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Abstract:  
 

Emotion recognition from Electroencephalogram (EEG) signals is one of the fastest-

growing and challenging fields, with a huge prospect for future application in mental 

health monitoring, human-computer interaction, and personalized learning environments. 

Conventional Neural Networks (CNN) and traditional signal processing techniques have 

usually been performed for EEG emotion classification, which face difficulty in capturing 

complicated temporal dynamics and inherent uncertainty in EEG signals. The proposed 

work overcomes challenges using a new architecture merging Spiking Neural Networks 

(SNN) with a Fuzzy Hierarchical Attention Membership (FHAM), the NeuroFuzzy 

SpikeNet (NFS-Net). NFS-Net takes advantage of SNNs' event-driven nature in the 

processing of EEG signals, which are treated independently as asynchronous, spike-based 

events like the biological neurons. It allows capturing temporal patterns in EEG data with 

high precision, which is rather important for correct emotion recognition. The local 

spiking feature of SNNs encourages sparse coding, making the whole system 

computational power and energy highly effective and it is very suitable for wearable 

devices in real-time applications. 

 

1. Introduction 
 

Emotion recognition from EEG signals is a fastest-

growing area into the understanding and 

classification of human emotions by analyzing 

brainwave patterns. EEG measures electrical activity 

in the brain through electrodes on the scalp, giving 

information about the real-time neural processes. 

Emotions are complex and multifaceted, can affect 

the brainwave patterns and manifest as changes in 

frequency, amplitude, and other characteristics of 

the signal. This variation in signals is captured and 

interpreted, with the aim of developing systems that 

recognize emotional states automatically from such 

signals. The application areas are mental health 

monitoring, adaptive learning systems, and human-

computer interaction. Emotion recognition in EEG 

signals involves non-stationary data of EEG in 

emotional cues, and variability of responses between 

subjects. Traditional approaches rely on feature 

extraction and classification methods fail to capture 

all the key aspects of temporal dynamics and 

complexities of emotional states. In contrast, recent 

works probe into deep learning, fuzzy logic, and 

even spike neural networks, which can model 

intricate relationships between patterns of EEG and 

their respective emotions with better strength [1]. 

Recent breakthroughs in fuzzy models of emotion 

recognition have tapped into the strengths from the 

standpoint of fuzzy logic to deal with the inherently 

uncertain and imprecise nature of emotional data. 

Fuzzy models make sense when capturing subtleties 

in human emotions that are often non-binary and 

spectrum in nature. Fuzzy C-Means (FCM) has been 
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used to model the complex interdependencies among 

various physiological and psychological causes of 

emotional states. Fuzzy rules describe how EEG 

features and emotional states interact, allowing for a 

subtler interpretation of the data [2]. The embedding 

fuzzy logic into these models and manages those 

fuzzy boundaries and overlaps that are present in 

human emotional expressions, which enhances the 

robustness of emotion recognition systems. 

However, Fuzzy Logic based Neural Networks 

(FLNN) is now turning into one of the dynamically 

developing branches of an intelligent approach to 

emotion classification. The FLNNs embed fuzzy 

logic into neural network topography to improve the 

system capability of dealing with uncertainty and 

handling variations in different emotional contexts. 

The networks utilize fuzzy membership functions to 

weigh the importance of various features and 

dynamically adjust the decision boundaries. The 

FLNNs have lately been utilized with heightened 

success in emotion recognition. It present a more 

flexible and interpretable framework for EEG signal 

processing and classification. Thus the combination 

of fuzzy logic with progressive neural network 

techniques that permits the making of a strong tool 

in devising emotion recognition systems that are not 

only accurate but handle the complex nature of 

emotional data [3,4]. The most important challenge 

in the design of fuzzy-based emotion recognition 

systems is how to manage the variability and high 

noise present in the EEG data effectively. 

Biologically, the EEG signals are inherently noisy. 

It includes artifacts from different sources, such as 

muscle movements and electrical interference that 

can mask the refinement of emotional cues. 

Although the fuzzy models are adept at handling 

uncertainty in order to differentiate the meaningful 

emotional patterns from the unhelpful noise. In 

addition, such dynamic and complex nature of the 

emotions requires the fuzzy systems to be highly 

adaptive and able to perform real-time modifications 

on the rules and parameters by considering 

individual differences and variations in emotional 

states [5,6,7]. The major contributions of the 

proposed NeuroFuzzy SpikeNet toward addressing 

the challenges with emotion recognition from EEG 

signals are identified below. 

