

Copyright © IJCESEN

International Journal of Computational and Experimental

Science and ENgineering

(IJCESEN)

Vol. 11-No.1 (2025) pp. 320-330
http://www.ijcesen.com

ISSN: 2149-9144

 Research Article

Particle Swarm Optimization Based Hyper Integral Approach for Enhancing

Software Quality

JeevanaSujitha Mantena 1*, Subrahmanyam Kodukula2

1 Research Scholar, Department of Computer Science and Engineering, Koneru Lakshmaiah Education

Foundation, Vaddeswaram 522302, India
* Corresponding Author Email: jeevana.srkrcse@gmail.com - ORCID: 0000-0002-9753-752X

2Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram 522302,

AP, India
Email: smkodukul@kluniversity.in - ORCID: 0000-0002-4597-5421

Article Info:

DOI: 10.22399/ijcesen.814

Received : 24 October 2024

Accepted : 31 December 2024

Keywords :

Software Quality,

Particle Swarm Optimization,

Software Development Cycles,

Software Inspections,

Faults and Failures,

Hyper Integral Approach.

Abstract:

Innovation and competitiveness in the software engineering sector have been booming

recently. In order to stay in business, software companies need to provide affordable,

high-quality software solutions on schedule. A crucial question is whether it is possible

to obtain high-quality software products without negatively affecting development effort

and cycle time for software developers. Longer cycle times and more development effort

are the only ways to deploy software techniques to increase software quality, according

to conventional ideas. Another school of thought holds that the understanding aging

leader method, which is a Particle Swarm Optimization (PSO) technique, can

simultaneously increase software quality, speed up software development cycles, and

reduce developers' effort. A software program defect or bug occurs when a software

system fails to meet a functional requirement as stated in the standard specifications or

as per the acceptable end-user requirements, even if those requirements are not explicitly

mentioned. Integrating quality assurance procedures into every step of the software

development lifecycle is the main focus of the Hyper Integral Approach to software

quality. By bridging the gap between development and quality assurance, this

methodology hopes to boost collaboration, guarantee continuous testing, and raise

software quality generally. This research proposes a Hyper Integral Approach (HIA)

using Particle Swarm Optimization for enhancing software quality (HIA-PSO-ESQ). The

proposed model provides a quality software in less time when contrasted to traditional

methods.

1. Introduction

The software industry happens to be one of the

fastest, most competitive industries and it has these

changes in its core, due to continuous advancements

in technology and always increasing customer

demands. Software organizations are facing a

challenge to deliver high-quality software within

allocated budgets and timelines. Quality is extremely

important, all while moving faster than ever to keep

up with the advancement of this space. Achieving

quality, the bug-free data that cannot be harmful for

the industry or user, becomes the main challenge for

the project and adds extra pressure on the cost, and

thus traditional ways of developing software require

excessive time and effort to maintain the quality. It

is an integral part of the software development

lifecycle (SDLC). This encompasses systematic

processes that focus on identifying and reducing

defects early in the development cycle. It's a fact that

defects found earlier in development cost

substantially less to fix than defects found later. Not

only does this approach ensure initially strong

quality practice, but you also avoid extraneous

rework transliterally improving the speed of

development, lowering overall costs and increasing

customer satisfaction. Software defects or bugs are

usual circumstances that greatly affect software

quality and performance. These flaws may result

from the architecture of the program, the source

code, or issues with integration. They cause

functional failures, and therefore you must identify

and fix these at the development phase. Using

http://www.ijcesen.com/
http://dergipark.ulakbim.gov.tr/ijcesen
mailto:jeevana.srkrcse@gmail.com

 JeevanaSujitha Mantena, Subrahmanyam Kodukula / IJCESEN 11-1(2025)320-330

321

methodologies for a systematic review process

greatly improves detection of errors in the software,

when correctly correlated with functional and non-

functional requirements. Against this background,

there has been great interest in the use of

optimization techniques to improve software quality.

One of them is based on an evolutionary algorithm

called Particle Swarm Optimization (PSO) where

fish and birds are social animals. It presents a new

mechanism for optimizing multiple parameters

simultaneously through the Understanding Aging

Leader method, a special class of PSO. This

approach maintains a healthy balance between

exploration and exploitation by mimicking the

decision-making dynamics of aging leaders in

natural systems. This method has a great potential to

optimize the software quality improvement process

where software can be reviewed, faults can be

detected quickly and development time can be

reduced without sacrificing quality. Addressing

defects early is the primary reason for building better

software. Reviews, inspections, and technical

assessments performed on initial stages of the SDLC

play a crucial role in recognizing possible issues.

