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Abstract: 

 

As a common malignancy in females, breast cancer represents one of the most serious 

threats to a female's life, which is also closely associated with the Sustainable 

Development Goal 3 (SDG 3) of the United Nations for keeping healthy lives and 

promoting the well-being of all people. Breast cancer accounts for the highest number 

of cancer mortality for females, and early diagnosis is key to reducing disease-specific 

mortality and mortality in general. Current methods struggle to accurately localize 

important regions, model sequential dependencies, or combine different features despite 

considerable improvements in artificial intelligence and deep learning domains. They 

prevent diagnostic frameworks from being reliable and scalable, especially in low-

resourced healthcare settings. This study proposes a novel hybrid deep learning 

framework, BreastHybridNet, using mammogram images to tackle these mutual 

challenges. The proposed framework combines a pre-trained CNN backbone for feature 

extraction, a spatial attention mechanism to automatically highlight the image area, 

which contains signature patterns carrying diagnostic information, a BiLSTM layer to 

obtain sequential dependencies of diagnostic features, and a feature fusion strategy to 

process complementarily. Experimental results show that the accuracy of the proposed 

model is 98.30%, which outperforms the state-of-the-art methods LMHistNet, 

BreastMultiNet, and DOTNet 2.0 to a considerable extent quantitatively. 

BreastHybridNet works towards the feasibility of interpretability and scalability on 

existing systems while contributing to worldwide efforts to alleviate cancer-related 

mortality using cost-efficient diagnostic lenses. This study highlights the need for AI-

enabled solutions to contribute to accessing reliable healthcare technologies for breast 

cancer screening.  

 

1. Introduction  

Breast cancer is one of the significant causes of 

cancer mortality in women worldwide, making its 

early and accurate diagnosis essential for increasing 

patient survival. Artificial intelligence (AI) and deep 

learning technologies have recently been introduced 

into breast cancer diagnostics using imaging data, 

which may potentially provide better accuracy and 

efficiency [1-16]. Breast abnormalities detection has 

been attractive, achieving high performance with 

models like LMHistNet [1] and BreastMultiNet [17] 

and higher contrast and classification performance 

by imaging quality enhancement and deep models. 

Such approaches are limited — the localization of 

critical regions, sequential dependencies, and 

holistic feature integration strategy — bringing 

efforts to develop a more robust framework. 

Therefore, considering these bounds, the current 

study has been designed to propose a novel deep 

learning framework, named BreastHybridNet, for 

diagnosing breast cancer from mammogram images. 

The primary purpose of this study is to develop a 

hybrid architecture combining convolutional and 

sequential learning methods that address the 

limitations of current approaches. To do this, a few 

innovations are presented: 1) A pre-trained CNN 

backbone that captures robust features, 2) A spatial 
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attention mechanism that attends to diagnostically 

meaningful regions, 3) A BiLSTM layer that 

captures sequential and spatial correlations, and 4) A 

feature fusion strategy to combine unique insights. 

These innovations allow BreastHybridNet to 

provide highly accurate predictions, compared to the 

state-of-the-art methods, and clinically interpretable, 

reliable predictions. The other baseline methods 

suffer from various limitations, which leads us to 

design a well-motivated hybrid architecture that still 

contributes to state-of-the-art research. It shows that 

the fusion of spatial and sequential learning with 

attention significantly gains performance metrics. 

The study also highlights the relevance of using 

advanced preprocessing techniques like ROI 

extraction and data augmentation to improve input 

quality. The experimental results demonstrate that 

the proposed framework can deliver accurate breast 

cancer diagnosis with an accuracy rate of 98.30%, 

surpassing the state-of-the-art approaches. This 

paper is structured as follows. Section 2 

comprehensively reviews the literature, including 

the gaps it presents and state-of-the-art approaches. 

Section 3 describes the methodology applied, 

consisting of the architecture of BreastHybridNet 

and the method. Section 4 presents the experimental 

results, comparing the performance of the proposed 

framework with existing models using key metrics. 

Section 5 discusses the findings, emphasizing the 

novelties and implications of the study while also 

addressing the limitations. Finally, Section 6 

concludes the paper by summarizing the 

contributions and outlining the future scope of this 

research. This systematic approach ensures a 

detailed and structured presentation of the work, 

contributing valuable insights to breast cancer 

diagnostics. 

2. Related work 

Koshy et al. [1] for breast cancer patients to survive, 

early detection is essential. LMHistNet uses AI to 

classify histological pictures of breast tumors 

accurately. Luo et al. [2] improved by early 

identification by imaging. Deep learning improves 

image analysis for breast cancer. Worldwide, the 

incidence of breast cancer is growing. Saha et al. [3] 

The effect of breast cancer demands better early 

detection instruments—the combination of DNN 

with ML results in 98.25% diagnosis accuracy, 

indicating a significant improvement. Ko et al. [4] 

enhanced picture quality through DNN integration 

can transform screening through Diffuse Optical 

Tomography. The incidence of breast cancer 

necessitates improved screening. Anas et al. [5] 

innovated in bioinformatics is propelled by recent 

advances in AI. With fewer false positives and better 

results, deep learning improves the accuracy of 

breast cancer diagnosis. Tan et al. [6] employed 

cross-layer attention and tweaking feature maps; 

RCM-YOLO improves the speed and accuracy of 

tiny breast mass identification. Awotunde et al. [7] 

identified that breast cancer is essential. The 

diagnostic accuracy of a hybrid feature selection 

model based on deep learning is significantly 

increased. Sharmin et al. [8] identified breast cancer 

requires efficient techniques. A hybrid model 

combined with DL and ML performs better and 

more accurately. Abhisheka et al. [9], with millions 

of cases of breast cancer each year, early diagnosis 

is crucial. Diagnostic accuracy is improved by 

reviewing DL approaches in medical imaging. Asadi 

and Memon [10], for breast cancer to be effectively 

treated, early diagnosis is essential. For diagnosis, a 

cascade network model combines classification and 

segmentation. Gami et al. [11] estimated the yearly 

number of fatalities attributed to breast cancer. Deep 

learning, mainly CNNs, aids in the accurate 

categorization of cancer cells. Frank et al. [12] 

assisted with breast mass diagnosis during 

mammograms, an integrated deep learning system 

that integrates CNN analysis and YOLO object 

recognition. Dewangan et al. [13] with breast cancer 

is dependent on its discovery. A novel BPBRW with 

HKH-ABO technique achieves immense accuracy 

by resolving prior model constraints. Balaha et al. 

