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Abstract:  
 

Innovation and competitiveness in the software engineering sector have been booming 

recently. In order to stay in business, software companies need to provide affordable, 

high-quality software solutions on schedule. A crucial question is whether it is possible 

to obtain high-quality software products without negatively affecting development effort 

and cycle time for software developers. Longer cycle times and more development effort 

are the only ways to deploy software techniques to increase software quality, according 

to conventional ideas. Another school of thought holds that the understanding aging 

leader method, which is a Particle Swarm Optimization (PSO) technique, can 

simultaneously increase software quality, speed up software development cycles, and 

reduce developers' effort. A software program defect or bug occurs when a software 

system fails to meet a functional requirement as stated in the standard specifications or 

as per the acceptable end-user requirements, even if those requirements are not explicitly 

mentioned. Integrating quality assurance procedures into every step of the software 

development lifecycle is the main focus of the Hyper Integral Approach to software 

quality. By bridging the gap between development and quality assurance, this 

methodology hopes to boost collaboration, guarantee continuous testing, and raise 

software quality generally. This research proposes a Hyper Integral Approach (HIA) 

using Particle Swarm Optimization for enhancing software quality (HIA-PSO-ESQ). The 

proposed model provides a quality software in less time when contrasted to traditional 

methods. 

 

1. Introduction 
 

The software industry happens to be one of the 

fastest, most competitive industries and it has these 

changes in its core, due to continuous advancements 

in technology and always increasing customer 

demands. Software organizations are facing a 

challenge to deliver high-quality software within 

allocated budgets and timelines. Quality is extremely 

important, all while moving faster than ever to keep 

up with the advancement of this space. Achieving 

quality, the bug-free data that cannot be harmful for 

the industry or user, becomes the main challenge for 

the project and adds extra pressure on the cost, and 

thus traditional ways of developing software require 

excessive time and effort to maintain the quality. It 

is an integral part of the software development 

lifecycle (SDLC). This encompasses systematic 

processes that focus on identifying and reducing 

defects early in the development cycle. It's a fact that 

defects found earlier in development cost 

substantially less to fix than defects found later. Not 

only does this approach ensure initially strong 

quality practice, but you also avoid extraneous 

rework transliterally improving the speed of 

development, lowering overall costs and increasing 

customer satisfaction. Software defects or bugs are 

usual circumstances that greatly affect software 

quality and performance. These flaws may result 

from the architecture of the program, the source 

code, or issues with integration. They cause 

functional failures, and therefore you must identify 

and fix these at the development phase. Using 
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methodologies for a systematic review process 

greatly improves detection of errors in the software, 

when correctly correlated with functional and non-

functional requirements. Against this background, 

there has been great interest in the use of 

optimization techniques to improve software quality. 

One of them is based on an evolutionary algorithm 

called Particle Swarm Optimization (PSO) where 

fish and birds are social animals. It presents a new 

mechanism for optimizing multiple parameters 

simultaneously through the Understanding Aging 

Leader method, a special class of PSO. This 

approach maintains a healthy balance between 

exploration and exploitation by mimicking the 

decision-making dynamics of aging leaders in 

natural systems. This method has a great potential to 

optimize the software quality improvement process 

where software can be reviewed, faults can be 

detected quickly and development time can be 

reduced without sacrificing quality. Addressing 

defects early is the primary reason for building better 

software. Reviews, inspections, and technical 

assessments performed on initial stages of the SDLC 

play a crucial role in recognizing possible issues. 

These practices not only improve the software but 

also improve developer skill, building a quality 

mindset and continuous improvement among 

development teams. HIA (Hyper Integral Approach) 

with respect to software quality ensures that quality 

is planted at each stage of SDLC. In contrast to 

traditional approaches where quality is only checked 

during specific milestones, HIA stresses quality 

assessment throughout the entire development 

lifecycle. This comprehensive perspective connects 

development and quality validation teams, fostering 

teamwork and guaranteeing that quality is a 

collective undertaking throughout each step of 

development. It works as a strategic benefit to 

incorporate PSO with the existing HIA architecture. 

