 0.917 0.934 0.918 
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Table 2. Performance analysis of different algorithms on dataset2  

 

Algorithm Dataset Accura

cy 

Precisio

n 

Rec

all 

F1-

Score 

Convolutional Neural Network (CNN) Dataset2 0.921 0.890 0.941 0.927 

Convolutional Long-Short-Term Memory 

(C-LSTM) 
Dataset2 0.944 0.926 0.960 0.948 

Deep Convolutional Neural Network + 

Conditional Random Fields (DCNN+CRF) 
Dataset2 0.961 0.945 0.976 0.960 

Ensemble of CNN, C-LSTM and DCNN + 

CRF with weighted voting 
Dataset2 0.994 0.991 0.980 0.992 

Table 3. Performance comparison of proposed model with different methods used in literature 

Author Method 
      

Accuracy 

Zahoor et al.  (2022) Hybrid Boosted and Ensemble Learning 99.13 

S. Montaha et al. (2022) 
TimeDistributed-CNN-LSTM Hybrid 

Approach 
98.90 

Alsubai et al. (2022) Ensemble Deep Learning 99.10 

Alsubai et al. (2022) Ensemble Deep Learning 97.12 

Murthy et al. (2022) 
Ensemble with Adaptive Fuzzy 

Deformable Fusion 
98.26 

Zobeda Hatif Naji Al-

azzwi et al. (2023) 
Cluster Ensemble and Deep Super Learner 96.60 

Suraj Patil et al (2023) Hybrid Optimized Multi-features Analysis 97.77 

K. V. Archana et al. 

(2023) 

Deep Features and Machine Learning 

Classifiers Ensemble 
97.7 

Proposed method  
Ensemble of CNN, C-LSTM and 

DCNN+CRF with weighted voting 
99.40 

Algorithm 3: Ensemble learning with weighted voting approach 

Input:  A set of base models (CNN, C-LSTM, DCNN + CRF) with associated predictions. Weights for each 

base model, representing their relative importance. 

Steps: 

1) Initialize the ensemble with a list of base models and their corresponding weights. If no 

weights are provided, assume uniform weights (equal importance for all models). 

2) Train each base model on the training data. This step may involve fitting the models to the 

features and labels in a supervised learning task. 

3) For a new input or test data point: a. Use each base model to make a prediction. b. Multiply 

each prediction by its corresponding weight. c. Sum the weighted predictions for each model. 

4) Select the class or value with the highest sum as the final prediction for classification or 

regression tasks, respectively. 

Output: A final prediction based on weighted voting. 

Convolutional Neural Networks (CNN)  

In computer vision applications, Convolutional 

Neural Networks (CNNs) primarily accomplish 

image classification, object detection, and image 

recognition tasks. The CNN leverages its ability to 

simulate the behaviour of neurons in the human 

brain to learn hierarchical representations of visual 

data. Numerous researchers have achieved 

significant advancements in their respective fields 

by employing CNN techniques. Within the CNN 

architecture, the convolutional layer plays a decisive 

part. In this layer, a convolution operation is applied 



T. Deepa, Ch. D. V. Subba Rao / IJCESEN 11-1(2025)144-161 

 

154 

 

using a kernel, resulting in the generation of a feature 

map. This convolution operation can be accurately 

expressed by equation 3, where the variable "I" 

symbolizes the input and "K" signifies the kernel 

[33]. 

𝑆(𝑖, 𝑗) =  Σ𝑚Σ𝑛𝐼(𝑚, 𝑛) ∗ 𝐾(𝑖 − 𝑚, 𝑗 − 𝑛)      (3) 
 

 The value within a feature chart is linked to the 

preceding layer via kernel weights. By stacking 

multiple convolutional layers, we can extract 

increasingly abstract features. As we progress deeper 

into the system, the initial steps extract higher-level 

features, while subsequently learning more low-

level features. Following the convolution operation, 

an activation operation is put in to each portion of 

the feature map to instigate non-linearity [34]. In this 

study, we employ the Rectified Linear Unit (ReLU) 

activation function represented in equation (4). 