These practices not only improve the software but

also improve developer skill, building a quality

mindset and continuous improvement among

development teams. HIA (Hyper Integral Approach)

with respect to software quality ensures that quality

is planted at each stage of SDLC. In contrast to

traditional approaches where quality is only checked

during specific milestones, HIA stresses quality

assessment throughout the entire development

lifecycle. This comprehensive perspective connects

development and quality validation teams, fostering

teamwork and guaranteeing that quality is a

collective undertaking throughout each step of

development. It works as a strategic benefit to

incorporate PSO with the existing HIA architecture.

This approach which is known as HIA-PSO-ESQ

(Hyper Integral Approach using Particle Swarm

Optimization for Enhancing Software Quality),

provides a novel solution for age-old problems of

Software Engineering. HIA-PSO-ESQ does the

enhancements over defect detection, performing the

testing and allocating the resources faster by

utilizing the HIA and its associated work on the

software engineering process undertaken by the PSO

fusion and attempting, therefore, to make the HIA-

PSO-ESQ model more scalable and less complex.

Typically, quality assurance methods have been

static and lack flexibility which has led the

researchers of this study to recommend for a hybrid

model to mitigate the deficiencies of both the cost

and the time for quality assurance methods while

maintaining efficiency. Incorporating PSO with HIA

improves both the review and testing processes

while reducing manual effort, allowing resource

allocation for innovation and higher-value tasks. In

order to shift towards automation and intelligent

systems for building software and testing, this is

leading to the direction of the industry. After all, at

the end of the day, the success of any software

product boils down to how well it is able to meet user

needs without compromising on reliability,

scalability, and maintainability. In this context, the

proposed HIA-PSO-ESQ model integrates these

aspects through embedding quality in the

development practices. This finding shows that an

advanced optimization method, integrated into a

quality framework, can not only enhance the quality

of the software but also save valuable time and

resources in the software development process. This

research work advances the current state of the art in

software quality by providing a detailed case study

of the HIA-PSO-ESQ model and its application to

software quality. It provides what organizations need

to know, to do, and to deliver, in order to improve

their quality assurance practices and bring better

software solutions to an increasingly demanding

marketplace.

2. Literature survey

M. R. Belgaum et al [1]. discussed the challenges

that heterogeneity and heterogeneous users cause for

modern networks as we are entering into the 5G era

leading to millions of MBit/s with significant variety

of traffic. Classic load-balancing methods in

software-defined networking (SDN) struggle with

the efficiency needed in unicontroller deployments

and fail to provide reliable as well as good route

selection when subject to high loads. In mitigating

such limitations, the authors introduce the self-socio

adaptive, reliable particle swarm optimization

(SSAR-PSO) load-balancing method. This

mechanism uses direct information (node

performance) and indirect information (neighbor

nodes performance) to find the reliable nodes and

path. Future research will be dedicated to target

optimization of SSAR-PSO technique for SDN more

efficient and reliable of load balancing.

Y. S. Baguda [2], closely examines technical

challenges involved in streaming video over error-

prone network, mainly over wireless local area

network (WLAN) in which rapid varying channel

conditions and different quality of service (QoS)

requirement affect the video quality very much.

Since traditional Open System Interconnection

(OSI) layered, approaches are designed to operate in

layers independently and overlook the

interdependencies between the layers they directly

do not consider the problems posed by wireless

 JeevanaSujitha Mantena, Subrahmanyam Kodukula / IJCESEN 11-1(2025)320-330

322

video streaming. In this paper, a bio cooperative

video-aware QoS-based MO-CLD optimization

algorithm is proposed to improve these

shortcomings. The proposed solution defines and

models the wireless video streaming optimization

problem and uses a bioinspired optimization

algorithm for jointly optimizing the source rate and

packet loss rate through dual decomposition. A

better adaptation of video streaming system to

dynamic characteristic of the channel allows for

satisfying video quality and QoS.

From the perspective of escalating bandwidth

demand, E. Guler [3], investigates the transformative

potential of Elastic Optical Networks (EONs) in

conjunction with Software-Defined Networking

(SDN). Software-Defined Optical Networking

(SDON), is the integration of SDN with its

decoupled data and control planes and EONs, with

their rich functionality in terms of availability,

failure resilience, load balancing and resource

efficiency. Yet SDON suffers from some inherent

spectrum’s allocation constraints, especially inter-

ISP cooperation. A cross-ISP traffic engineering

framework based on particle swarm optimization

aims at decentralized spectrum allocation with a

QoS-optimized algorithm by leveraging both cross-

ISP and QoS-aware decentralized access to the

Internet Stack. This matrix frees us from dependence

on centralized mediators and enables effective inter-

ISP traffic coordination, thus providing better

resource allocation and QoS management for high-

speed optical networks.