 In the proposed work, SNNs for capturing the 

precise timing and dynamic nature of EEG 

signals. 

 It realizes a hierarchical attention mechanism that 

dynamically focuses on the most relevant 

features at multiple levels of abstraction by 

utilizing fuzzy logic. 

 Integrates fuzzy membership functions to define 

and manage the relationship between EEG 

features and emotional states. 

 The system has a closed loop model constantly 

learns from new data and refines its 

understanding of the emotional states. 

 A combination of spiking neural processing with 

fuzzy logic in order to filter out the irrelevant 

noise and artifacts from the EEG signals. 

The remaining part of the proposed work is 

comprised as follows. Section II describes the 

related works. Section III explains the novel fuzzy 

method to overcome the challenges in related works. 

Section IV gives the results and discussion of the 

proposed method with others. Section V gives the 

conclusion of the proposed work. 

 

Related works 

 

Asif, M. et al. (2024) present a deep fuzzy 

framework with emotion recognition from EEG 

signals, using Type-2 Fuzzy Logic in order to extend 

the capabilities of dealing with uncertainty   in EEG 

data[8].   Type-2 fuzzy sets are combined with deep 

learning models in order to classify emotions for 

improving accuracy via the management of 

imprecision in the emotional representation. It 

handles uncertainty, but it is generally at a bigger 

computational cost and calls for extensive tuning [8]. 

Dhara, T. et al. (2024) proposes a fuzzy ensemble-

based model which fuses a number of deep learning 

methods with fuzzy logic for EEG-based emotion 

recognition [9]. While the ensemble approach 

improves feature extraction and classification, the 

use of fuzzy logic maintains uncertainty. Therefore, 

the model gains both improved accuracy and 

robustness but also suffer from issues related to 

higher computation cost and training time [9]. Sudha 

and Bharathi (2024) propose a neuro-fuzzy AI model 

of classification of the cognitive state based on 

analysis results from the EEG [10]. The approach 

has combined neuro-fuzzy systems with AI 

techniques to analyze and classify cognitive states. It 

gives flexibility and interpretability to the model. In 

adding the integration of the systems, increased 

complexities and computational demands drop the 

efficiency and result in a decrease in model 

performance [10]. Kaya, Ü. et al. (2024) discuss 

EEG-based emotion recognition with respect to 

neuro marketing using fuzzy linguistic 

summarization for the representations of emotional 

responses [11]. It leads to a simplification of the 

emotions and struggle with high variability and noise 

in the EEG signal [11]. Versaci and La Foresta 

(2024) present a method contributing to an 

improvement in the diagnosis of Alzheimer's disease 

by the precise removal of artifacts in EEG data, 

applying fuzzy and intuitionistic fuzzy logic 

techniques [12]. This approach can improve 

diagnostic accuracy since it controls uncertainty and 
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noise. It is quite complicated to implement, and 

success rates could vary based on the quality of the 

EEG data [12]. Khalaf et al. (2024) propose a 

conceptual system that integrates neuro-fuzzy 

emotion recognition and adaptive content generation 

in Virtual Reality (VR) experiences[13]. This allows 

the VR content to adapt because of real-time 

emotional feedback, greatly improving user 

experience. However, it increases the cost of such 

improvement based on computational resources 

[13]. Singh et al. (2024) propose a hybrid method 

that combines similarity-based feature selection with 

deep maxout fuzzy network approaches to detect 

ASD from EEG signals [14]. The proposed approach 

demonstrated improvement in feature selection and 

classification accuracy. However, the complexity 

and high computational demands lead to low 

efficiency and longer training times in the model 

[14]. Palanisamy et al. (2024) propose a technique to 

recognize the anxiety-based epileptic seizures using 

EEG signals with the integration of fuzzy features 

and Parrot Optimization-Tuned Long Short-Term 

Memory (LSTM) [15]. The model improves seizure 

detection performance by applying fuzzy logic for 

capturing complex patterns in the signal and 

optimization of LSTM parameters, though a loss in 

the intricacy of model tuning and increased 

computational complexity [15]. Al-asadi et al.(2024) 

have proposed a robust semi-supervised deep 

learning approach in emotion recognition from EEG 

signals [16]. The model leverages semi-supervised 

learning to handle the small amount of labeled data 

effectively and improves recognition performance in 

handling data scarcity but detailed tuning of 

balancing labeled and unlabeled data is required 

[16]. Upadhyay, P. K. & Nagpal, C. (2021) use time-

frequency analysis and a fuzzy-based method for the 

detection of heat-stressed sleep EEG spectra [17]. 