 

          f(x)=max(0,x)                                          (4) 

 

Pooling technique entails the placement of a two-

dimensional filter over a channel in a map, followed 

by the identification of the characteristics that are 

encompassed within its coverage region. Layering 

techniques are employed to shrink the overall 

dimensions of the map. The computation of the 

output resulting from pooling can be achieved 

through the utilisation of a feature map characterised 

by the dimensions of nc, nw, and h. The architecture 

of Convolutional Neural Networks (CNNs) 

incorporates hidden layers that enable the reduction 

of image size while preserving the fundamental 

attributes of the original image. The convolutional 

neural network (CNN) employs diverse pooling 

methods to effectively decrease the dimensionality 

of the input image while preserving its information 

content [35]. Finally in the fully connected layer we 

used softmax activation to present output in multiple 

classes. The softmax activation is represented as in 

equation 5. Here the input vector is "y" and "n" is the 

number of classes. 

           𝑠(𝑦)𝑖 =
𝑒𝑦𝑖

∑ 𝑒𝑦𝑗𝑛
𝑗=1

          (5) 

Deep Convolutional LSTM  

Convolutional neural networks (CNNs) united with 

long short-term memory (LSTM) has demonstrated 

promising results on an assortment of complex 

computer vision applications. Both CNN and LSTM 

methods are known for their power and robustness 

against noise. However, they can be computationally 

expensive when used individually. To answer this 

issue, we recommend the practice of a deep 

convolutional-LSTM (C-LSTM) approach for 

classifying brain tumors. The structural design of 

deep C-LSTM methodology is illustrated in figure 4. 

The deep CNN component is designed to extract 

relevant and useful features, while the LSTM 

component is employed for tumor classification into 

five distinct classes as well as to enhance the 

accuracy of classification [5]. 

The deep CNN architecture is made up of two 

identical convolutional components, with dissimilar 

factors. These modules include a convolutional 

layer, the rectified linear unit (ReLU) activation 

function with batch normalization (BN). The 

convolutional layers employ same filter. On the 

other hand, LSTM systems are a variant of recurrent 

neural networks that excel in identifying order 

dependencies in sequence expectation problems. 

Batch normalization is used to normalize the data 

between CNN layers, while ReLU introduces non-

linearity to overcome the issue of vanishing 

gradients [34]. To prevent over-fitting during 

training of the C-LSTM network, two dropout layers 

are introduced. These dropout layers improve 

generalization error and reduce the required training 

time as shown in figure 8. Finally, softmax 

activation function is employed to convert the output 

from fully connected layer into logic numbers 

representing probabilities [36]. 

network, wherein it undergoes changes over time. 

This memory cell comprises three dissimilar gates: 

the input, forget and output gates. The forget gate 

receives input in the form of output value from the 

previous instance and input value from current 

instance. The forget gate's output (ft) is determined 

by the equation (6), with ft's value confined within 

the range of 0 to 1. The forget gate's parameters 

encompass the weight (Wf), bias (bf), the preceding 

instance output (ht-1) and present input (xt), and 

[36].  

The input gate receives output of last instance and 

the present as input. The gate outcome is calculated 

using equation (7), where the parameters weight 

(Wi), bias (bi), present input (xt), and the yield of the 

earlier instance (ht-1) are used. Cell state is 

computed using equation (8) with the parameters 

weight (Wc) of the input gate and bias (bc). The 

output gate outcome is computed using parameters 

weight (Wo) and bias (bo) by equation (9). The 

LSTM output is obtained by multiplying the 

outcome of output gate and cell state using equation 

(10). The sigmoid activation function is utilized in 

all the gates, while the final layer uses the tanh 

activation function [37]. 
𝑓𝑡 =  𝜎(𝑊𝑓. [ℎ𝑡 − 1, 𝑥𝑡] + 𝑏𝑓             (6) 

 

𝑖𝑡 =  𝜎(𝑊𝑖. [ℎ𝑡 − 1, 𝑥𝑡] + 𝑏𝑖       (7) 

 

𝑐𝑡 = tanh (𝑊𝑐. [ℎ𝑡 − 1, 𝑥𝑡] + 𝑏𝑐        (8) 
 

𝑜𝑡 = 𝜎(𝑊𝑜. [ℎ𝑡 − 1, 𝑥𝑡] + 𝑏𝑐          (9) 

 

ℎ𝑡 = 𝑜𝑡 ∗ tanh(𝑐𝑡)           (10) 
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DCNN+CRF 

We combine Conditional Random Fields (CRF) with 

Deep Convolutional Neural Network (DCNN) to 

increase the accuracy of classification tasks [38,39]. 

Usually, CRF is used after DCNN to refine the 

DCNN's output by adding more information about 

the context and how things are arranged in space. 

The combination of DCNN and CRF is represented 

by the below equation: 
 

𝑃 (
𝑦

𝑥
) = 𝐶𝑅𝐹(𝐷𝐶𝑁𝑁(𝑋))               (11) 

 
In this equation, P(y|x) represents how likely the 

output labels (y) are based on the input image (x). 