[14] presented HMB-DLGAHA, a hybrid deep 

learning-genetic algorithm technique, and built the 

HMB1-BUSI CNN architecture. Experiments using 

CNN models that have already been trained show 

strong performance metrics. Khan et al. [15] utilized 

a novel "MultiNet" framework to diagnose breast 

cancer from microscope pictures. Nassif et al. [16], 

although early detection and treatment can improve 

survival rates, artificial intelligence and machine 

learning continue seriously threatening public 

health. Rahman et al. [17] combined numerous pre-

trained models with transfer learning; the 

"BreastMultiNet" framework improves the accuracy 

of breast cancer diagnosis. Mechria et al. [18] 

enhanced the classification performance of Deep 

Convolutional Neural Networks (DCNN) for 

mammograms. DCNN denoising improves 

sensitivity, specificity, and accuracy. Results from 

other denoising techniques were inconsistent. Yan et 

al. [19] enhanced the categorization of breast cancer 

histological images using a novel hybrid 

convolutional and recurrent deep neural network. 

The availability of datasets improves research. 

Khamparia et al. [20], with a modified VGG network 

that outperforms other CNNs with immense 

accuracy, transfer learning is presented with an 

emphasis on early breast cancer diagnosis. Future 

objectives involve the integration of tissue density 
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characteristics and category categorization. Krithiga 

and Geetha [21] precise identification of nuclei is 

necessary for automatic pathology-based cancer cell 

detection. With Deep-CNN, a suggested approach 

yields enormous accuracy. With their excellent 

accuracy, Tembherune et al. [22], deep learning-

based automated techniques are promising. 

Mammograms and breast biopsies help diagnose 

breast cancer, a fatal condition. Jahangeer and 

Rajkumar [23], for women's health, early detection 

of breast cancer is essential. Mammograms help in 

early detection. This research presents sophisticated 

image processing and classification methods to 

achieve high accuracy. Saber et al. [24], a significant 

reason why women die from cancer is breast cancer. 

A novel deep learning model provides an efficient 

early detection and diagnosis tool. Yu et al. [25] 

suggested a technique for classifying breast cancer 

that uses hybrid characteristics and 3-output CNN 

segmentation with promising outcomes. Inan et al. 

[26] improved survival rates are seen with early 

identification of breast cancer, a significant cause of 

death for women. Accuracy is attained via a hybrid 

machine learning system. Chugh et al. [27] required 

an early diagnosis since it is one of the leading 

causes of cancer-related deaths in women. AI 

increases the effectiveness of diagnosis. The survey 

fills in research gaps by comparing ML and DL 

approaches. Budak et al. [28] significantly increased 

the efficiency of an end-to-end model that combines 

FCN and Bi-LSTM—Eroglu et al. [29] assisted by a 

hybrid CNN method. SVM improves efficiency with 

an accuracy of 95.6%. Alsaedi et al. [30] infrared 

thermography and microwaves, augmented by CNN, 

are used in this research to present a hybrid 

technique of breast cancer diagnosis. Resmini et al. 

[31] for the non-invasive detection of breast cancer, 

thermography is available. A combination approach 

utilizing machine learning, SIT, and DIT achieves 

high accuracy. Prospective schemes entail 

improving the methodology. Stephan et al. [32] 

reduced death rates from breast cancer requires early 

diagnosis. ABC and WOA are used in a HAW 

hybrid algorithm to optimize ANNs. The HAW-RP 

version has little complexity and good precision. 

Yang et al. [33] presented a unique Temporal 

Sequence Dual-Branch Network (TSDBN) that 

concurrently uses CEUS and B-mode ultrasound 

data to categorize breast tumors. The accuracy of the 

TSDBN is around 4% higher than that of current 

techniques. Maroof et al. [34] focused on the 

difficulty of automating the identification of mitosis 

in the grading of breast cancer. Promising results are 

obtained when color, texture, and morphological 

characteristics are combined into a hybrid feature 

space. The goal of future research is to improve 

dataset consistency and segmentation. Benhammou 

et al. [35] removed previous CAD constraints related 

to breast cancer. A taxonomy divides CAD into four 

categories, with MIM being the best. Future research 

aims to improve accuracy. Haq et al. [36] precise 

diagnosis of breast cancer is essential. Promising 

results are observed when a 3-layer CNN 

architecture is presented for histology image 

analysis. During a break, Wadhwa et al. [37] 

approached Deep Learning using DenseNet-201 

CNN. The accuracy of his dataset in diagnosing 

breast cancer is enormous.  Liu et al. [38], for 

increased classification accuracy, a unique method 

called IGSAGAW combines CSSVM with feature 

selection. Tested on WBC and WDBC datasets, it 

performs better than previous approaches, 

supporting clinical judgments. Zhang et al. [39], a 

novel technique called BDR-CNN-GCN combines 

CNN and GCN for better breast mammography 

lesion identification. High accuracy was attained. 

Kadam et al. [40], due to its high incidence in 

women, breast cancer should be detected early. An 

ensemble approach that is suggested outperforms 

others and produces better accuracy.  
 

3. Proposed framework 

Figure 1 depicts the methodology of this research 

and illustrates the comprehensive pipeline for breast 

cancer diagnosis using mammogram images. The 

process begins with inputting mammogram images 

from the CBIS-DDSM dataset, a high-resolution 

collection annotated with diagnostic labels such as 

standard, benign, and malignant, along with 

metadata like patient age, density types, and mass 

characteristics. These images and accompanying 

data form the foundation for the analysis. Several 

preprocessing steps were undertaken to prepare the 

dataset for practical training. Data was cleaned to 

remove corrupted and incomplete images, ensuring 

high-quality inputs. Advanced augmentation 

techniques were applied to address the class 

imbalance and enhance data diversity, including 

rotation, flipping, contrast enhancement, random 

cropping, padding, noise injection, and zooming. 

The augmented dataset was then split into training, 

validation, and test subsets in a stratified manner, 

ensuring a balanced representation of diagnostic 

categories. Images were then preprocessed to 

standardize input and extract meaningful features. 

All images were resized to 224×224 pixels for 

compatibility with the deep learning model, and 

pixel values were normalized to stabilize the training 

process. A novel segmentation algorithm based on 

U-Net was employed to identify and extract Regions 

of Interest (ROI), ensuring that the model focused on 

the most relevant areas in the mammograms.
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Figure 1. Proposed Methodology for Breast Cancer Diagnosis 
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added to focus on critical regions, such as lesions. 

The architecture also incorporates a Bidirectional 

LSTM layer, which captures sequential 

dependencies and spatial relationships within the 

features. The outputs of the CNN and BiLSTM 

layers were fused using a novel feature fusion 

strategy, ensuring that complementary information 

was leveraged for robust classification. Advanced 

techniques were used to train and fine-tune the 

hybrid model. Binary cross-entropy loss functions 

were used for binary classification tasks, and 

Categorical Cross-Entropy loss functions were used 

for multi-class classification tasks. We used the 

Adam optimizer for our experiments, which uses 

gradient centralization to guarantee higher 

convergence efficiency. We can adaptively learn 

hyperparameters like the learning and dropout rates 

using Bayesian optimization. A custom class 

imbalance loss function was designed to balance the 

space for malign tumors, which were rarer, enabling 

an entire learning sector for both classes. We 

performed extensive performance evaluations on 

these models regarding various metrics — accuracy, 

precision, recall, F1-score, and AUC-ROC. 