The proposed technique gives a keen analysis of 

EEG signals under heat stress while applying fuzzy 

logic in order to enhance accuracy in identification, 

although it has some challenges relating to 

variability in sleep patterns [17]. Xing, M. et al. 

(2022) propose the use of a spatial-frequency-

temporal convolutional recurrent network to 

enhance EEG-based emotion recognition with 

olfactory stimuli [18]. It utilizes the model by 

integrating the spatial, frequency, and temporal 

features in order to enhance the accuracy of emotion 

detection, which include complex network 

architecture and heavy computational resources 

[18]. 

Chen et al. (2021) propose a two-stage fuzzy fusion-

based convolutional neural network for dynamic 

emotion recognition [19]. It incorporates fuzzy 

fusion into CNNs to handle dynamic variations of 

the emotional state, enhancing the recognition 

accuracy but it has high cost of due to model 

complexity and time consumption in training [19]. 

Lin et al. (2023) develop an automatic sleep stage 

classification by using the Taguchi-based multiscale 

convolutional compensatory fuzzy neural network 

[20]. The proposed approach has improved accuracy 

in classification by optimizing the structure in the 

network through methods using Taguchi. It requires 

heavy parameter tuning and computational resources 

[20]. Davoodi and Moradi (2023) propose a new 

nonlinear deep fuzzy rule-based model that should 

be suitable for biomedical analysis applications [21]. 

This model incorporates the deep learning concept 

with a fuzzy rule-based system to tackle the 

nonlinear relationship in biomedical data, achieving 

better interpretability while improving accuracy but 

it increases the model complexity and training 

burdens [21]. Zhang et al. (2024) proposed a 

temporal adaptive fuzzy neural network for fatigue 

assessment based on facial features [22]. It adapts to 

the temporal variation of facial expressions to 

perform effective fatigue evaluations but involve 

complex neural network configurations and high-

quality data of facial features [22]. 

 

Research gap analysis: 

Despite the improved approaches to emotion 

recognition based on EEG signals and fuzzy models, 

it has some challenges. The most of the existing 

models, proposed by Asif et al. (2024) and Dhara et 

al. (2024) work well in terms of improving accuracy 

while handling uncertainty but mostly result in a 

number of computational demands and complexities 

which limit the scope of practical applications [8,9]. 

Other techniques use virtual reality, promising 

personalized experiences but at the cost of heavy 

computational resources [13]. Further, the methods 

proposed by Palanisamy & Rengaraj (2024) [15], 

which go one step further in seizure detection 

accuracy, involve complex model tuning that could 

limit scalability. There still remains a need for more 

solid, scalable, and computationally efficient 

models, especially regarding models that could 

integrate real-time data smoothly and operate under 

various conditions with limited complexity. 

 

2. Material and Methods 
 

2.1 Proposed work 

 

NFS-Net represents a new architecture for emotion 

recognition from EEG signals, which is aimed at the 

exploitation of the strengths of SNNs and FHAM. 

Being one of the potentially effective methods, it 

would address challenges regarding the extraction of 

rich temporal dynamics and inherent uncertainty of 

EEG signals for robust real-time emotion 
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Table 1. Summary of Recent Approaches for Emotion Recognition Using EEG Signals and Fuzzy Models 
 

S.No Author(s) & 

Year 

Dataset Methodology Advantages Disadvantages 

1 Asif, M. et al. 

(2024) 

[8] 

EEG signals Deep fuzzy 

framework with 

Type-2 fuzzy VAD 

space 

Enhanced 

uncertainty handling 

in emotion 

representation 

Increased computational 

complexity 

2 Dhara, T. et al. 

(2024) 

[9] 

EEG signals Fuzzy ensemble-

based deep learning 

model 

Improved accuracy 

and robustness with 

ensemble learning 

Higher computational 

cost and training time 

3 Sudha, T. & 

Bharathi, V. 