DCNN(x) signifies the result of DCNN on the input 

image x [40]. CRF () represents using Conditional 

Random Fields on the output of the DCNN. The 

CRF part takes the DCNN's output, which could be 

pixel-wise probability maps or feature maps, and 

improves it by considering how adjacent pixels are 

arranged.  

The CRF component examines the connections 

between nearby pixels, determining how they fit 

together, ensuring consistency of labels, and 

producing a smooth end result for segmentation or 

classification [41].  

CRF is optimized based on the input image and 

DCNN output by maximizing their conditional 

probabilities. This optimization procedure modifies 

label assignments to improve consistency and 

accuracy [42]. The model benefits from the DCNN's 

robust feature mining abilities as well as the CRF's 

ability to modify the output by taking into account 

spatial dependencies by merging DCNN and CRF.  

This combination improves the accuracy and 

coherence of segmentation or categorization 

findings, particularly in applications requiring the 

capture of specific information and spatial 

relationships within the image. 

 

Weighted voting strategy 

Usually, an ensemble classifier follows a two-step 

process: Selection and Combination. In our proposed 

method, we have selected three classifiers, namely 

CNN, C-LSTM, and DCNN+CRF. The 

amalgamation of these distinct classifiers' 

prophecies is achieved through various practices 

using diverse approaches. To accomplish this, we 

first select a set C = (C1, C2, ..., CN) with N 

classifiers by executing selected procedures to a 

particular dataset. Using a weighted voting 

approach, their individual predictions are combined. 

This strategy is commonly employed to combine 

predictions when the classifiers are not considered in 

the same way. The classification accuracy of each 

classifier is determined by its coefficient (weight) as 

a result of evaluating it on the evaluation set D [43]. 

For the assessment of every constituent classifier, 

let’s study a dataset D with M classes. The 

performance evaluation of every classifier Ci, where 

i = 1, 2, ..., N, is conducted using D. A N×M matrix 

W is then estimated as follows: 

(

𝒘1,1 𝒘1,2 … 𝒘𝟏,𝑴

𝒘2,1 𝒘2,2 … 𝒘2,𝑀

𝒘𝑁,1 𝒘𝑁,2 … 𝒘𝑁,𝑀

) 

                                  

 

Here each element Wi,j is calculated by 

𝑾𝒊,𝒋 =  
𝟐𝒑𝒋

(𝒄𝒋)

|𝑫𝒋|+ 𝒑𝒋
(𝒄𝒋)

+ 𝒒𝒋
(𝒄𝒋)                (13)                                                                                                             

 

The set Dj represents the illustrations of the dataset 

that belong to class j. The variables 𝑝𝑗
(𝑐𝑗)and 𝒒𝒋

(𝒄𝒋) 

indicate the count of accurate and erroneous 

predictions, respectively, anticipated by classifier Ci 

on Dj. The Wi,j (weight) corresponds to classifier Ci 

[44]. 

To determine the class y^ of an unfamiliar case x in 

the test dataset, equation (14) is employed. 

 

 ŷ = arg max
j

∑i=1
N  wi,jχA(Ci(x) = j )                      (14)                                                                

 

This equation calculates the sum of the weights 

w(i,j) for each classifier Ci, multiplied by the 

characteristic function χ_A (C_i (x)=j)  , where χ_A 

is a vector that assigns a value of one to the j 

coordinate and zero to the remaining coordinates, 

centred on the forecast j∈A made by Ci classifier on 

instance x. The argmax function then yields the 

index value corresponding to the highest element in 

the resulting array. The set A represents the unique 

class labels, and M represents the number of 

elements in A. Building on the proposed 

methodology, this section discusses the empirical 

evaluation to demonstrate its effectiveness. 

 

 
Figure 9. Progression of Model Accuracy on Dataset1 
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Figure 10. Ensemble Model Loss Minimization on 

Dataset1 

 

 

 
Figure 11. Training and Validation Accuracy of 

Ensemble Model on Dataset2 

 

 
Figure 12. Training and Validation Loss of Ensemble 

Model on Dataset2 

 

4. Experiments and Results: 
 

 In the proposed work, the entire dataset is 

partitioned into three distinct groups, namely a 

validation set (15%), a test set (15%) and training set 

(70%). The utilization of the training set is solely 

restricted to Ensemble method training process. The 

annotations utilized in the analysis are predicated 

upon 3D scans, which may exhibit imprecision and 

unwieldiness when applied to 2D slices. 