This approach which is known as HIA-PSO-ESQ 

(Hyper Integral Approach using Particle Swarm 

Optimization for Enhancing Software Quality), 

provides a novel solution for age-old problems of 

Software Engineering. HIA-PSO-ESQ does the 

enhancements over defect detection, performing the 

testing and allocating the resources faster by 

utilizing the HIA and its associated work on the 

software engineering process undertaken by the PSO 

fusion and attempting, therefore, to make the HIA-

PSO-ESQ model more scalable and less complex. 

Typically, quality assurance methods have been 

static and lack flexibility which has led the 

researchers of this study to recommend for a hybrid 

model to mitigate the deficiencies of both the cost 

and the time for quality assurance methods while 

maintaining efficiency. Incorporating PSO with HIA 

improves both the review and testing processes 

while reducing manual effort, allowing resource 

allocation for innovation and higher-value tasks. In 

order to shift towards automation and intelligent 

systems for building software and testing, this is 

leading to the direction of the industry. After all, at 

the end of the day, the success of any software 

product boils down to how well it is able to meet user 

needs without compromising on reliability, 

scalability, and maintainability. In this context, the 

proposed HIA-PSO-ESQ model integrates these 

aspects through embedding quality in the 

development practices. This finding shows that an 

advanced optimization method, integrated into a 

quality framework, can not only enhance the quality 

of the software but also save valuable time and 

resources in the software development process. This 

research work advances the current state of the art in 

software quality by providing a detailed case study 

of the HIA-PSO-ESQ model and its application to 

software quality. It provides what organizations need 

to know, to do, and to deliver, in order to improve 

their quality assurance practices and bring better 

software solutions to an increasingly demanding 

marketplace. 

2. Literature survey 
 

M. R. Belgaum et al [1]. discussed the challenges 

that heterogeneity and heterogeneous users cause for 

modern networks as we are entering into the 5G era 

leading to millions of MBit/s with significant variety 

of traffic. Classic load-balancing methods in 

software-defined networking (SDN) struggle with 

the efficiency needed in unicontroller deployments 

and fail to provide reliable as well as good route 

selection when subject to high loads. In mitigating 

such limitations, the authors introduce the self-socio 

adaptive, reliable particle swarm optimization 

(SSAR-PSO) load-balancing method. This 

mechanism uses direct information (node 

performance) and indirect information (neighbor 

nodes performance) to find the reliable nodes and 

path. Future research will be dedicated to target 

optimization of SSAR-PSO technique for SDN more 

efficient and reliable of load balancing. 

Y. S. Baguda [2], closely examines technical 

challenges involved in streaming video over error-

prone network, mainly over wireless local area 

network (WLAN) in which rapid varying channel 

conditions and different quality of service (QoS) 

requirement affect the video quality very much. 

Since traditional Open System Interconnection 

(OSI) layered, approaches are designed to operate in 

layers independently and overlook the 

interdependencies between the layers they directly 

do not consider the problems posed by wireless 
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video streaming. In this paper, a bio cooperative 

video-aware QoS-based MO-CLD optimization 

algorithm is proposed to improve these 

shortcomings. The proposed solution defines and 

models the wireless video streaming optimization 

problem and uses a bioinspired optimization 

algorithm for jointly optimizing the source rate and 

packet loss rate through dual decomposition. A 

better adaptation of video streaming system to 

dynamic characteristic of the channel allows for 

satisfying video quality and QoS. 

From the perspective of escalating bandwidth 

demand, E. Guler [3], investigates the transformative 

potential of Elastic Optical Networks (EONs) in 

conjunction with Software-Defined Networking 

(SDN). Software-Defined Optical Networking 

(SDON), is the integration of SDN with its 

decoupled data and control planes and EONs, with 

their rich functionality in terms of availability, 

failure resilience, load balancing and resource 

efficiency. Yet SDON suffers from some inherent 

spectrum’s allocation constraints, especially inter-

ISP cooperation.  A cross-ISP traffic engineering 

framework based on particle swarm optimization 

aims at decentralized spectrum allocation with a 

QoS-optimized algorithm by leveraging both cross-

ISP and QoS-aware decentralized access to the 

Internet Stack. This matrix frees us from dependence 

on centralized mediators and enables effective inter-

ISP traffic coordination, thus providing better 

resource allocation and QoS management for high-

speed optical networks. 