(2024) 

[10] 

EEG signals Neuro-fuzzy AI 

modeling for 

cognitive state 

classification 

Flexible and 

interpretable model 

for cognitive states 

Increased model 

complexity and 

computational demands 

4 Kaya, Ü. et al. 

(2024) 

[11] 

EEG signals Fuzzy linguistic 

summarization for 

emotion recognition 

Intuitive 

representation of 

emotional responses 

Potential 

oversimplification of 

emotions 

5 Versaci, M. & 

La Foresta, F. 

(2024) 

[12] 

EEG signals Fuzzy and 

intuitionistic fuzzy 

logic for Alzheimer’s 

diagnosis 

Enhanced diagnostic 

accuracy through 

uncertainty 

management 

Complex implementation 

and variable 

effectiveness 

6 Khalaf, O. I. et 

al. (2024) 

[13] 

Virtual reality 

data 

Neuro-fuzzy emotion 

recognition integrated 

with content 

generation 

Personalized VR 

content based on 

real-time emotional 

feedback 

High computational 

resource requirements 

7 Singh, J. K. & 

Kakkar, D. 

(2024) 

[14] 

EEG signals Hybrid similarity-

based feature 

selection with deep 

maxout fuzzy 

network 

Improved feature 

selection and 

classification 

accuracy 

Increased model 

complexity and training 

time 

8 Palanisamy, K. 

K. & Rengaraj, 

A. (2024) 

[15] 

EEG signals Fuzzy features and 

Parrot Optimization-

Tuned LSTM for 

anxiety-based 

seizures 

Enhanced seizure 

detection accuracy 

Intricate model tuning 

and computational 

complexity 

9 Al-Asadi, A. 

W. et al. 

(2024)[16] 

EEG signals Semi-supervised deep 

learning approach 

Effective handling 

of limited labeled 

data 

Balancing labeled and 

unlabeled data can be 

challenging 

10 Upadhyay, P. 

K. & Nagpal, 

C. (2021) [17] 

Sleep EEG 

spectra 

Time-frequency 

analysis and fuzzy-

based detection 

Detailed analysis of 

sleep EEG under 

heat stress 

Variability in sleep 

patterns and heat-induced 

changes 

11 Xing, M. et al. 

(2022) [18] 

EEG signals 

with olfactory 

stimuli 

Spatial-frequency-

temporal 

convolutional 

recurrent network 

Improved emotion 

detection with 

olfactory 

enhancement 

Complex network 

architecture and high 

computational needs 

12 Chen, L. et al. 

(2021) [19] 

Dynamic 

emotion data 

Two-stage fuzzy 

fusion-based CNN 

Handles varying 

emotional states 

dynamically 

Increased model 

complexity and training 

time 

13 Lin, C. J. et al. 

(2023) 

[20] 

EEG signals Taguchi-based 

multiscale 

convolutional 

compensatory fuzzy 

neural network 

Enhanced 

classification 

accuracy with 

optimized network 

structure 

Requires extensive 

parameter tuning and 

computational resources 

14 Davoodi, R. & 

Moradi, M. H. 

(2023) [21] 

Biomedical 

data 

Non-linear deep fuzzy 

rule-based model 

Improved 

interpretability and 

accuracy in 

biomedical analyses 

Model complexity and 

training requirements 

15 Zhang, Z. et al. 

(2024) [22] 

Facial feature 

data 

Temporal adaptive 

fuzzy neural network 

for fatigue assessment 

Accurate fatigue 

assessment based on 

facial features 

High-quality facial 

feature data needed and 

complex neural network 

configurations 
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classification. The main idea is to combine the event-

driven processing capabilities of SNNs with 

flexibility and interpretability inspired by Fuzzy 

Logic, enabling the system therefore to function at 

an optimal level in regard to accuracy and efficiency. 

 

A)  Spiking Neural Networks (SNN) 

SNNs bring a revolution in the analysis of 

Electroencephalogram signals by representing the 

event-driven processing of biological neurons. 

SNNs opens the possibility of capturing the EEG 

signals, complex temporal patterns that traditional 

neural networks, based on continuous information. 

Event-driven mechanisms allow SNNs to achieve 

sparse coding with only a few neurons firing at any 

instant, which is highly optimized in computational 

efficiency and energy consumption. Besides, SNNs 

are good at handling temporal dynamics and long-

term dependencies in sequential data [8]. 
 