Furthermore, we eliminate images that do not meet 

the appropriate size requirements and those that lack 

proper labeling. To enhance their efficacy, the 

training images undergo zero-padding. The 

classification performance is assessed using the most 

prevalent and valuable parameters for image 

segmentation, namely F1-score, accuracy, recall, 

and precision measurements. The dataset names 

used in the comparison tables and graphs (Dataset 1, 

Dataset 2) were place holders to represent different 

datasets utilized for brain tumor classification. The 

graph in figure 9 delineates the evolution of accuracy 

for the proposed ensemble model trained on 

Dataset1 over a span of 50 epochs. The accuracy, 

signifying the proportion of correctly predicted 

instances, exhibits a steady ascent from the 

commencement of training, culminating at a peak 

value of 0.939. Notably, the model's performance on 

unseen validation data closely tracks the training 

accuracy, indicating effective generalization without 

significant overfitting. The convergence of training 

and validation accuracy towards the latter epochs 

implies the model's training progression is nearing 

optimization, with little expected gain from further 

training. The graph in figure 10 presents the 

trajectory of loss for the ensemble model on 

Dataset1. Loss, a quantifier of the model's error rate, 
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witnesses a significant reduction in the early training 

phase, reflecting the model's rapid initial learning 

and adjustment to the dataset's patterns. Afterward, 

the loss gradually decreases, showing the model 

getting better bit by bit. When the loss plateaus 

towards the end of the graph, it means the model has 

reached a point with very little error, and doing more 

training won't make a big difference. This shows that 

the ensemble model can effectively predict 

outcomes on Dataset1, marking a successful training 

effort. 

The proposed ensemble model performance on 

Dataset2 over 50 training epochs is shown in figure 

11.  

At the beginning, the accuracy on both the training 

and validation sets goes up steadily, showing that the 

model is learning and making accurate predictions. 

As the epochs go on, the accuracy increase slows 

down, which is normal for complex models where 

they make big improvements at first and then smaller 

ones. The model shows strong performance by 

reaching validation accuracy close to 0.994, 

highlighting its ability to correctly classify the 

dataset. This behavior shows that the model can be 

reliable and used effectively in real-world 

applications. 

Figure 12 displays the training and validation loss of 

a combined ensemble model, incorporating CNN, 

CLSTM, and DCNN + CRF, trained on Dataset2. 

The steep drop in the early epochs shows fast 

learning, indicating that the model rapidly reduces 

the loss as it learns to generalize from the data. As 

training progresses beyond the initial epochs, we 

observe the loss reduction stabilizing, reflecting the 

diminishing returns of further training as the model 

begins to converge to its optimal state. The training 

loss consistently remains slightly below the 

validation loss, suggesting the model is learning 

effectively without overfitting. The near 

convergence of both curves towards the end 

indicates a well-fitted model that has generalized 

well to the validation set, with minimal expected 

improvement in subsequent epochs. 

 According to the findings, it can be discerned that 

the ensemble method exhibits superior performance 

when compared to other algorithms such as CNN, C-

LSTM, and DCNN+CRF. This superiority is evident 

by means of F1-score, precision, recall, and accuracy 

across all the datasets. Ensemble method shows 

higher performance in accurately segmenting and 

classifying tumors, achieving higher scores in 

evaluation parameters.  

However, it is essential to acknowledge that the 

actual outcomes may differ based on the specific 

implementation, training parameters, and the 

datasets utilized for evaluation. The aforementioned 

results serve as a comparison of the algorithms' 

efficacy on both datasets. It is worth noting that these 

results are merely illustrative and the actual 

performance may oscillate subject to specific 

application, training parameters, and dataset 

characteristics. The algorithms, namely CNN, C-

LSTM, DCNN+CRF, and the ensemble method, 

have been scrutinized for their performance in brain 

tumor segmentation and classification consuming 

REMBRANDT datasets. A comprehensive 

depiction of various performance measures are 

found in Table1 and Table2 

 

5. Discussion 

 
Deep learning algorithms are very powerful that 

typically work well when trained on a gigantic 

amount of data. A major hurdle in analysing medical 

image is the obtainability of limited labelled training 

data. To overcome this, generally data augmentation 

and transfer learning strategies are commonly used. 

The APCGANs used in the proposed model provides 

best data augmentation for a given dataset. In this 

work we analysed the classification efficiency of 

multiple CNN grounded practices on two datasets. 