Malignant sensitivity and specificity were 

specifically highlighted to make the findings 

clinically relevant. Explainable AI techniques were 

added to the evaluation to improve interpretability. 

Grad-CAM++ visualizations of the regions of 

interest in mammograms contribute most to model 

predictions. SHAP analysis quantifies the impact of 

various features on the decisions of each network 

and the ensemble. The hybrid model was then 

deployed on a cloud-based system that could analyze 

mammograms in real-time in the clinic. The 

potential use of federated learning was also 

investigated to enable privacy-preserving 

collaborative training across institutions. This flow 

is illustrated in Figure 1: from input through the 

model to deployment. It presents subprocesses for 

each stage and highlights the uniqueness of the new 

techniques, including state-of-the-art data 

augmentation, ROI extraction, attention 

mechanisms, and feature fusion. This structured 

pipeline highlights the innovation and clinical 

applicability of the proposed methodology. 

3.1 Proposed Hybrid Deep Learning Model 

Our proposed hybrid deep learning model, described 

in Figure 2, for breast cancer diagnosis successfully 

combines the strengths of convolutional neural 

networks (CNN), attention mechanisms, and 

bidirectional long short-term memory (BiLSTM) 

networks to achieve a powerful and efficient 

approach. It utilizes the different strengths of each 

aspect of the model to learn the mammogram images 

through the features and how to prioritize the region 

down to spatial and sequential pattern learning. The 

model's foundation comprises the CNN backbone 

and the central feature extractor. Fine-tuned pre-

trained architectures (ResNet and VGG16) to 

identify high-level features such as texture, shape, 

and density patterns in mammogram images. They 

are essential features needed to differentiate normal 

vs benign vs malignant. After that, we add pooling 

with CNN layers to decrease spatial dimensions, 

which increases computational efficiency while 

keeping important information. Such a backbone 

makes sure to learn more granular and high-level 

features from the images. A spatial attention 

mechanism emphasizes the model's demonstration 

of more diagnostically relevant architectural regions. 

The mechanism allows for the dynamic learning of 

ROIs (regions of interest such as lesions and others) 

by applying higher weights during the procedure. 

This ensures the model does not ignore essential 

elements indispensable for accurate classification. It 

also uses a Bidirectional LSTM layer that deals with 

sequential dependencies and spatial relationships 

within the captured features. The BiLSTM layer 

takes feature sequences in both forward and 

backward directions so the model can learn 

additional context from both sides of the image. This 

ability to learn sequentially develops a further 

understanding of memory of spatial dependencies 

and more complex patterns in mammogram images, 

which would complement the feature extraction of a 

CNN. One of the main innovations of the hybrid 

model proposed here is the fusion strategy to fuse the 

CNN and the BiLSTM layer outputs. This allows the 

strengths of both elements to work well together. 

The CNN yields spatially rich feature maps, and 

applying these to the BiLSTM burdens the 

regionalization task in sequential order to the overall 

context. The model benefits from an integrated 

feature fusion of these complementary qualities, 

which enables a rich representation of the input data, 

benefitting its diagnostic powers. Classification is 

done by feeding the fused features to FC-dense 

layers. These layers with the correct dropout rates to 

avoid overfitting gradually decrease the dimensions 

of the features and make the final predictions. Since 

this was a classification problem into three classes, 

namely, normal, benign, and malignant cases, the 

output was a Softmax activation in the output layer. 

The proposed hybrid deep learning model combines 

advanced components and innovative techniques to 

ensure accurate and consistent breast cancer 

diagnosis. Such architectural flow is depicted in 

Figure 2, which features coupling CNN feature 

extraction with attention-based localization, 

BiLSTM feature encoding, attention-based cross-

dimensional 
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Figure 2. Proposed hybrid deep learning model known as BreastHybridNet for breast cancer detection 

Input Layer 

Mammogram Images 

CNN Layers 

Conv1 

ReLU, MaxPooling 

Conv2 

Attention 

Mechanism 

Spatial 

Attention 

BiLSTM Layer 

BiLSTM 

Forward 

BiLSTM 

Backward 

Feature 

Fusion 

Dense Layers 

Dense1 Dense2 

Output Layer 

Diagnosis 



Bandla Raghuramaiah, Suresh Chittineni / IJCESEN 11-1(2025)568-584 

 

574 

 

  

Figure 3. Sample Images from CBIS-DDSM Dataset 

Table 1. Notations Used in the Proposed System 

Notation Description 

𝐶𝑎𝑝𝐼  Input mammogram image represented as a 2D matrix of pixel intensities. 

 ℎ, 𝑤 Height and width of the input image, respectively. 

 𝐼𝑛𝑜𝑟𝑚 Normalized input image with pixel values scaled to [0,1][0, 1]. 

𝐹(𝑙)  Feature map at the 𝑙-th convolutional layer. 

𝑊(𝑙)  Convolutional kernel (weight matrix) at the 𝑙-th layer. 

 𝑏(𝑙)  Bias term for the 𝑙-th convolutional layer. 

σ Activation function, typically ReLU (𝑅𝑒𝐿𝑈(𝑧) = 𝑚𝑎𝑥(0, 𝑧))    

𝛼𝑖,𝑗  Attention weight for the pixel located at (𝑖, 𝑗) 

𝑒𝑖,𝑗  Relevance score for the pixel located at (𝑖, 𝑗) in the feature map. 

𝐹𝑎𝑡𝑡  Attended feature map after applying attention weights. 

𝑥𝑡  Input feature vector at time step t for the BiLSTM layer. 

ℎ𝑡
(𝑓𝑤𝑑)

  Hidden state at time t in the forward pass of the BiLSTM. 

ℎ𝑡
(𝑏𝑤𝑑)

  Hidden state at time t in the backward pass of the BiLSTM. 

ℎ𝑡  The final hidden state at time t is obtained by concatenating forward and backward states. 

𝐹𝐶𝑁𝑁  Feature vector produced by the CNN backbone. 

𝐹𝐵𝑖𝐿𝑆𝑇𝑀  Feature vector produced by the BiLSTM layer. 

𝐹𝑓𝑢𝑠𝑒𝑑  Fused feature vector combining CNN and BiLSTM outputs. 

𝑊𝐶𝑁𝑁,𝑊𝐵𝑖𝐿𝑆𝑇𝑀 Weight matrices for feature fusion from CNN and BiLSTM outputs. 

𝑧𝑐  Logit (raw score) for class cc produced by the dense layer. 

𝑦𝑐  True label for class cc in one-hot encoding format. 

ℒ The cross-entropy loss function is used to train the model.  