2.2 Event-Driven Processing 

 

SNNs differ significantly from conventional neural 

networks because of the use of discrete spikes or 

events, not continuous signals in the main processing 

units. Actually, this type of event-driven processing 

is similar to biological neurons because it is tend to 

communicate in bursts of electrical activity. It has a 

great advantage when it comes to the analysis of 

EEG signals. These are streams of raw information 

that traditional neural networks have a hard time 

handling for temporal complexity because it 

processes the information in a continuous stream, 

losing crucial timing information. An SNN captures 

each spike as a discrete event and the temporal 

dynamics of an EEG signal. It is more accurately 

reflects the time and sequence of neural activity-

essential in emotional states. The SNN give much 

more detail about, and a precise analysis of, EEG 

signals by improving the accuracy of emotion 

recognition. 

 

2.3 Sparse Coding 

 

One of the key properties of SNNs is sparse coding, 

which means that at any given time, only a small 

number of neurons fire. Hence, it results in very 

efficient information representation regarding 

computational resources and energy consumption. 

Traditional neural networks usually maintain more 

neurons firing continuously, which might result in 

higher computational demands and increased energy 

consumption. SNNs fire only a small portion of 

neurons depending on the occurrence of salient 

spikes, thereby saving overall computational 

resources. Such sparsity not only optimizes 

performance but also makes SNNs suitable for real-

time applications ranging from wearable EEG 

monitoring devices. SNNs are an attractive choice in 

several applications where the analyses of EEG are 

to be provided in a continuous and responsive 

manner without compromising on performance [9].  

 

2.4 Temporal Dynamics 
 

The SNNs are explicitly best suited for dealing with 

temporal dynamics. The EEG signals are displaying 

complex temporal patterns and long-term 

dependencies. Traditional neural networks does not 

capture the dynamics  to processing data in a 

continuous stream that fails to explain   detailed 

timing and sequencing of neural activity. SNNs, 

being intrinsically tied up with the temporal nature 

of spikes, hence should respond better while 

modeling long-term dependencies and variations in 

EEG data. In emotional contexts, specific emotional 

states might relate to certain temporal patterns of 

activity in the brain. By accurately capturing the 

temporal aspects and analyzing them, SNNs can 

provide deeper insight into the emotional content 

contained in EEG signals. The improved temporal 

sensitivity allows for finer levels of emotion 

recognition, enhancing overall effectiveness in 

EEG-based monitoring systems. 

 
                     𝑆(𝑡) =  ∑ δ(t − 𝑡𝑖𝑖 )                                 (1) 

 

Equation (1) represents a spike train where (t-ti) is a 

dirac delta function that indicates the spike at time t 

by capturing the discrete nature of spiking events. 

 

   𝑇𝑚
dV(t)

𝑑𝑡
= −V(t) + R(t)I(t)                      (2) 

 

Equation (2) models the membrane potential v(t) of 

a neuron where 𝑇𝑚 is the membrane time constant. 

Equation (3) models the spike response of a neuron 

where wi is the weight of the ith spike and 𝑇𝑠 is the 

time constant for the spike response. 
                        𝑅(𝑡)

=  ∑
wi

𝑇𝑠

(exp (
t − 𝑡𝑖

𝑇𝑠

))

𝑖

                       (3) 

 

B) Fuzzy Hierarchical Attention Membership 

Component 

 

The FHAM module improves the outputs of SNN by 

using fuzzy logic to map continuous spike-based 

data onto fuzzy sets representative of different 

emotional states, which in turn solves the inherent 

uncertainty and imprecision in EEG data. Then, 

FHAM selects the more informative features and 
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fuzzy sets at each relevant level and underlines for the 

system the most important information useful for the 

task of emotion classification. The temporal patterns 

from the SNN are integrated with the nuanced fuzzy 

membership from FHAM [10]. 

 

2.2 Fuzzy Processing 

 

FHAM module makes sense of the output from SNNs 

through fuzzy principles. Continuous spike-based data 

in the module are mapped into fuzzy sets that are 

indicative of different emotional categories through 

membership functions. Any feature obtained by the 

extraction with SNNs is assigned a degree of 

membership to given categories concerning how 

strongly the feature represents every possible 

emotional state. With this step of fuzzy processing, the 

uncertainty and imprecision inherent in any given input 

are accentuated for EEG data, hence providing a more 

sophisticated representation of emotional states beyond 

the crisp categorization approach. 