H. Das et al [4]. Software Fault Prediction is used 

more specifically in Software Engineering to boost 

productivity and minimize costs by finding faults 

early in the development lifecycle. Feature Selection 

(FS), which determines which features are most 

relevant to detecting faults, is one of the primary 

factors that drive SFP. However, the widely used FS 

techniques suffer from high computational 

complexity and low generalization. The proposed 

work introduces an innovative method for feature 

selection based on spider wasps’ behavior named 

feature selection using spider wasp optimization 

(FSSWO) to overcome these issues. Therefore, 

FSSWO aims at enhancing the accuracy and 

efficiency of selecting the optimal feature subsets. 

To demonstrate the effectiveness of FSSWO, it is 

compared with various conventional Feature 

Selection (FS) methods, such as Genetic Algorithm 

(FSGA), Particle Swarm Optimization (FSPSO), 

Differential Evolution (FSDE), Ant Colony 

Optimization (FSACO) on eleven benchmark 

datasets. These outcomes show that SFP that 

integrates FSSWO surpasses companion algorithms 

and is promising to boost SFP due to its competent 

feature selection. D. K. Jain [5], presents the 

challenges in fault detection within the context of 

dynamic web applications, where fault exposure is 

conditional on execution paths and the complexities 

inherent to each application complicate the 

assessment process. Existing artificial fault injection 

models which are still using in controlled 

environments do not fit real-world fault injection 

scenarios got established. In order to improve the 

quality of web applications the paper deals with fault 

classification based on bug reports from three open-

source web applications (qaManager, bitWeaver, 

and WebCalendar) and user reviews of two Play 

Store apps (Dineout: Reserve a Table and Wynk 

Music) The term frequency-inverse document 

frequency (tf-idf) feature extraction method is used 

to evaluate five supervised learning algorithms—

naïve Bayesian, decision tree, support vector 

machines, K-nearest neighbor, and multi-layer 

perceptron. Moreover, an efficient feature selection 

method based on particle swarm optimization (PSO), 

a nature-inspired meta-heuristic, is proposed to 

enhance the performance. To this end of optimal 

fault classification, this exploratory study lays the 

groundwork for an automated tool that will allow for 

a more efficient fault management of web 

applications. 

H.-E. Tseng [6], explores Asynchronous Parallel 

Disassembly Planning (aPDP) for enhanced 

disassembly learning across multiple manipulators. 

Unlike sequential disassembly where items are 

processed, one at a time, the approaches need to 

jointly optimize the manipulator pose with respect to 

the part priority order in the context of aPDP. In this 

contribution, we design an improved Particle Swarm 

Optimization (PSO) algorithm for the aPDP 

optimization problem where the objective is to 

minimize the Make Span. The performance of the 

proposed method is found superior to other methods 

such as Genetic Algorithms and Ant Colony 

Optimization in terms of solution quality and 

convergence speed. The findings indicate that PSO 

based approaches can handle complex disassembly 

problems more effectively and efficiently compared 

to the other approaches and that they consistently 

perform successfully across an application of 

optimization techniques to disassembly problems. 

In this article, W. Li [7], speaks out the limitations 

of the classic Particle Swarm Optimization (PSO), 

i.e. the unbalanced trade-off between exploration 

and exploitation, as well as its insufficiency in 

premature convergence and constructs a novel Dual-

Stage Hybrid Learning Particle Swarm Optimization 

(DHLPSO). The algorithm details two distinct 

phases of exploration versus exploitation for the 

iterative process. In the first stage, a learning 

strategy based on Manhattan distance is employed 

which increases the diversity of the population by 
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guiding the particle to learn not only from the best 

particle, but from the distance with which its particle 

is better. The second stage is local optimization, 

where the particles only learn from the two best 

particles and an excellent example learning strategy 

to enhance the particles. Moreover, we add a 

Gaussian mutation strategy to enhance its 

searchability, especially for multimodal functions. 