 

feature fusion, and a feature fusion for final 

interpretable prediction. Table 1 Common notations 

used in the proposed system 

3.2 Mathematical Model  

The proposed system, BreastHybridNet, is a hybrid 

deep-learning framework designed to diagnose 

breast cancer using mammogram images. The 

mathematical model incorporates several key 

components, including convolutional layers for 

feature extraction, attention mechanisms for critical 

region identification, sequential learning with 

BiLSTM, and feature fusion for robust 

classification. Let us describe the mathematical 

underpinnings of each stage in the system. The 

system begins with a mammogram image input 

represented as a two-dimensional 𝑚𝑎𝑡𝑟𝑖 𝐼 of pixel 

intensities, where 𝐼 ∈  ℝℎ×𝑤,𝑎𝑛𝑑 ℎ 𝑎𝑛𝑑 𝑤 denote the 

height and width of the image, respectively. The 

input is preprocessed by normalization, scaling the 

pixel values to the range [0,1][0, 1], as in Eq. 1. 

             𝐼𝑛𝑜𝑟𝑚(𝑥, 𝑦) =
𝐼(𝑥,𝑦)−𝑚𝑖𝑛(𝐼)

𝑚𝑎𝑥(𝐼)−𝑚𝑖𝑛(𝐼)
                   (1) 

where 𝑥 and 𝑦 are the pixel coordinates, and 

𝑚𝑖𝑛(𝐼) 𝑎𝑛𝑑 𝑚𝑎𝑥(𝐼) are the minimum and 

maximum pixel values in the image. The normalized 

input is then passed through the CNN backbone's 

convolutional layers. Each convolutional layer 

operates as expressed in Eq. 2.  

𝐹𝑙(𝑥, 𝑦) = 𝜎 (∑ ∑ 𝑊𝑖𝑗
(𝑙)

𝐼(𝑙−1)(𝑥 + 𝑖, 𝑦 + 𝑗) +𝑘
𝑗−1

𝑘
𝑖−1

𝑏(𝑙))                         (2) 

where 𝐹(𝑙)is the feature map at the layer 𝑙, 𝑊(𝑙) is the 

𝑘 × 𝑘 convolutional kernel, 𝑏(𝑙) is the bias term, and 
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𝜎 is the activation function, typically 

𝑅𝑒𝐿𝑈(𝑅𝑒𝐿𝑈(𝑍) = 𝑚𝑎𝑥(0, 𝑧)). After multiple 

convolutional and pooling layers, the feature maps 

are passed through an attention mechanism to focus 

on critical regions. The attention weights, 𝛼𝑖,𝑗,   are 

computed using Eq. 3.  

𝛼𝑖,𝑗 =
𝑒𝑥𝑝(𝑒𝑖,𝑗)

∑ ∑ 𝑒𝑥𝑝(𝑒𝑚,𝑛)𝑛𝑚
                              (3) 

where 𝑒𝑖,𝑗  is the relevance score for pixel (𝑖, 𝑗)  in 

the feature map, typically computed using a learned 

function, such as a small neural network. The 

attended feature map is given by: 

       𝐹𝑎𝑡𝑡(𝑖, 𝑗) = 𝛼𝑖,𝑗𝐹(𝑖. 𝑗).              (4) 

The attended feature maps are then passed to the 

BiLSTM layer for sequential learning. The BiLSTM 

processes the sequence of feature vectors in both 

forward and backward directions. The forward pass 

is defined as in Eq. 5.  

                        ℎ𝑡
(𝑓𝑤𝑑)

= 𝑡𝑎𝑛ℎ (𝑊𝑥
(𝑓𝑤𝑑)

𝑥𝑡 +

𝑊ℎ
(𝑓𝑤𝑑)

ℎ𝑡−1
(𝑓𝑤𝑑)

+ 𝑏(𝑓𝑤𝑑))            (5) 

and the backward pass is similarly computed. The 

final hidden state at the time 𝑡 is determined as in Eq. 

6.  

                       ℎ𝑡 = ℎ𝑡
(𝑓𝑤𝑑)

⨁ℎ𝑡
(𝑏𝑤𝑑)

               (6) 

where ⨁ represents concatenation. These hidden 

states encode spatial and temporal dependencies 

within the features. The CNN backbone and the 

BiLSTM outputs are fused using a feature fusion 

strategy. Let    𝐹𝐶𝑁𝑁 𝑎𝑛𝑑 𝑊𝐵𝑖𝐿𝑆𝑇𝑀  denote the 

features from the CNN and BiLSTM layers, 

respectively. The fused feature vector is computed 

as: 

                                𝐹𝑓𝑢𝑠𝑒𝑑 = 𝑊𝐶𝑁𝑁𝐹𝐶𝑁𝑁 +

𝑊𝐵𝑖𝐿𝑆𝑇𝑀𝐹𝐵𝑖𝐿𝑆𝑇𝑀,              (7) 

where   𝑊𝐶𝑁𝑁 𝑎𝑛𝑑 𝑊𝐵𝑖𝐿𝑆𝑇𝑀  are learnable weight 

matrices. Finally, the fused features are passed 

through dense layers for classification. The output 

logits for each class 𝑐 are computed as in Eq. 8. 

𝑧𝑐 = 𝑊𝑐𝐹𝑓𝑢𝑠𝑒𝑑 + 𝑏𝑐 ,                       (8) 

where  𝑊𝑐  𝑎𝑛𝑑 𝑏𝑐     are the weight matrix and bias 

for class 𝑐. The predicted probabilities are obtained 

using the Softmax function expressed in Eq. 9.  

𝑃(𝑐|𝐼) =
𝑒𝑥𝑝(𝑧𝑐)

∑ 𝑒𝑥𝑝(𝑧𝑘)𝑘
.                     (9) 

The model is trained using a cross-entropy loss 

function, defined as in Eq. 10.  

ℒ = − ∑ 𝑦𝑐log 𝑃(𝑐|𝐼)𝑐                            (10) 

where 𝑦𝑐is the true label for class 𝑐. Optimization 

uses the Adam optimizer with gradient centralization 

to ensure efficient convergence, as in Eq. 11.  

∑ ∑ 𝑊𝑖𝑗
(𝑙)

𝐼(𝑙−1)(𝑥 + 𝑖, 𝑦 + 𝑗) + 𝑏(𝑙)𝑘
𝑖=1

𝑘
𝑖=1   (11) 

This mathematical formulation encapsulates 

BreastHybridNet's end-to-end workflow, from input 

preprocessing to final classification, integrating 

advanced mechanisms such as attention and feature 

fusion for enhanced diagnostic accuracy. 

3.3 Proposed Algorithm  

In this paper, we develop a novel hybrid deep 

learning-based Breast Cancer Diagnosis (BHN-

BCD) algorithm that is an end-to-end classifier for 

automated breast cancer diagnosis from 

mammogram images. The algorithm consists of a 

CNN backbone, attention mechanism, 2 BiLSTM 

layers, and a new feature fusion strategy that 

improves the interpretability and accuracy of the 

diagnosis by extracting spatial, contextual, and 

sequence features.  