H. Das et al [4]. Software Fault Prediction is used

more specifically in Software Engineering to boost

productivity and minimize costs by finding faults

early in the development lifecycle. Feature Selection

(FS), which determines which features are most

relevant to detecting faults, is one of the primary

factors that drive SFP. However, the widely used FS

techniques suffer from high computational

complexity and low generalization. The proposed

work introduces an innovative method for feature

selection based on spider wasps’ behavior named

feature selection using spider wasp optimization

(FSSWO) to overcome these issues. Therefore,

FSSWO aims at enhancing the accuracy and

efficiency of selecting the optimal feature subsets.

To demonstrate the effectiveness of FSSWO, it is

compared with various conventional Feature

Selection (FS) methods, such as Genetic Algorithm

(FSGA), Particle Swarm Optimization (FSPSO),

Differential Evolution (FSDE), Ant Colony

Optimization (FSACO) on eleven benchmark

datasets. These outcomes show that SFP that

integrates FSSWO surpasses companion algorithms

and is promising to boost SFP due to its competent

feature selection. D. K. Jain [5], presents the

challenges in fault detection within the context of

dynamic web applications, where fault exposure is

conditional on execution paths and the complexities

inherent to each application complicate the

assessment process. Existing artificial fault injection

models which are still using in controlled

environments do not fit real-world fault injection

scenarios got established. In order to improve the

quality of web applications the paper deals with fault

classification based on bug reports from three open-

source web applications (qaManager, bitWeaver,

and WebCalendar) and user reviews of two Play

Store apps (Dineout: Reserve a Table and Wynk

Music) The term frequency-inverse document

frequency (tf-idf) feature extraction method is used

to evaluate five supervised learning algorithms—

naïve Bayesian, decision tree, support vector

machines, K-nearest neighbor, and multi-layer

perceptron. Moreover, an efficient feature selection

method based on particle swarm optimization (PSO),

a nature-inspired meta-heuristic, is proposed to

enhance the performance. To this end of optimal

fault classification, this exploratory study lays the

groundwork for an automated tool that will allow for

a more efficient fault management of web

applications.

H.-E. Tseng [6], explores Asynchronous Parallel

Disassembly Planning (aPDP) for enhanced

disassembly learning across multiple manipulators.

Unlike sequential disassembly where items are

processed, one at a time, the approaches need to

jointly optimize the manipulator pose with respect to

the part priority order in the context of aPDP. In this

contribution, we design an improved Particle Swarm

Optimization (PSO) algorithm for the aPDP

optimization problem where the objective is to

minimize the Make Span. The performance of the

proposed method is found superior to other methods

such as Genetic Algorithms and Ant Colony

Optimization in terms of solution quality and

convergence speed. The findings indicate that PSO

based approaches can handle complex disassembly

problems more effectively and efficiently compared

to the other approaches and that they consistently

perform successfully across an application of

optimization techniques to disassembly problems.

In this article, W. Li [7], speaks out the limitations

of the classic Particle Swarm Optimization (PSO),

i.e. the unbalanced trade-off between exploration

and exploitation, as well as its insufficiency in

premature convergence and constructs a novel Dual-

Stage Hybrid Learning Particle Swarm Optimization

(DHLPSO). The algorithm details two distinct

phases of exploration versus exploitation for the

iterative process. In the first stage, a learning

strategy based on Manhattan distance is employed

which increases the diversity of the population by

 JeevanaSujitha Mantena, Subrahmanyam Kodukula / IJCESEN 11-1(2025)320-330

323

guiding the particle to learn not only from the best

particle, but from the distance with which its particle

is better. The second stage is local optimization,

where the particles only learn from the two best

particles and an excellent example learning strategy

to enhance the particles. Moreover, we add a

Gaussian mutation strategy to enhance its

searchability, especially for multimodal functions.

The two-phase design presented here has great

potential to solve difficult problems of global

optimization with better convergence and

performance.

This paper by D. Dabhi [8], focuses on the

challenging energy resource management (ERM)

problem in the microGrid environment in which

energy needs to be managed across the tremendous

uncertainties of renewable generation (RG) sources

such as photovoltaic (PV) power, the integration of

electrical vehicles (EVs) with grid to vehicle (G2V)

and vehicle to Grid (V2G) systems, energy market

pricing and load demand as well as demand response

(DR) programs. Next, to reduce operational costs

while maximizing revenues for VPP players that

aggregate heterogeneous renewable sources, Dabhi

put forward an innovative hybrid optimization

algorithm named Hybrid Levy Particle Swarm

Variable Neighborhood Search Optimization

(HL_PS_VNSO). In this method Particle Swarm

Optimization (PSO), is combined with Variable

Neighborhood Search optimization (VNS), boosted

with Levy Flight to optimize the step length. The

capability of HL_PS_VNSO is illustrated by the 500

uncertain scenarios, which were applied to the

MicroGrid with 25-bus, and its efficiency at solving

the complex ERM problem.