The two-phase design presented here has great 

potential to solve difficult problems of global 

optimization with better convergence and 

performance. 

This paper by D. Dabhi [8], focuses on the 

challenging energy resource management (ERM) 

problem in the microGrid environment in which 

energy needs to be managed across the tremendous 

uncertainties of renewable generation (RG) sources 

such as photovoltaic (PV) power, the integration of 

electrical vehicles (EVs) with grid to vehicle (G2V) 

and vehicle to Grid (V2G) systems, energy market 

pricing and load demand as well as demand response 

(DR) programs. Next, to reduce operational costs 

while maximizing revenues for VPP players that 

aggregate heterogeneous renewable sources, Dabhi 

put forward an innovative hybrid optimization 

algorithm named Hybrid Levy Particle Swarm 

Variable Neighborhood Search Optimization 

(HL_PS_VNSO). In this method Particle Swarm 

Optimization (PSO), is combined with Variable 

Neighborhood Search optimization (VNS), boosted 

with Levy Flight to optimize the step length. The 

capability of HL_PS_VNSO is illustrated by the 500 

uncertain scenarios, which were applied to the 

MicroGrid with 25-bus, and its efficiency at solving 

the complex ERM problem. 

H. A. Mahmoud [9], Hybrid optimization for 

performance enhancement of accounting 

information systems. Specifically, this study 

proposes two new approaches to generate prediction 

models (CNGB), which combines Hybrid Capsule 

Network with XGBoost, Hybrid Honey Badger 

Particle Swarm Optimization (HBPSO). The CNGB 

model combines the capsule network with XGBoost 

to perform binary classification, whereas HBPSO is 

used for parallel search optimization and hyper-

parameter adjustment of the AIS, improving its 

performance. The paper emphasizes on PSO 

optimization algorithms for search efficiency in data 

and data pre-processing of important and vast data 

analysis, which are vital in the auditing risk 

assessment with predictive models. The proposed 

hybrid models are evaluated through experiments, 

which also demonstrates their efficacy and 

robustness to the randomness of AIS, and significant 

performance improvements can be observed in the 

outcome of AIS. L. Yang [10], tackles the problem 

of estimating parameters in models used for 

predicting software reliability and defects, by 

developing a hybrid algorithm that combines 

Particle Swarm Optimization (PSO) with the 

Sparrow Search Algorithm (SSA). PSO features 

rapid convergence but low solution accuracy, while 

SSA provides a high search accuracy, speedy 

convergence, stability, and robustness. The proposed 

hybrid method utilizes the benefits of both 

algorithms that accelerate convergence before SSA 

updates incrementally. Moreover, we propose a new 

fitness function, inspired by maximum likelihood 

estimation of parameters that updates parameter 

initialization, achieving better predictive accuracy 

and efficiency over existing methods for software 

defect prediction. 

3. Proposed Model 

Hyper Integral Approach using Particle Swarm 

Optimization for Enhancing Software Quality (HIA-

PSO-ESQ) is a model that proposed here which 

blends the elements of quality assurance with leads 

of optimization heuristics. The model utilizes 

Particle Swarm Optimization (PSO) to tackle major 

issues in software development, namely defect 

detection, increased testing efficiency, and 

shortened cycle times. By blending top-down and 

bottom-up techniques, vendor enables improvement 

of software quality without additional development 

effort and hold up in delivery schedules. With Hyper 

Integral Approach, the focus is on continuous quality 

assurance in the Software Development Lifecycle 

(SDLC). Traditional methodology emphasizes on 

some particular stage of the development process in 

order to assure quality whereas HIA constructs 

quality check at every phase from requirement 

gathering till deployment. It enables a more seamless 

integration of defect identification, reduces rework, 

and promotes collaboration between development 

and QA teams. The beginning of the Particle Swarm 

Optimization (PSO algorithm) was examined based 

on the social behavior of animals (i.e. fish and birds). 