The advanced preprocessing, regional area of 

interest (ROI) extraction, and extended data 

augmentation guarantee proper input standardization 

and diversity. It has an explainable algorithm via 

Grad-CAM++ and SHAP and helps understand 

regions contributing to the prediction. We 

demonstrate its capability to provide reliable, 

interpretable, and scalable diagnostics, allowing for 

clinical usage and enabling private training in the 

multi-institutional setting 

Algorithm: BreastHybridNet for Breast Cancer 

Diagnosis (BHN-BCD) 

Input: CBIS-DDSM dataset D 

Output: Predicted class labels R, performance 

statistics P 

1. Begin  

2. D'DataPreparation(D) 

Image Preprocessing 

3. Normalize pixel values 

𝐼𝑛𝑜𝑟𝑚(𝑥, 𝑦) =  
𝐼(𝑥, 𝑦) − 𝑚𝑖𝑛(𝐼)

𝑚𝑎𝑥(𝐼) − 𝑚𝑖𝑛(𝐼)
 

4. Resize images to 224 × 224  pixels 

5. Extract Regions of Interest (ROI) using a U-

Net-based segmentation algorithm. 

Feature Extraction using CNN 

6. Apply convolutional layers 
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𝐹(𝑙)  (𝑥, 𝑦) = 𝜎 (∑ ∑ 𝑊𝑖,𝑗
(𝑙)

𝐼(𝑙−1)(𝑥 + 𝑖, 𝑦 + 𝑗)

𝑘

𝑗−1

𝑘

𝑖−1

+ 𝑏(𝑙)) 

7. Max-pooling for downsampling 

Attention Mechanism 

8. Compute attention weights 

𝛼𝑖,𝑗 =
𝑒𝑥𝑝(𝑒𝑖,𝑗)

∑ ∑ 𝑒𝑥𝑝(𝑒𝑚,𝑛)𝑛𝑚

  

9. Generate attention feature map 𝐹𝑎𝑡𝑡(𝑖, 𝑗) =
𝛼𝑖,𝑗𝐹(𝑖, 𝑗). 

10. Sequential learning with BiLSTM 

11. FFeatureFusion(feature maps) 

12. m'TrainTheModel(m) 

13. Persist m' 

14. Load m' 

15. RBreastCancerDiagnosis(m', test samples) 

16. PPerformanceEvaluation(ground truth, R) 

17. Print R 

18. Print P 

19. End 

Algorithm: BreastHybridNet for Breast Cancer 

Diagnosis (BHN-BCD) 

As in Algorithm 1, it uses the dataset of high-

resolution mammograms with diagnostic labels of 

normal, benign, and malignant for training and 

evaluation. Before feeding the images into the 

training pipeline, we perform some data cleaning to 

remove any samples that aren't complete or valid, 

ensuring that we have a valuable dataset to work 

with. Remove Class Imbalance, Train, and 

Preprocess: These are approached with advanced 

data augmentation techniques deployed to achieve 

better class representations and generalization, such 

as rotation, flipping, random cropping, contrast 

stretching, noise injection, zooming, and so on. The 

augmented dataset is then stratified and divided into 

training, validation, and test sets containing 70%, 

15%, and 15% of the samples. Like the dataset-

building phase, image preprocessing is an essential 

component in this task for standardizing some inputs 

like pixel values and increasing image data quality 

for feature extraction. We also perform 

normalization on each image to set input ranges 

between 0 and 1 so the input values for all images go 

within the same range for a deep-learning model. To 

keep up with the dimensions of the CNN structure, 

the images are resized to a standard size of 224 × 

224. We extract diagnostic relevant features 

regarding Regions of Interest (ROI) with a 

segmentation algorithm based on U-net to segment 

potential lesions or abnormal areas. The CNN 

backbone analyzes the preprocessed images and 

extracts their features. The CNN extracts spatial 

features from the input images using filters in 

convolutional layers, retrieving information related 

to texture, shape, and density patterns. Each layer 

generally consists of a convolution operation (to 

extract feature maps), followed by an activation 

function, and often a pooling operation (to sub-

sample the feature maps), successively decreasing 

the spatial size but preserving important information. 

The features are hierarchical, which is then used in 

the next few steps of the algorithm. A spatial 

attention mechanism is introduced to assist the 

model in concentrating on diagnostic-relevant areas. 

This mechanism computes attention scores for every 

pixel in the feature maps, thus prioritizing high-

relevance regions (e.g., lesions or abnormalities). 

We can get the attended feature map by weighting it 

pixel-wise with its calculated pixel attention score, 

forcing the model to learn the critical areas. A 

Bidirectional Long Short-Term Memory (BiLSTM) 

layer is then applied to the feature maps to capture 

the sequential dependencies and spatial relationships 

between the feature maps. This layer computes 

features along the sequence, both in the forward and 

the backward direction, allowing the model to learn 

contextual information over the whole image. At 

each time step, the hidden states in forward and 

backward directions are concatenated to offer a joint 

representation from both forward and backward 

directions of the sequence [14]. Afterward, the 

outputs from CNN and BiLSTM layers are fused 

with a feature fusion strategy. In this step, the 

advantages of the two components are integrated, 

where the features extracted by CNN include the 

spatial features information and the sequenced 

information learned by BiLSTM. This fused feature 

vector will vigorously represent the input data since 

it gets complementary knowledge from both 

modalities. The concatenated features are fed to a set 

of fully connected dense layers for classification. To 

do this, it uses these layers to successively decrease 

the feature size and produce the raw class scores or 

logits for each diagnostic class. These logits are fed 

to a softmax activation function (this way, we can 

interpret the output as probabilities over classes) so 

the model can decide if an input mammogram is 

routine, benign, or malignant. The model is trained 

by minimizing a cross-entropy loss function between 

predicted probabilities and proper labels. 

Optimization is done with an Adam optimizer with 

gradient centralization for better and more stable 

convergence. Bayesian hyperparameter tuning is 

used to optimize these parameters, such as learning 

and dropout rates. 

Its diagnostic performance is examined on the test 

set with standard metrics such as accuracy, 

precision, recall, F1-score, and AUC-ROC. Grad-

CAM++ and SHAP improve Explainability. Grad-

CAM++ visualization (in red) indicates which 
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regions in the mammograms contributed the most to 

model predictions, while SHAP quantifies the 

importance of each feature. Ultimately, it deploys 

the model into a cloud-based diagnostic tool to allow 

for live analysis of mammograms. We also 

investigate the potential of federated learning to 

facilitate privacy-preserving collaborative training 

across multi-institutional data. The presented 

BreastHybridNet framework exhibits proof of 

concept for breast cancer diagnosis via a complete 

algorithm. 

3.4 Dataset Details 

CBIS-DDSM (Curated Breast Imaging Subset of the 

Digital Database for Screening Mammography)[41]) 

is a publicly available mammogram dataset for 

breast cancer research. The dataset contains more 

than 2,600 studies and images annotated with 

diagnostic categories (e.g., normal, benign, and 

malignant cases) at a high-resolution level. 