H. A. Mahmoud [9], Hybrid optimization for

performance enhancement of accounting

information systems. Specifically, this study

proposes two new approaches to generate prediction

models (CNGB), which combines Hybrid Capsule

Network with XGBoost, Hybrid Honey Badger

Particle Swarm Optimization (HBPSO). The CNGB

model combines the capsule network with XGBoost

to perform binary classification, whereas HBPSO is

used for parallel search optimization and hyper-

parameter adjustment of the AIS, improving its

performance. The paper emphasizes on PSO

optimization algorithms for search efficiency in data

and data pre-processing of important and vast data

analysis, which are vital in the auditing risk

assessment with predictive models. The proposed

hybrid models are evaluated through experiments,

which also demonstrates their efficacy and

robustness to the randomness of AIS, and significant

performance improvements can be observed in the

outcome of AIS. L. Yang [10], tackles the problem

of estimating parameters in models used for

predicting software reliability and defects, by

developing a hybrid algorithm that combines

Particle Swarm Optimization (PSO) with the

Sparrow Search Algorithm (SSA). PSO features

rapid convergence but low solution accuracy, while

SSA provides a high search accuracy, speedy

convergence, stability, and robustness. The proposed

hybrid method utilizes the benefits of both

algorithms that accelerate convergence before SSA

updates incrementally. Moreover, we propose a new

fitness function, inspired by maximum likelihood

estimation of parameters that updates parameter

initialization, achieving better predictive accuracy

and efficiency over existing methods for software

defect prediction.

3. Proposed Model

Hyper Integral Approach using Particle Swarm

Optimization for Enhancing Software Quality (HIA-

PSO-ESQ) is a model that proposed here which

blends the elements of quality assurance with leads

of optimization heuristics. The model utilizes

Particle Swarm Optimization (PSO) to tackle major

issues in software development, namely defect

detection, increased testing efficiency, and

shortened cycle times. By blending top-down and

bottom-up techniques, vendor enables improvement

of software quality without additional development

effort and hold up in delivery schedules. With Hyper

Integral Approach, the focus is on continuous quality

assurance in the Software Development Lifecycle

(SDLC). Traditional methodology emphasizes on

some particular stage of the development process in

order to assure quality whereas HIA constructs

quality check at every phase from requirement

gathering till deployment. It enables a more seamless

integration of defect identification, reduces rework,

and promotes collaboration between development

and QA teams. The beginning of the Particle Swarm

Optimization (PSO algorithm) was examined based

on the social behavior of animals (i.e. fish and birds).

Here, in the proposed model, different quality

parameters of interest, including, defect detection

efficiency (DDE), test case coverage (TCC), and

cycle time reduction (CTR) are optimally achieved

using PSO. Over time, the algorithm levels up its

candidate solutions so that the best quality assurance

strategies are implemented. The HIA-PSO-ESQ

Model primarily aims to improve defect detection

efficiency, increase test coverage, and reduce the

software development cycle duration. This is

accomplished by creating an optimization problem

that utilizes these quality metrics as KPIs. The

improved solutions helps direct the establishment of

useful review and testing processes. The proposed

 JeevanaSujitha Mantena, Subrahmanyam Kodukula / IJCESEN 11-1(2025)320-330

324

model’s optimization problem is mathematically

represented using a fitness function:

Fset(x)= α.DE(i)+α*TCC(i)-γ*CTR(i)

Where:

 DE(x): Defect Detection Efficiency

 TCC(x): Test Case Coverage

 CTR(x): Cycle Time Reduction

α, β and γ are weighting factors representing the

relative importance of each metric.

Calculation of Quality Metrics
The key metrics used in the fitness function are

calculated as follows:

1. Defect Detection Efficiency(DDE):

 DDE=

𝐷𝑒𝑓𝑒𝑐𝑡𝑠 𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑖𝑛 𝑅𝑒𝑣𝑖𝑒𝑤𝑠

𝑇𝑜𝑡𝑎𝑙 𝐷𝑒𝑓𝑒𝑐𝑡𝑠 𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑

2. Test Case Coverage(TCC):

 TCC =

𝑁𝑢𝑚𝑏𝑒𝑟 𝑂𝑓 𝐶𝑜𝑣𝑒𝑟𝑒𝑑 𝑇𝑒𝑠𝑡 𝐶𝑎𝑠𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑇𝑒𝑠𝑡 𝐶𝑎𝑠𝑒𝑠
× 100

3. Cycle Time Reduction(CTR):

 CTR=

𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝐶𝑦𝑐𝑙𝑒 𝑇𝑖𝑚𝑒−𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑 𝐶𝑦𝑐𝑙𝑒 𝑇𝑖𝑚𝑒

𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝐶𝑦𝑐𝑙𝑒 𝑇𝑖𝑚𝑒
× 100

PSO Algorithm for Optimization

The PSO algorithm operates by initializing a swarm

of particles, each representing a potential solution.