Here, in the proposed model, different quality 

parameters of interest, including, defect detection 

efficiency (DDE), test case coverage (TCC), and 

cycle time reduction (CTR) are optimally achieved 

using PSO. Over time, the algorithm levels up its 

candidate solutions so that the best quality assurance 

strategies are implemented. The HIA-PSO-ESQ 

Model primarily aims to improve defect detection 

efficiency, increase test coverage, and reduce the 

software development cycle duration. This is 

accomplished by creating an optimization problem 

that utilizes these quality metrics as KPIs. The 

improved solutions helps direct the establishment of 

useful review and testing processes. The proposed 
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model’s optimization problem is mathematically 

represented using a fitness function: 

Fset(x)= α.DE(i)+α*TCC(i)-γ*CTR(i) 

Where: 

 DE(x): Defect Detection Efficiency 

 TCC(x): Test Case Coverage 

 CTR(x): Cycle Time Reduction 

α, β and γ are weighting factors representing the 

relative importance of each metric. 

Calculation of Quality Metrics 
The key metrics used in the fitness function are 

calculated as follows: 

 

1. Defect Detection Efficiency(DDE): 

             DDE=    

      
𝐷𝑒𝑓𝑒𝑐𝑡𝑠 𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑖𝑛 𝑅𝑒𝑣𝑖𝑒𝑤𝑠 

𝑇𝑜𝑡𝑎𝑙 𝐷𝑒𝑓𝑒𝑐𝑡𝑠 𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑
 

2. Test Case Coverage(TCC): 

               TCC = 

                  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑂𝑓 𝐶𝑜𝑣𝑒𝑟𝑒𝑑 𝑇𝑒𝑠𝑡 𝐶𝑎𝑠𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑇𝑒𝑠𝑡 𝐶𝑎𝑠𝑒𝑠
× 100 

3. Cycle Time Reduction(CTR): 

      CTR= 

                    
𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝐶𝑦𝑐𝑙𝑒 𝑇𝑖𝑚𝑒−𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑 𝐶𝑦𝑐𝑙𝑒 𝑇𝑖𝑚𝑒

𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝐶𝑦𝑐𝑙𝑒 𝑇𝑖𝑚𝑒
× 100 

 

PSO Algorithm for Optimization 

The PSO algorithm operates by initializing a swarm 

of particles, each representing a potential solution. 

The position and velocity of each particle are 

updated iteratively based on personal and global best 

solutions. The velocity update is given by: 

𝑉𝑖[𝜔 ∗ 𝑉𝑖(𝑡) + 𝑐1 ∗ 𝑟1 ∗ (𝑝𝑏𝑒𝑠𝑡,𝑖 − 𝑥𝑖(𝑡)) + 𝑐2 ∗ 𝑟2

∗ (𝑔𝑏𝑒𝑠𝑡,𝑖 − 𝑥𝑖(𝑡)) 

 

𝜔: Inertia Weight 

𝑐1, 𝑐2: Cognitive and social coefficients 

𝑟1, 𝑟2: Random Values in [0, 1] 

𝑝𝑏𝑒𝑠𝑡,𝑖: Personal best position of the particle 

 Global best position of 

the swarm 

These optimized parameters derived from the PSO 

are utilized in the reviewing and evaluation Phases. 

It also advises on the number of reviews needed, 

where to allocate the resources, the target test 

coverage levels required to get the software defects 

caught and fixed as early as possible in the 

development process. The synchronous model of 

PSO with HIA causes the cycle time and resource 

utilization to be reduced considerably, but also 

improves the quality of the software. Early detection 

of defects, improved skills, and reduced rework 

helps developers deliver faster and dependable 

software. The HIA-PSO-ESQ model which uses the 

optimization techniques in software quality 

assurance. The application of other metaheuristic 

algorithms to this problem and enhancing the fitness 

function to include more quality metrics, 

maintainability and scalability, can form the basis of 

future work.
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Algorithm for HIA-PSO-ESQ (Hyper Integral 

Approach using PSO for Enhancing Software 

Quality) 

Step-1: Perform Initialization. Within the acceptable 

search space, which stands for software 

configurations or judgments, the initial placements 

and velocities of particles are set at random. 