Additionally, it gives out detailed metadata, such as 

patient age, types of density, and lesion 

characteristics, which makes it the perfect dataset for 

tasks involving machine learning. CBIS-DDSM 

dataset provides ground truth for automatic breast 

cancer detection and segmentation tasks. Provides a 

complete benchmark for the model. 

3.5 Evaluation Methodology 

The evaluation methodology of the proposed 

BreastHybridNet framework could assess the 

performance, robustness, and interpretability of the 

BreastHybridNet framework in Breast cancer 

diagnosis. We stratified splitting the CBIS-DDSM 

dataset into train, validation, and test subsets to keep 

all diagnostic categories (normal, benign, malignant) 

proportional in each of the three partitions (train, val, 

test). The remaining 15% of data was reserved for 

the test set to assess generalization performance after 

training. Such a splitting method guarantees a fair 

and unbiased evaluation. A wide range of 

performance measures were applied to evaluate the 

model's predictions: accuracy, precision, recall 

(sensitivity), F1-score, and AUC-ROC. These 

metrics give a complete picture of the model's degree 

of diagnostic capability. While accuracy measures 

the overall correctness of predictions, precision, and 

recall are more specific measures focusing on the 

model's true positive identification ability and false 

negatives. The F1-score is the harmonic mean of 

precision and recall, giving a balanced overview of 

your model's performance. The area under the 

receiver operating characteristic curve (AUC-ROC) 

measures the sensitivity versus 1 − specificity (i.e., 

the false positive rate) at different decision 

thresholds, which is particularly crucial for medical 

diagnostics. The model was assessed in each normal, 

benign, and malignant class to produce balanced 

performance across the three diagnostic categories. 

This evaluation at the level of individual classes 

facilitates a qualitative understanding of the model 

performance; it identifies any significant 

weaknesses of the model while validating its overall 

reliability as a clinically applicable tool from the 

perspective of dental research. Explainability and 

interpretability were part of the evaluation. Visual 

explanations were generated using Grad-CAM++, 

which produced visual explanations of our model 

predictions over regions of the mammogram images 

that contributed most to the model’s decisions. 

These visualizations confirm that the model is 

concentrating on diagnostically important locations 

like lesions or abnormalities. In addition, SHAP 

(SHapley Additive exPlanations) was used to 

evaluate the contribution of each input feature 

(texture, density, etc.) for the model predictions. 

Such an approach improves the interpretability of the 

model and, therefore, its acceptability in the clinical 

field. Cross-dataset validation was conducted to 

evaluate the generalizability of the proposed 

framework. No further training has been done on the 

model; it has been tested on an external dataset like 

the mini-MIAS dataset. It illustrates the model's 

strength over the changing data distribution and 

guarantees its use beyond the training data. We 

performed ablation studies to quantify the 

contribution of the components of our model: the 

CNN backbone, attention mechanism, BiLSTM 

layer, and feature fusion strategy. The importance of 

each element in the more excellent framework was 

established by comparing results with and without 

specific components. Training and inference times 

were also recorded to evaluate the model's 

computational efficiency. Through this analysis, we 

ensure the deployment of the model in real-time 

clinical applications. In addition, the experimental 

results show that BreastHybridNet can perform 

comparably to existing state-of-the-art models like 

DenseNet, EfficientNet, and hybrid architectures on 

the same dataset and evaluation metrics for breast 

cancer diagnosis. Statistical tests were performed to 

validate the significance of the improvements 

observed by the proposed model over the baseline 

methods, including paired t-tests and Wilcoxon 

signed-rank tests. Such an extensive evaluation 

process proves the feasibility, robustness, and 

applicability of BreastHybridNet for direct transfer 

into clinical practice. 

4. Experimental results 

These experimental results measure the performance 

of the proposed BreastHybridNet framework for 
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breast cancer diagnosis tasks on the CBIS-DDSM 

dataset [41], a curated dataset of annotated 

mammogram images. We compare performance to 

those of state-of-the-art models including 

LMHistNet [1], BreastMultiNet [17], DOTNet 2.0 

[4], VGG16 Hybrid [20], and Hybrid CNN+SVM 

[29] for breast cancer detection. All the experiments 

were conducted in Python using TensorFlow and 

Keras libraries on a computer with an NVIDIA GPU 

for acceleration. BreastHybridNet outperformed 

competing models in terms of benchmarked 

performance metrics (accuracy, precision, recall, 

and F1-score). Figure 3 shows sample images from 

the CBIS-DDSM dataset, which is used in this 

paper's study. Figure 4 presents the proposed model's 

ROC curve, reflecting its ability in breast cancer 

detection.  

 

Figure 4. ROC Curve of  proposed model

 

Table 2. Performance Comparison Among Models in Breast Cancer Diagnosis 

Model Precision (%) Recall (%) F1-Score (%) Accuracy (%) 

BreastHybridNet (Proposed) 97.50 98.10 97.80 98.30 

ResNet50 92.80 91.60 92.20 91.80 

VGG16 90.50 89.70 90.10 89.90 

EfficientNet 93.40 92.80 93.10 92.50 

DenseNet121 94.20 93.80 94.00 93.60 

CNN 88.90 88.10 88.50 88.40 

 

 

Table 3. Performance Comparison with State-of-the-Art Models 

Model Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

Reference 

Proposed Model 

(BreastHybridNet) 

98.30 97.50 98.10 97.80 - 

LMHistNet 96.85 95.30 96.20 95.75 Koshy et al. [1] 

BreastMultiNet 97.10 96.00 96.80 96.40 Rahman et al. [17] 

DOTNet 2.0 95.60 94.80 95.40 95.10 Ko et al. [4] 

VGG16 Modified with Hybrid 

Features 

94.90 93.70 94.20 93.95 Khamparia et al. 

[20] 

MultiNet 95.20 94.50 94.90 94.70 Khan et al. [15] 

Hybrid CNN + SVM 95.60 95.00 95.30 95.15 Eroglu et al. [29] 

3D-CNN 94.75 94.10 94.50 94.30 Haq et al. [36] 

IGSAGAW 94.50 93.80 94.10 93.95 Liu et al. [38] 
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Table 4. Results of the Ablation Study 

Model Variant Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

Proposed Model (BreastHybridNet) 98.30 97.50 98.10 97.80 

Without Attention Mechanism 96.50 95.20 96.00 95.60 

Without BiLSTM Layer 95.80 94.90 95.50 95.20 

Without Feature Fusion 95.40 94.50 95.00 94.75 

CNN Backbone Only 93.20 91.80 92.50 92.15 

BiLSTM Only 91.50 90.10 91.00 90.55 

 

We assess the proposed BreastHybridNet model 

performance against the baseline models (CNN, 

ResNet50, VGG16, EfficientNet, and DenseNet121) 

in (Table 2). BreastHybridNet achieves the best 

result compared to all networks with an accuracy of 

98.30% and outperforms all networks regarding 

precision, recall, and F1-score. It emphasizes that it 

works well with its hybrid architecture, successfully 

combining CNN, BiLSTM, attention mechanisms, 

and feature fusion, providing an excellent 

generalization ability for breast cancer diagnosis. 