The position and velocity of each particle are

updated iteratively based on personal and global best

solutions. The velocity update is given by:

𝑉𝑖[𝜔 ∗ 𝑉𝑖(𝑡) + 𝑐1 ∗ 𝑟1 ∗ (𝑝𝑏𝑒𝑠𝑡,𝑖 − 𝑥𝑖(𝑡)) + 𝑐2 ∗ 𝑟2

∗ (𝑔𝑏𝑒𝑠𝑡,𝑖 − 𝑥𝑖(𝑡))

𝜔: Inertia Weight

𝑐1, 𝑐2: Cognitive and social coefficients

𝑟1, 𝑟2: Random Values in [0, 1]

𝑝𝑏𝑒𝑠𝑡,𝑖: Personal best position of the particle

 Global best position of

the swarm

These optimized parameters derived from the PSO

are utilized in the reviewing and evaluation Phases.

It also advises on the number of reviews needed,

where to allocate the resources, the target test

coverage levels required to get the software defects

caught and fixed as early as possible in the

development process. The synchronous model of

PSO with HIA causes the cycle time and resource

utilization to be reduced considerably, but also

improves the quality of the software. Early detection

of defects, improved skills, and reduced rework

helps developers deliver faster and dependable

software. The HIA-PSO-ESQ model which uses the

optimization techniques in software quality

assurance. The application of other metaheuristic

algorithms to this problem and enhancing the fitness

function to include more quality metrics,

maintainability and scalability, can form the basis of

future work.

 JeevanaSujitha Mantena, Subrahmanyam Kodukula / IJCESEN 11-1(2025)320-330

325

Algorithm for HIA-PSO-ESQ (Hyper Integral

Approach using PSO for Enhancing Software

Quality)

Step-1: Perform Initialization. Within the acceptable

search space, which stands for software

configurations or judgments, the initial placements

and velocities of particles are set at random.

In software engineering and testing, each particle

stands for a potential solution.

Step-2: Consider the initial population and evaluate

the particles fitness using fitness function.

Step-3: The Hyper Integral Approach aggregates

various software quality metrics like defect density,

maintainability, test coverage into a single value

using an integral model.

Step-4: Update the new velocity and position of

particles

Step-5: Evaluate new fitness of each particle

Step-6: Repeat until convergence

Step-7: Consider optimal solution

For each particle Pi in particle set

{

 Initialize the variable t position Pj and

velocity Vj, max Iterations ITt randomly and cluster

set Clus_Set

}

While (t< ITt)

{

 For each particle Pj

 Calculate fitness function

 (7)

 If fit_val > Pbest

 If(fit_val>max(Clus-Set)

 Fit_val=Pbest

 End

 Perform updation of particle with best fitness

value and consider it as gbest

 For each particle Pj

 Calculate new velocity as

 Update position Pj

End

 End

Return best fit_val

}

In the proposed method, a Particle Swarm

Optimization (PSO) based Hyper Integral method

(HIA-PSO-ESQ) is used to maintain the levels of

defect detection efficiency, test case coverage, and

cycle time reduction in a way to maximize the

software quality. First, the algorithm defines a

fitness function which measures the performance of

each of the configuration. It creates an initial

population of particles, each particle representing a

solution with random positions and velocities

assigned. Each particle solution is evaluated and two

references are taken, which is the best solution

obtained for each particle (Personal best), and for all

particles (Global best).In every iteration, particles

update their position and velocity depending on their

experience (personal best) and that of the swarm

(global best). These updates enable particles to

search the solution space efficiently, fine-tuning

their position toward the best arrangement. The

iterations continue until either a fixed number of

iterations has been reached, or the solutions start to

converge to a certain value. The end product is a list

of suggested parameter settings for frequency of

review, coverage and resource allocation that can

help to improve software quality while requiring less

development time and effort.

4. Results

The performance of the proposed HIA-PSO-ESQ is

compared with the two existing model TQAM and

ODDM in this section. This comparison is done

based on metrics like defect detection efficiency,

code coverage and software development cycle time

reduction. The HIA-PSO-ESQ model outperformed

TQAM model and ODDM model as it achieved 85%

defect detection, achieved 95% test case coverage;

and showed a cycle time reduction of 25%, the table

1 show the comparison of these models based on

several metrics and the improvement of the proposed

approach on the software quality and cost and time

for development.