In software engineering and testing, each particle 

stands for a potential solution. 

Step-2: Consider the initial population and evaluate 

the particles fitness using fitness function. 

Step-3: The Hyper Integral Approach aggregates 

various software quality metrics like defect density, 

maintainability, test coverage into a single value 

using an integral model. 

Step-4: Update the new velocity and position of 

particles 

Step-5: Evaluate new fitness of each particle 

Step-6: Repeat until convergence 

Step-7: Consider optimal solution 

For each particle Pi in particle set 

{ 

   Initialize the variable t position Pj and 

velocity Vj, max Iterations ITt randomly and cluster 

set Clus_Set 

} 

While (t< ITt) 

{ 

   For each particle Pj 

     Calculate fitness function 

      (7) 

     If fit_val > Pbest  

   If(fit_val>max(Clus-Set) 

          Fit_val=Pbest  

      End 

   Perform updation of particle with best fitness 

value and consider it as gbest 

   For each particle Pj 

     Calculate new velocity as 

 

       

     Update position Pj 

End 

   End 

Return best fit_val 

} 

In the proposed method, a Particle Swarm 

Optimization (PSO) based Hyper Integral method 

(HIA-PSO-ESQ) is used to maintain the levels of 

defect detection efficiency, test case coverage, and 

cycle time reduction in a way to maximize the 

software quality. First, the algorithm defines a 

fitness function which measures the performance of 

each of the configuration. It creates an initial 

population of particles, each particle representing a 

solution with random positions and velocities 

assigned. Each particle solution is evaluated and two 

references are taken, which is the best solution 

obtained for each particle (Personal best), and for all 

particles (Global best).In every iteration, particles 

update their position and velocity depending on their 

experience (personal best) and that of the swarm 

(global best). These updates enable particles to 

search the solution space efficiently, fine-tuning 

their position toward the best arrangement. The 

iterations continue until either a fixed number of 

iterations has been reached, or the solutions start to 

converge to a certain value. The end product is a list 

of suggested parameter settings for frequency of 

review, coverage and resource allocation that can 

help to improve software quality while requiring less 

development time and effort. 

4. Results 

The performance of the proposed HIA-PSO-ESQ is 

compared with the two existing model TQAM and 

ODDM in this section. This comparison is done 

based on metrics like defect detection efficiency, 

code coverage and software development cycle time 

reduction. The HIA-PSO-ESQ model outperformed 

TQAM model and ODDM model as it achieved 85% 

defect detection, achieved 95% test case coverage; 

and showed a cycle time reduction of 25%, the table 

1 show the comparison of these models based on 

several metrics and the improvement of the proposed 

approach on the software quality and cost and time 

for development. 

Table 1. Defect Detection Efficiency (DDE) Comparison 

 Model Average 

DDE (%) 

Minimum 

DDE (%) 

Maximum 

DDE (%) 

Traditional 

QA Model 

(TQAM) 

70 65 75 

Optimized 

Defect 

Detection 

Model 

(ODDM) 

75 70 80 

HIA-PSO-

ESQ 

85 82 88 

The defect detection efficiency (DDE) metric 

measures the relative effectiveness of the two 

models in identifying software defects early in the 

development cycle. Traditional QA Mdel (TQAM) 

Average DDE was 70%, efficiency lies in between 

65% to 75%. The Optimized Defect Detection 
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Model (ODDM) has the maximum improvement 

with the range of 70% to 80% and the average of 

75%. But the HIA-PSO-ESQ has better detection 

result compared to them with the highest average 

DDE 85%, and with the most extent efficiency of 

DDE is from 82% to 88% which also shows that 

HIA-PSO-ESQ has the wider defect detection scope. 