 

Figure 5. Performance Comparison Among Breast 

Cancer Detection Models 

As shown in Figure 5, we demonstrate the 

performance of our newly proposed 

BreastHybridNet compared with five baseline 

models: ResNet50, VGG16, EfficientNet, 

DenseNet121, and CNN (standalone CNN) based on 

the most critical evaluation metrics: precision, recall, 

F1-score, and accuracy. BreastHybridNet 

outperforms all metrics on all fount, yielding an 

accuracy of 98.30%, precision of 97.50%, recall of 

98.10%, and an F1 score of 97.80%. The results 

further justify the ability of the proposed hybrid 

architecture toward the complexity of breast cancer 

imaging using mammogram images. DenseNet121 

is the best baseline model, with an accuracy of 

93.60%. DenseNet121 ~3 and DenseNet121 are 

robust, with densely connected layers to exploit 

hierarchical features, which makes DenseNet121 

suitable for medical imaging. It is less effective than 

BreastHybridNet, although it also contains a 

component to straightforwardly decompose an 

image into sub-level features since it does not utilize 

sequential learning or attention mechanisms. 

Likewise, EfficientNet had 92.50%, demonstrating 

its capability to provide a trade-off between model 

size and computational efficiency. However, its 

performance is hindered by a lack of explicit, 

sequential dependencies and critical region 

localization. The performance of ResNet50 and 

VGG16 are not bad: 91.80% and 89.90%. Skip 

connections in ResNet50 help reduce vanishing 

gradients and learn deeper representations. It does 

not contain specialized mechanisms that would 

allow it to focus on diagnostically viable regions. 

The architecture of VGG16 is more straightforward, 

with a more significant number of layers than the 

larger models. It fails to capture more features, 

leading to poorer performance on the mammogram 

images. The CNN model has the lowest accuracy 

(88.40%) as a standalone, which shows that its 

simplicity does not allow for the effective extraction 

of complex spatial and contextual features from this 

dataset. BreastHybridNet outperforms existing 

methods due to the following primary innovations. 

The framework has the following main components: 

First, it incorporates a pre-trained CNN backbone, 

e.g., ResNet or VGG16, capable of fast and accurate 

feature generation, learning texture, shape, and 

density features that contain essential information to 

guide diagnostic decisions. Second, a spatial 

attention mechanism allows the model to focus on 

contexts with high-grade diagnostic significance, 

such as lesions or abnormalities, to better separate 

benign from malignant cases. Finally, the BiLSTM 

layer has a better ability to extract sequential 

relationships and spatial dependencies between 

feature maps, helping to get a better semantic feature 

representation of the input images. Last, the feature 

fusion strategy, which fuses the complementary 

information gained from CNN and BiLSTM 
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classification outputs, helps craft a comprehensive 

representation that leads to a more significant gain in 

classification score. The impressive 

BreastHybridNet performance is due to these 

architectural improvements and sophisticated 

preprocessing, such as class balancing (data 

augmentation) and region of interest (ROI) 

extraction. Based on the results, it outperforms both 

traditional and state-of-the-art architectures and 

provides a reliable and interpretable framework for 

use in clinical practice to diagnose breast cancer. The 

toolbox also includes explainability engines such as 

Grad-CAM++ and SHAP, which are highly 

beneficial, as the decisions made by the model must 

make sense medically and be interpretable by 

clinicians. 

4.1 Performance Comparison with State-of-the-

Art 

Performance comparison demonstrates the proposed 

BreastHybridNet's superiority over SOTA models' 

accuracy, precision, recall, and F1 score. With the 

integration of complicated components such as 

BILSTM, attention, and feature fusion, 

BreastHybridNet consistently outperforms leading 

models, demonstrating great potential for use in 

breast cancer diagnosis. As shown in Table 3, 

BreasthybridNet achieved better accuracy (98.30%), 

precision (97.50%), recall (98.10%), and F1-score 

(97.80%) compared to the state-of-the-art models. 

Features like BiLSTM joint, attention mechanisms, 

and feature fusion ensure its supreme performance in 

breast cancer diagnosis, outperforming the models 

LMHistNet, BreastMultiNet, and DOTNet 2.0. 

 

Figure 6. Performance Comparison with the State of the 

Art 

Comparison of the performance between the 

proposed BreastHybridNet and several state-of-the-

art models (LMHistNet, BreastMultiNet, DOTNet 

2.0, VGG16 Hybrid, MultiNet, Hybrid CNN+SVM, 

3D-CNN, and IGSAGAW) regarding (a) accuracy, 

(b) precision, (c) recall, and (d) F1-score is made as 

in Figure 6. The proposed model BreastHybridNet 

offers the best performance in all measured metrics, 

further illustrating its potential as a diagnostic tool in 

breast cancer detection. BreastHybridNet 

significantly surpasses the other models, achieving 

an accuracy of 98.30% (precision = 97.50, recall = 

98.10, F1-score = 97.80). The closest competitor, 

LMHistNet, has an accuracy of only 96.85%, right 

after BreastMultiNet, which is at 97.10%. They dealt 

with advanced architectures, i.e., Levenberg–

Marquardt-based deep learning and multi-scale 

feature fusion, and hence, performed competitively. 

However, they seem more ineffective than 

BreastHybridNet, which induces attention 

mechanisms and sequential learning for more 

substantial mammogram features analysis. Both 

DOTNet 2.0 (95.60%) and MultiNet (95.20%) 

demonstrate competitive accuracies but do not use 

the same hybrid architecture and the complete 

preprocessing procedures in BreastHybridNet. This 

model is a variant of the VGG16 architecture 

utilizing hybrid features and gets the highest 

accuracy of 94.89%, explaining standard CNN-

based feature extraction. Likewise, the standalone 

context-aware Hybrid CNN+SVM and 3D-CNN 

models achieve accuracies of 95.60%(94.75%) and 

94.75%(94.25%), respectively, and are limited in 

their ability to capture the complexities of 

mammogram images. The IGSAGAW model can 

achieve competitive performance (94.50 %) without 

reaching the diagnostic accuracy obtained with 

BreastHybridNet. The few critical innovations of 

BreastHybridNet are the reason behind its superior 

performance. CNN backbone was extracted for 

feature extraction, which extracted mammogram 

images' most essential texture, shape, and density 

features. By incorporating a spatial attention 

mechanism, the model learns to crudely attend to 

parts of the images that are diagnostically pertinent, 

e.g., lesions or other valuable areas for rapidly telling 

benign from malignant cases. Adding a Bidirectional 

LSTM layer to the model improves the model’s 

learning of sequential dependencies and spatial 

relationships among the feature maps for more 

meaningful contextual information for the image 

input. Furthermore, BreastHybridNet has proposed a 

new hierarchical feature fusion strategy that fuses 

the complementary nature of CNN and BiLSTM 

outputs. Combining these two modalities guarantees 

a more comprehensive view of the input data, 

yielding better and more reliable predictions. 