Table 1. Defect Detection Efficiency (DDE) Comparison

 Model Average

DDE (%)

Minimum

DDE (%)

Maximum

DDE (%)

Traditional

QA Model

(TQAM)

70 65 75

Optimized

Defect

Detection

Model

(ODDM)

75 70 80

HIA-PSO-

ESQ

85 82 88

The defect detection efficiency (DDE) metric

measures the relative effectiveness of the two

models in identifying software defects early in the

development cycle. Traditional QA Mdel (TQAM)

Average DDE was 70%, efficiency lies in between

65% to 75%. The Optimized Defect Detection

 JeevanaSujitha Mantena, Subrahmanyam Kodukula / IJCESEN 11-1(2025)320-330

326

Model (ODDM) has the maximum improvement

with the range of 70% to 80% and the average of

75%. But the HIA-PSO-ESQ has better detection

result compared to them with the highest average

DDE 85%, and with the most extent efficiency of

DDE is from 82% to 88% which also shows that

HIA-PSO-ESQ has the wider defect detection scope.

It shows that HIA-PSO-ESQ could more effectively

and early identify defects, improving the overall

quality of software. Table 2 is test case coverage

(TCC) comparison.

Table 2. Test Case Coverage (TCC) Comparison

 Model Average

TCC (%)

Minimum

TCC (%)

Maximum

TCC (%)

Traditional

QA Model

(TQAM)

80 78 82

Optimized

Defect

Detection

Model

(ODDM)

85 83 87

HIA-PSO-

ESQ

95 93 97

TCC or test case coverage means the actual

percentage of test cases executed during the testing

phase. After implementing TQAM about 80% of the

structures are covered, as a minimum we have 78%

and a maximum of 82%. The ODDM (Optimized

Defect Detection Model) is a little better at this and

on average has coverage 85% (ranging from 83% to

87%). But the coverage of test cases of HIA-PSO-

ESQ model turned out to be greatly higher than these

models, with an average value of 95%, while the

coverage varied between 93% to 97%. This signifies

that HIA-PSO-ESQ model achieve more rigorous

testing, leading more test cases to higher detections

and less ignores. While figure 1 shows Defect

Detection Efficiency (DDE) comparison figure 2

shows Test Case Coverage (TCC) comparison.

Figure 3 is Cycle Time Reduction (CTR)

comparison and figure 4 is Cost Efficiency

Improvement comparison. Figure 5 shows

Convergence Time comparison and figure 6 shows

Scalability Across Projects comparison. Cycle Time

Reduction (CTR) is a measure of how much the

software development cycle length has decreased

through faster defect win detection and fixes. Table

3 is Cycle Time Reduction (CTR) comparison. The

Traditional QA Model (TQAM) results in a slight

decrease in cycle time, around 15% on average (12%

to 18%). This further optimization Model of ODDM

gives greater reduction of 20% which is in the range

of 18% to 22% HIA-PSO-ESQ provides an overall

reduction of 25% compared to HIA, with a range

between 23%-28% respectively,

Table 3. Cycle Time Reduction (CTR) Comparison

 Model Average

CTR (%)

Minimum

CTR (%)

Maximum

CTR(%)
Traditional

QA Model

(TQAM)

15 12 18

Optimized

Defect

Detection

Model

(ODDM)

20 18 22

HIA-PSO-

ESQ
25 23 28

Table 4. Cost Efficiency Improvement Comparison

 Model Cost

Reduction

(%)

Minimum

Cost

Savings

(%)

Maximum

Cost

Savings

(%)
Traditional

QA Model

(TQAM)

12 10 15

Optimized

Defect

Detection

Model

(ODDM)

15 12 18

HIA-PSO-

ESQ
18 16 20

which is the greatest improvement. This shows that

the HIA-PSO-ESQ model is more efficient than the

cycle time, which will enable software to be

developed and released sooner. Cost Efficiency

Improvement, Potential development and testing

savings Savings: The TQAM offers a 12% cost

reduction, giving you 10 to 15% savings. The

average cost savings of the Optimized Defect

Detection Model (ODDM) is 15% with range of

12% to 18% having slight advantage over last model.

The multipliers are determined for various

combinations (q,c) showing the maximum cost is

reduced by using the HIA-PSO-ESQ model, this

shows that the cost is reduced by 18% on average,

and the reduced cost ranges from 16%–20%. It

means that the HIA-PSO-ESQ is the most cost-

effective way to enhance the quality of software with

minimizing its development cost. Table 4 is cost

efficiency improvement comparison and table 5 is

convergence time comparison. Table 6 shows

scalability across projects comparison.