It shows that HIA-PSO-ESQ could more effectively 

and early identify defects, improving the overall 

quality of software. Table 2 is test case coverage 

(TCC) comparison. 

Table 2. Test Case Coverage (TCC) Comparison 

 Model Average 

TCC (%) 

Minimum 

TCC (%) 

Maximum 

TCC (%) 

Traditional 

QA Model 

(TQAM) 

80 78 82 

Optimized 

Defect 

Detection 

Model 

(ODDM) 

85 83 87 

HIA-PSO-

ESQ 

95 93 97 

TCC or test case coverage means the actual 

percentage of test cases executed during the testing 

phase. After implementing TQAM about 80% of the 

structures are covered, as a minimum we have 78% 

and a maximum of 82%. The ODDM (Optimized 

Defect Detection Model) is a little better at this and 

on average has coverage 85% (ranging from 83% to 

87%). But the coverage of test cases of HIA-PSO-

ESQ model turned out to be greatly higher than these 

models, with an average value of 95%, while the 

coverage varied between 93% to 97%. This signifies 

that HIA-PSO-ESQ model achieve more rigorous 

testing, leading more test cases to higher detections 

and less ignores. While figure 1 shows Defect 

Detection Efficiency (DDE) comparison figure 2 

shows Test Case Coverage (TCC) comparison. 

Figure 3 is Cycle Time Reduction (CTR) 

comparison and figure 4 is Cost Efficiency 

Improvement comparison. Figure 5 shows 

Convergence Time comparison and figure 6 shows 

Scalability Across Projects comparison. Cycle Time 

Reduction (CTR) is a measure of how much the 

software development cycle length has decreased 

through faster defect win detection and fixes.  Table 

3 is Cycle Time Reduction (CTR) comparison. The 

Traditional QA Model (TQAM) results in a slight 

decrease in cycle time, around 15% on average (12% 

to 18%). This further optimization Model of ODDM 

gives greater reduction of 20% which is in the range 

of 18% to 22% HIA-PSO-ESQ provides an overall 

reduction of 25% compared to HIA, with a range 

between 23%-28% respectively, 

Table 3. Cycle Time Reduction (CTR) Comparison 

 Model Average 

CTR (%) 

Minimum 

CTR (%) 

Maximum 

CTR(%) 
Traditional 

QA Model 

(TQAM) 

15 12 18 

Optimized 

Defect 

Detection 

Model 

(ODDM) 

20 18 22 

HIA-PSO-

ESQ 
25 23 28 

Table 4. Cost Efficiency Improvement Comparison 

 Model Cost 

Reduction 

(%) 

Minimum 

Cost 

Savings 

(%) 

Maximum 

Cost 

Savings 

(%) 
Traditional 

QA Model 

(TQAM) 

12 10 15 

Optimized 

Defect 

Detection 

Model 

(ODDM) 

15 12 18 

HIA-PSO-

ESQ 
18 16 20 

which is the greatest improvement. This shows that 

the HIA-PSO-ESQ model is more efficient than the 

cycle time, which will enable software to be 

developed and released sooner. Cost Efficiency 

Improvement, Potential development and testing 

savings Savings: The TQAM offers a 12% cost 

reduction, giving you 10 to 15% savings. The 

average cost savings of the Optimized Defect 

Detection Model (ODDM) is 15% with range of 

12% to 18% having slight advantage over last model. 

The multipliers are determined for various 

combinations (q,c) showing the maximum cost is 

reduced by using the HIA-PSO-ESQ model, this 

shows that the cost is reduced by 18% on average, 

and the reduced cost ranges from 16%–20%. It 

means that the HIA-PSO-ESQ is the most cost-

effective way to enhance the quality of software with 

minimizing its development cost. Table 4 is cost 

efficiency improvement comparison and table 5 is 

convergence time comparison. Table 6 shows 

scalability across projects comparison. 