 

2.3 Attention Mechanism 

 

The hierarchical attention mechanism works at 

different levels, each level focusing on different 

aspects or granularity of EEG data. The attention 

mechanism decides the relative importance of different 

features and fuzzy sets, dynamically shifting the focus 

toward the most relevant information for the 

classification task. This attention acts like emphasizing 

the important features to allow the system to capture 

complex emotional cues from the EEG signals 

correctly for better classification. 

 

2.4 Fusion Layer 

 

The fusion layer plays the key role in the combination 

of outputs from SNN and FHAM components. The 

spike-based temporal information processed by the 

SNN is combined with the fuzzy membership 

assessments developed by FHAM through a process of 

aggregation. The temporal patterns captured by the 

SNN are united with the fuzzy degrees of membership 

in order to form a unified and comprehensive 

representation of emotional state. It leverages the 

fusion layer for both precise temporal dynamics in 

SNNs, uncertainty-handling capabilities of fuzzy logic 

toward delivering an accurate and robust emotion 

classification. This is a holistic approach where the 

final output reflects a well-rounded understanding of 

the emotional context derived from both 

spatiotemporal features of EEG data and fuzzy 

interpretations. 

Equation (4) defines a sigmoid shaped fuzzy 

membership function where x in a feature set. The 

parameters k and x0 control the steepness and center of 

the membership function, respectively. 

 

                               μ𝐴(𝑥) =
1

1+exp(−𝑘(𝑥−𝑥0))
                      (4) 

 

Equation (5) represents the output y of a fuzzy 

inference system where 𝛼𝑖 are the weights associated 

with different fuzzy rules and 𝜇𝑖(𝑥) are the degree of 

membership for feature x. 

 
                       𝑦 = ∑ 𝛼𝑖 . 𝜇𝑖(𝑥)                                                (5) 

 

Equation (6) calculates the attention weight for a 

feature x based on its score relative to a query. It 

normalizes the scores and determines the relative 

importance of each feature in the context of the query. 

 

                        𝛼𝑖 =
exp(score(x𝑖,query))

∑ exp(score(x𝑗,query))
                             (6) 

 

Equation (7) combines the outputs from the SNN and 

FHAM components. The fusion weight β controls the 

contribution of each output to the final combined 

output. 

 
               𝑂𝑓𝑢𝑠𝑖𝑜𝑛 = β ⋅ OSNN + (1 − β) ⋅ 𝑂𝑓𝑢𝑧𝑧𝑦               (7) 

 

Equation (8) models the temporal dynamics of the 

convolving the spike S(τ) train with a kernel 

functionK(t − τ). The integral accumulates the effects 

of spike over time by capturing past spikes influence 

the current state.  

 

                   𝑇(𝑡) = ∫ S(τ) ⋅ K(t − τ)dτ                             (8)
𝑡

0
 

 

Equation (9) represents the output R of a fuzzy rule 

based system, where 𝑤𝑖 are the weights of the fuzzy 

rules and  𝜇𝑖(𝑥) are the degree of membership for input 

feature x. 

 
                       𝑅 = ∑ 𝑤𝑖𝑖 𝜇𝑖(𝑥)                                              (9) 

 

Equation (10) calculates the firing rate of a spiking 

neuron where T is the observation periods. The firing 

rate is determined by the average number of spikes per 

unit time represented by the Dirac delta functions 

(𝑡−𝑡𝑖). 
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                        𝑟(𝑡) =
1

𝑇
∑ δ(t − t𝑖)                                    (10)

𝑖

 

 

Equation (11) represents the temporal convolution 

where the spike train S(t𝑖) in convolved with kernel 

(t − t𝑖). It captures the temporal relationships. 

 

              𝐶(𝑡) = ∑ 𝑘𝑒𝑟𝑛𝑒𝑙((t − t𝑖) ⋅ S(t𝑖))                     (11)

𝑖

 

 

Equation (12) defines an adaptive fuzzy membership 

function where 𝜃 is a dynamic parameter that adjusts 

the center of the membership function. 