Table 5. Convergence Time Comparison

 Model Convergence Time

(Iterations)

Traditional QA Model

(TQAM)

100

Optimized Defect Detection

Model (ODDM)

80

HIA-PSO-ESQ 50

 JeevanaSujitha Mantena, Subrahmanyam Kodukula / IJCESEN 11-1(2025)320-330

327

Figure 1. Defect Detection Efficiency (DDE) Comparison

Figure 2. Test Case Coverage (TCC) Comparison

Figure 3. Cycle Time Reduction (CTR) Comparison

 JeevanaSujitha Mantena, Subrahmanyam Kodukula / IJCESEN 11-1(2025)320-330

328

Figure 4. Cost Efficiency Improvement Comparison

Figure 5. Convergence Time Comparison

Figure 6. Scalability Across Projects Comparison

 JeevanaSujitha Mantena, Subrahmanyam Kodukula / IJCESEN 11-1(2025)320-330

329

Convergence time is the amount of iterations or steps

required for the model to have a stable result.In

contrast, the Traditional QA Model (TQAM)

requires as many as 100 iterations before their

voyage converges. In comparison, the Optimized

Defect Detection Model (ODDM) model

demonstrates decreased convergence time of 80

iterations. Compared to this HIA-PSO-ESQ obtains

convergence in just 50 iterations. As we can see,

HIA-PSO-ESQ is efficient in the optimization of the

defect detection flow which in turn speeds up the

model convergence and improves the software

development speed.

Table 6. Scalability Across Projects Comparison

Model Small

Projects

(Efficiency

%)

Medium

Projects

(Efficiency

%)

Large

Projects

(Efficiency

%)

Traditional

QA Model

(TQAM)

75 70 65

Optimized

Defect

Detection

Model

(ODDM)

80 75 70

HIA-PSO-

ESQ

90 85 80

We define scalability across projects as the ability of

a model to consistently achieve high efficiency

scores in estimating projects of differents sizes. The

Traditional QA Model (TQAM), on the other hand,

performs relatively well for small projects (up 75%

efficient) but performs much worse for medium and

large projects (70% and 65% efficient, respectively).

The implemented ODDM shows better results with

an efficiency of 80% for small, 75% for medium, and

70% for large projects. Nevertheless, the HIA-PSO-

ESQ model shines with its scalability.It logs 90%,

85%, and 80% efficiency for small, medium, and

large projects, respectively.

5. Conclusion

In this paper, we introduced Hyper Integral

Approach (HIA) by using Particle Swarm

Optimization (PSO) for the Improvement of

Software Quality (HIA-PSO-ESQ). The purpose of

this model is to minimize defect resolution if

necessary, decrease cycle times and enhance

software quality across the development cycle. The

HIA-PSO-ESQ statistical model outperformed the

existing Traditional QA Model (TQAM) and

Optimized Defect Detection Model (ODDM). It

achieved superior defect detection efficiency,

shorter cycle times, and lower total costs. In

summary, HIA-PSO-ESQ provides 85% defect-

detection efficiency with 95% test-case coverage

and a 25% decrease in software development cycle-

time. These numbers seem to signal that this model

could improve software quality as well as time and

effort in development. In terms of convergence

speed, the proposed model converged faster

compared to other models with less number of steps

to ensure the optimality. HIA-PSO-ESQ not only

performed well across projects of different sizes, but

also highlighted its scalability, showing its

adaptability to different software development

scenarios.With the combination of early-stage defect

detection and PSO optimization, HIA-PSO-ESQ

demonstrates a more efficient and cost-effective

solution than conventional approaches. This

suggests that the use of PSO during the software life

cycle leads to a considerable enhancement of

software quality and a decrease in cost. In modern

software development with its emphasis on speed

and quality assurance, this model is promising.

Overall, this study proposes HIA-PSO-ESQ as a

novel and practical paradigm that delivers

significant improvements in quality and efficiency

compared with disparate models. The study

emphasizes its promise in revolutionizing software

engineering practices. The scope of it could extend

towards studying other machine learning and AIl

techniques that could help in optimizing and

detecting the defects in software development. HIA-

PSO-ESQ is a remarkable linguistic framework that

can substantially address the increasing demand for

quality software with timely delivery and cost

control. Similar Works done and reported in the

literatüre [11-14].

Author Statements:

 Ethical approval: The conducted research is not

related to either human or animal use.

 Conflict of interest: The authors declare that

they have no known competing financial interests

or personal relationships that could have

appeared to influence the work reported in this

paper

 Acknowledgement: The authors declare that

they have nobody or no-company to

acknowledge.

 Author contributions: The authors declare that

they have equal right on this paper.

 Funding information: The authors declare that

there is no funding to be acknowledged.

 Data availability statement: The data that

support the findings of this study are available on

request from the corresponding author. The data

 JeevanaSujitha Mantena, Subrahmanyam Kodukula / IJCESEN 11-1(2025)320-330

330

are not publicly available due to privacy or

ethical restrictions.