Table 5. Convergence Time Comparison 

 Model Convergence Time 

(Iterations) 

Traditional QA Model 

(TQAM) 

100 

Optimized Defect Detection 

Model (ODDM) 

80 

HIA-PSO-ESQ 50 
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Figure 1. Defect Detection Efficiency (DDE) Comparison 

 
Figure 2. Test Case Coverage (TCC) Comparison 

 
Figure 3. Cycle Time Reduction (CTR) Comparison 
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Figure 4. Cost Efficiency Improvement Comparison 

 

Figure 5. Convergence Time Comparison 

 

Figure 6. Scalability Across Projects Comparison
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Convergence time is the amount of iterations or steps 

required for the model to have a stable result.In 

contrast, the Traditional QA Model (TQAM) 

requires as many as 100 iterations before their 

voyage converges. In comparison, the Optimized 

Defect Detection Model (ODDM) model 

demonstrates decreased convergence time of 80 

iterations. Compared to this HIA-PSO-ESQ obtains 

convergence in just 50 iterations. As we can see, 

HIA-PSO-ESQ is efficient in the optimization of the 

defect detection flow which in turn speeds up the 

model convergence and improves the software 

development speed. 

Table 6. Scalability Across Projects Comparison 

Model Small 

Projects 

(Efficiency 

%) 

Medium 

Projects 

(Efficiency 

%) 

Large 

Projects 

(Efficiency 

%) 

Traditional 

QA Model 

(TQAM) 

75 70 65 

Optimized 

Defect 

Detection 

Model 

(ODDM) 

80 75 70 

HIA-PSO-

ESQ 

90 85 80 

We define scalability across projects as the ability of 

a model to consistently achieve high efficiency 

scores in estimating projects of differents sizes. The 

Traditional QA Model (TQAM), on the other hand, 

performs relatively well for small projects (up 75% 

efficient) but performs much worse for medium and 

large projects (70% and 65% efficient, respectively). 

The implemented ODDM shows better results with 

an efficiency of 80% for small, 75% for medium, and 

70% for large projects. Nevertheless, the HIA-PSO-

ESQ model shines with its scalability.It logs 90%, 

85%, and 80% efficiency for small, medium, and 

large projects, respectively. 

5. Conclusion 

In this paper, we introduced Hyper Integral 

Approach (HIA) by using Particle Swarm 

Optimization (PSO) for the Improvement of 

Software Quality (HIA-PSO-ESQ). The purpose of 

this model is to minimize defect resolution if 

necessary, decrease cycle times and enhance 

software quality across the development cycle. The 

HIA-PSO-ESQ statistical model outperformed the 

existing Traditional QA Model (TQAM) and 

Optimized Defect Detection Model (ODDM). It 

achieved superior defect detection efficiency, 

shorter cycle times, and lower total costs. In 

summary, HIA-PSO-ESQ provides 85% defect-

detection efficiency with 95% test-case coverage 

and a 25% decrease in software development cycle-

time. These numbers seem to signal that this model 

could improve software quality as well as time and 

effort in development. In terms of convergence 

speed, the proposed model converged faster 

compared to other models with less number of steps 

to ensure the optimality. HIA-PSO-ESQ not only 

performed well across projects of different sizes, but 

also highlighted its scalability, showing its 

adaptability to different software development 

scenarios.With the combination of early-stage defect 

detection and PSO optimization, HIA-PSO-ESQ 

demonstrates a more efficient and cost-effective 

solution than conventional approaches. This 

suggests that the use of PSO during the software life 

cycle leads to a considerable enhancement of 

software quality and a decrease in cost. In modern 

software development with its emphasis on speed 

and quality assurance, this model is promising. 

Overall, this study proposes HIA-PSO-ESQ as a 

novel and practical paradigm that delivers 

significant improvements in quality and efficiency 

compared with disparate models. The study 

emphasizes its promise in revolutionizing software 

engineering practices. The scope of it could extend 

towards studying other machine learning and AIl 

techniques that could help in optimizing and 

detecting the defects in software development. HIA-

PSO-ESQ is a remarkable linguistic framework that 

can substantially address the increasing demand for 

quality software with timely delivery and cost 

control. Similar Works done and reported in the 

literatüre [11-14]. 
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