Furthermore, specialized preprocessing, such as 

various region of interest (ROI) extractions and data 

augmentations, was implemented to ensure high-

quality model inputs. These continuous architectural 

& methodology improvements enable 

BreastHybridNet to surpass the performance of 
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existing state-of-the-art models consistently, making 

BreastHybridNet a robust and proficient framework 

for breast cancer diagnosis. These results validate its 

clinical potential in real-world applications in which 

accuracy and interpretability are paramount. 

4.2 Ablation Study for BreastHybridNet 

An ablation study was performed to assess the 

contribution of single components to the proposed 

BreastHybridNetframework. Baseline models are 

created by removing or replacing key parts of the 

entire model, in this case, the CNN backbone, 

attention mechanism, BiLSTM layer, and feature 

fusion strategy. The necessity of each component in 

this process obtains the proposed model's superior 

performance. In Table 4 The results show that the 

proposed method achieves the best performances 

with an accuracy of 98.30%, precision of 97.50%, 

recall of 98.10%, and f1-score of 97.80% when all 

the presented components are integrated into the 

BreastHybridNet. It proves that the CNN backbone, 

attention mechanism, BiLSTM layer, and feature 

fusing strategy are necessary for the best 

performance. Attention is removed, but the 

mammogram becomes 96.50% accurate. This 

underscores the importance of adaptively attending 

to diagnostically salient areas of the mammogram. 

Without this mechanism, the model cannot focus on 

important features and can achieve lower precision 

and recall. When the BiLSTM layer is removed, 

accuracy drops to 95.80%. Such dimensionality 

reduction shows that sequential dependencies (for 

temporal signals) and spatial relationships (for 

image signals) play pivotal roles in feature 

extraction. The BiLSTM layer provides context to 

augment the features extracted from images by the 

CNN. Removing the feature fusion strategy drops 

the accuracy to 95.40%. The lack of feature fusion 

fails to exploit the complementary advantages of the 

outputs obtained from the CNNs and the BiLSTMs 

holistically, resulting in a performance drop in 

classification. When involving CNN Backbone 

Only, It achieves 93.20% accuracy. It illustrates that 

although CNNs are great at extracting features, they 

do not generalize well on their own to complex 

spatial and sequential patterns. Likewise, the 

BiLSTM layer alone has the lowest accuracy of 

91.50% because it relies heavily on sequential 

learning instead of effective spatial feature 

extraction through convolution operation, the 

essential features required as input for accurate 

classification. We supplement the ablation study 

with information on the necessity of each component 

in BreastHybridNet. The attention mechanism and 

BiLSTM layer enable the model to attend to 

analytically relevant areas and learn spatial 

dependencies selectively. The feature fusion strategy 

ensures complementary feature integration, and a 

backbone CNN architecture provides substantial 

features acquisition. This, combined with other 

elements, allows BreastHybridNet to produce 

outstanding performance in diagnosing breast 

cancer. 

5. Discussion 

Breast cancer is still one of the top cancers causing 

death in women, highlighting the necessity of an 

efficient diagnosis tool. The accuracy of breast 

cancer diagnosis has been dramatically enhanced by 

advances in artificial intelligence (AI) and deep 

learning, with some examples of models such as 

LMHistNet [1], BreastMultiNet [17], and DOTNet 

2.0 [4] showing outstanding performance. 

Nevertheless, several limitations exist in these 

SOTA approaches. For example, most models can 

either not accurately localize clinical regions, model 

complex spatial relations between findings and 

mammogram features, or model temporal 

dependencies. Furthermore, dependence on heuristic 

CNN architectures leads to less feature extraction 

effectiveness and less interpretability. These 

limitations highlight the gaps in the state-of-the-art 

and demand novel deep-learning approaches that can 

overcome them. To tackle these challenges, we 

propose BreastHybridNet, a hybrid framework. This 

approach includes several innovations: a CNN 

backbone for rich feature extraction, a spatial 

attention mechanism for selective highlighting of 

relevant regions, a BiLSTM layer to model 

sequential dependencies, and a unique feature fusion 

rendering complementary information. Collectively, 

they complement each other in improving diagnostic 

accuracy, sensitivity, and interpretability. The 

experimental results validate the effectiveness of the 

proposed methodology. BreastHybridNet surpasses 

state-of-the-art models with an accuracy of 98.30% 

and better precision, recall, and F1-score. This is 

because the additions of attention and sequential 

learning remedy the shortcomings of the current 

models, which are purely based on extracting spatial 

features. This work has significant ramifications for 

breast cancer diagnosis by directly tackling several 

key limitations in state-of-the-art models. It provides 

a robust, interpretable, and clinically considerable 

framework to decrease errors in diagnosis and 

reduce false positives. Section 5.1 provides a 

comprehensive discussion of this study's limitations. 

5.1 Limitations 

The current study has three notable limitations. 

Firstly, even though the CBIS-DDSM dataset 

includes high-quality image data of mammograms, 
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it is necessary to validate the model's 

generalizability beyond diverse datasets, including 

mammogram image data or in real clinical settings. 

On the other hand, due to its hybrid architecture, the 

computational complexity of BreastHybridNet may 

hinder its application in resource-limited 

environments. Third, the model only considers 

imaging data and does not include non-imaging 

clinical information crucial for further improving 

diagnostic accuracy, such as patient history, 

genetics, and other factors. Future studies should 

address these limitations by testing the framework 

on larger datasets, using faster computations, and 

combining other multimodal data to create a fully 

multimodal diagnostic framework. Hybrid Deep 

Learning has been applied in different fields as 

reported [42-46]. 

6.  Conclusion and future work 

BreastHybridNet — A Hybrid Deep Learning 

Framework for Mammogram Classification: This 

Study The proposed model combines a CNN 

backbone, spatial attention mechanism, BiLSTM 

layer, and feature fusion strategy as a comprehensive 

model that outperforms state-of-the-art approaches 

with an accuracy of 98.30%. Using attention 

mechanisms and sequential learning overcomes the 

shortcomings of existing models by dynamically 

locating important areas and extracting both spatial 

and contextual features. These achievements allow 

for improved diagnostic accuracy and reliability, 

showcasing the clinical relevance of the employed 

framework. The study has some limitations, albeit 

modest, despite being successful. The heavy 

dependence on the CBIS-DDSM dataset should be 

further examined using different, real-world datasets 

to confirm generalizability. The model is also 

computationally complex, which may impair its 

deployment in resource-limited settings. Optimizing 

the architecture for computational efficiency and 

adapting the framework to other multimodal data 

like patient history and genetic data for more 

sophisticated diagnostics are directions for future 

work. These results together provide a compelling 

case for using hybrid deep learning frameworks to 

improve breast cancer diagnosis. Addressing these 

recognized limitations can enable future work to 

serve as the basis of a scalable, clinically 

interpretable, and relevant diagnostic tool suitable 

for widespread implementation. 
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