Among the analysed algorithms, ensemble method 

with weighted voting consistently outperforms 

CNN, C-LSTM, and DCNN+CRF, showcasing its 

effectiveness in brain tumor classification. The 

comparison across datasets highlights the impact of 

dataset characteristics on algorithm performance. 

From tables 1 and 2 we can observe that data 

augmentation plays an important role in achieving 

high accuracy. The APCGAN created realistic 

images compared to traditional augmentation 

procedures like rotation, flipping etc. we obtained 

high accuracy with ensemble method applied on 

dataset2. Performance measures such as accuracy, 

precision, recall and F1-score are used to measure 

the effectiveness and the figures 9 and 10 represents 

the comparisons of the metrics among the datasets 

Accuracy: Accuracy is a measure that reflects the 

extent to which an algorithm's predictions align with 

the actual outcomes. It quantifies the ratio of 

accurately categorized instances to the total 

available samples. This measure is commonly 

employed to evaluate the correctness of varied 

methods. Among the algorithms, ensemble method 

achieved the highest accuracy on all datasets, 

ranging from 0.939 to 0.994. The lowest accuracy 

scores were obtained by CNN on the dataset1 

(0.824), while C-LSTM (0.851) and DCNN+CRF 

(0.894). On dataset2 CNN scored an accuracy of 

(0.921), while C-LSTM (0.944) and DCNN+CRF 

(0.961). Precision: Based on the total expected 

positive instances, precision measures the fraction of 

appropriately identified correct samples. Ensemble 

method consistently showed the highest precision 
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values across all datasets, ranging from 0.917 to 

0.991. On dataset1 CNN had the lowest precision 

(0.791), while C-LSTM (0.823) and DCNN+CRF 

(0.857). On dataset2 CNN scored precision (0.890), 

while C-LSTM (0.926) and DCNN+CRF (0.945).  

Recall: Based on the actual number of positive 

samples, recall is calculated as the percentage of 

positively identified samples out of the over-all 

positive samples. CNN achieved the lowest recall on 

the dataset1 (0.850).F1-Score: The F1-Score offers a 

well-rounded valuation of a model's performance by 

computing the harmonic mean of precision and 

recall. Ensemble method consistently achieved the 

highest F1-Score values across all datasets, ranging 

from 0.918 to 0.992. CNN had the lowest F1-Score 

on dataset1 (0.811). Figure 13 is performance 

comparison of different methods on dataset-1 and figure 

14 is the performance comparison of different methods on 

dataset-2. 
 

Figure 13. Performance comparison of different 

methods on dataset-1 

 

On the datasets provided, the ensemble model 

outperformed CNN, C-LSTM, and DCNN+CRF 

models in terms of precision, recall, accuracy, and 

F1-Score. It achieved the best scores in every 

performance metric, proving its effectiveness in 

brain tumor segmentation and classification jobs. 

The proposed method accomplished an accuracy of 

99.4% that highlights the superiority of ensemble 

model in classifying brain tumors. This accuracy of 

ensemble method was compared with various 

methods found in the literature, as available in Table 

3. 

 
Figure 14. Performance comparison of different 

methods on dataset-2. 

6. Conclusions 

 
Deep learning techniques have made significant 

advancements in the arena of brain tumor 

classification. The fusion of convolutional neural 

networks (CNNs), ensemble learning, transfer 

learning, and deep supervision techniques has 

greatly improved the accuracy of tumor 

segmentation and classification. Our proposed 

model has presented promising results in accurately 

classifying various types of brain tumors, including 

Astrocytoma, Glioblastoma multiforme, 

oligodendroglioma, and Ependymoma, using MRI 

images. These advancements in model architectures 

and techniques have contributed to continuous 

improvements in tumor classification. Our proposed 

ensemble method utilizes three base classifiers, 

namely CNN, C-LSTM, and DCNN+CRF. To 

effectively train the model, we utilized the Adaptive 

Progressive Convolutional GANs (APCGANs) 

method for data augmentation. Overall, our 

ensemble method with a weighted voting strategy 

steadily outperforms the other algorithms (CNN, C-

LSTM, and DCNN+CRF) across all datasets 

(Dataset1 and Dataset2). It achieves the highest 

performance measures among all algorithms, with an 

accuracy of 0.994 on dataset2. Additionally, the 

ensemble method achieves the highest precision, 

recall, and F1-score on dataset2, with measures of 

0.991, 0.980, and 0.992, respectively. These results 

demonstrate the superior performance of ensemble 

methods, surpassing other tested algorithms. Brain 

tumor studied in the literature and reported [45-55].  
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