References

[1] M. R. Belgaum et al., (2023). Self-Socio Adaptive

Reliable Particle Swarm Optimization Load

Balancing in Software-Defined Networking, IEEE

Access, 11,101666-101677, doi:

10.1109/ACCESS.2023.3314791.

[2] Y. S. Baguda, (2020). Energy-Efficient

Biocooperative Video-Aware QoS-Based

Multiobjective Cross-Layer Optimization for

Wireless Networks, IEEE Access, 8,127034-

127047, doi: 10.1109/ACCESS.2020.3008257.

[3] E. Guler, (2024) CITE-PSO: Cross-ISP Traffic

Engineering Enhanced by Particle Swarm

Optimization in Blockchain Enabled SDONs, IEEE

Access, 12,27611-27632, doi:

10.1109/ACCESS.2024.3367600.

[4] H. Das et al., (2024). Enhancing Software Fault

Prediction Through Feature Selection With Spider

Wasp Optimization Algorithm, IEEE Access,

12,105309-105325, doi:

10.1109/ACCESS.2024.3435333.

[5] D. K. Jain, A. Kumar, S. R. Sangwan, G. N. Nguyen

and P. Tiwari, (2019).A Particle Swarm Optimized

Learning Model of Fault Classification in Web-

Apps, IEEE Access, 7,18480-18489, doi:

10.1109/ACCESS.2019.2894871.

[6] H. -E. Tseng, C. -C. Chang and T. -W. Chung,

(2022). Applying Improved Particle Swarm

Optimization to Asynchronous Parallel Disassembly

Planning, IEEE Access, 10,80555-80564, doi:

10.1109/ACCESS.2022.3195863.

[7] W. Li, Y. Chen, Q. Cai, C. Wang, Y. Huang and S.

Mahmoodi, (2022). Dual-Stage Hybrid Learning

Particle Swarm Optimization Algorithm for Global

Optimization Problems, Complex System Modeling

and Simulation, 2(4),288-306, doi:

10.23919/CSMS.2022.0018.

[8] D. Dabhi and K. Pandya, (2020) Uncertain Scenario

Based MicroGrid Optimization via Hybrid Levy

Particle Swarm Variable Neighborhood Search

Optimization (HL_PS_VNSO), IEEE Access,

8,108782-108797, doi:

10.1109/ACCESS.2020.2999935.

[9] H. A. Mahmoud, A. Imran, C. Anwar Ul Hassan and

M. A. El-Meligy, (2024). Optimizing Accounting

Information Systems With Hybrid Capsule Network

and Honey Badger Particle Swarm Optimization,

IEEE Access, 12,153346-153359, doi:

10.1109/ACCESS.2024.3481034.

[10] L. Yang, Z. Li, D. Wang, H. Miao and Z. Wang,

(2021). Software Defects Prediction Based on

Hybrid Particle Swarm Optimization and Sparrow

Search Algorithm, IEEE Access, 9,60865-60879,

doi: 10.1109/ACCESS.2021.3072993.

[11] E. Selvamanju, & V. Baby Shalini. (2024). 5G

Network needs estimation & Deployment Plan

Using Geospatial Analysis for efficient data usage,

Revenue Generation. International Journal of

Computational and Experimental Science and

Engineering, 10(4).

https://doi.org/10.22399/ijcesen.692

[12] ECER, B., & AKTAŞ, A. (2019). Clustering of

European Countries in terms of Healthcare

Indicators. International Journal of Computational

and Experimental Science and Engineering, 5(1),

23–26. Retrieved from

https://www.ijcesen.com/index.php/ijcesen/article/v

iew/80

[13] AYAN, O., DEMİREZ, D. Z., KİZİLOZ, H. K.,

INCİ, G., ISLEYEN, S., & ERGİN, S. (2018). The

Detection of Spoiled Fruits on a Conveyor Belt

Using Image Processing Techniques and OPC

Server Software. International Journal of

Computational and Experimental Science and

Engineering, 4(1), 11–15. Retrieved from

https://www.ijcesen.com/index.php/ijcesen/article/v

iew/57

[14] AY, S. (2024). The Use of Agile Models in Software

Engineering: Emerging and Declining Themes.

International Journal of Computational and

Experimental Science and Engineering, 10(4).

https://doi.org/10.22399/ijcesen.703

https://doi.org/10.22399/ijcesen.692
https://www.ijcesen.com/index.php/ijcesen/article/view/80
https://www.ijcesen.com/index.php/ijcesen/article/view/80
https://www.ijcesen.com/index.php/ijcesen/article/view/57
https://www.ijcesen.com/index.php/ijcesen/article/view/57