 

                           𝜇𝐴(𝑥, 𝜃) =
1

1+exp(−𝑘(𝑥−𝜃))
                     (12) 

 

Figure 1 illustrates the overall steps of the work 

involved in the proposed NeuroFuzzy SpikeNet 

architecture-integrating Spiking Neural Networks and 

Fuzzy Hierarchical Attention Membership. The 

process chain begins with raw EEG signals, translates 

them to spike trains by SNN, encoding discontinuous 

events and temporal patterns in those spike trains. The 

SNNs will provide the spike-based temporal data to the 

processing via the Fuzzy Hierarchical Attention 

Membership component. The spike data is mapped into 

fuzzy sets through fuzzy logic, while the relative 

importance of various features is assessed by a 

hierarchical attention mechanism. The outputs 

obtained from both SNN and FHAM are then 

combined in the fusion layer to comprehensively 

represent the emotional state, considering temporal 

dynamics and fuzzy interpretation to classify emotions 

accurately [13]. 

Figure 2 illustrates the NeuroFuzzy SpikeNet 

architecture, which integrates both SNNs and FHAM 

modules for the boosting of emotion recognition. The 

architecture starts with the SNN part dealing with EEG 

signals by processing discrete spikes, efficiently 

capturing the complex temporal patterns with 

sparsecoding.  

Output from SNN feeds the module FHAM, which 

interprets the spike data using fuzzy logic principles, 

thereby quantifying the degree of membership to 

several different emotional categories. The hierarchical 

attention mechanism of FHAM is dynamically 

highlighting the most relevant features 

forclassification. Finally, the output from both SNN 

and FHAM is combined in the fusion layer to  develop 

the temporal dynamics with fuzzy membership 

assessments for a complete and robust representation 

of the emotional states. Therefore, the proposed 

approach that combines the strength of SNNs and fuzzy 

logic is guarantee higher accuracy and robustness for 

EEG signal-based emotion classification. 

 

3. Results and Discussions 
 

The SEED-IV is a sub-dataset of SEED, focusing on 

the approach of the emotion recognition   by EEG 

recording. It was provided by Shanghai Jiao Tong 

University, and contains the EEG recordings of three 

different sessions for each participant, with 

corresponding labels of the induced emotions, which 

includes neutral-0, sad-1, fear-2, and happy-3.  

Each session has sequence labels, which present the 

emotional state during the recording. For feature 

extraction, a 4-second sliding time window is used to 

obtain the temporal pattern in an EEG signal [7]. 

The SEED-IV dataset was used for emotion 

classification, where the EEG data was collected for 15 

subjects in 3 sessions, each session containing 24 trials. 

There were 1080 trials in the dataset.  

The four categories it classified were Neutral, Sad, 

Fear, and Happy emotions. It was a collection of EEG 

signals using 62 channels, at a sampling rate of 1000 

Hz, for each trial lasting 4 minutes.  

In total, the whole dataset is of size around 50 GB for 

the analysis of emotional responses based on 

brainwave patterns. Table 2 is dataset summary and 

table 3 provides information used for the preprocessing 

of raw EEG data are identified.  

The noise filtering is carried out using a 0.5–45 Hz 

bandpass filter, which removes the unwanted 

frequencies and enhances the clarity of the signals. 
Normalization involved min-max scaling to 

 

Table 2. Dataset Summary 

Parameter Description 

Dataset Name SEED-IV 

Number of 

Subjects 

15 

Sessions per 

Subject 

3 

Total Trials 1080 (15 subjects × 3 sessions × 

24 trials) 

Emotions 

Classified 

4 (Neutral, Sad, Fear, Happy) 

EEG Channels 62 

Sampling Rate 1000 Hz 

Duration per Trial 4 minutes 

Total Data Size ~50 GB 
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Figure1. Working flow of the proposed NeuroFuzzy SpikeNet (NFS-Net) architecture 

 
Figure 2. An architecture of the NeuroFuzzy SpikeNet 
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regularize the scale of data. Feature extraction 

calculates features including Power Spectral 

Density, mean, and variance for useful information 

capture from the EEG signals. Data is segmented in 

4-second windows in order to manage the temporal 

resolution and avoid breaking the continuity of the 

signal through time. Table 4 shows the feature 

extraction methods lists the features extracted from 

the EEG data. The time-domain features outlined by 

means, variance, and skewness describe the 

distribution and dispersion of a signal in the time 

domain. Frequency-domain features are mainly 

represented by PSD, which characterizes the power 

in a signal is distributed along frequencies.  
 

Table 3. Preprocessing Techniques 

Step Description 

Noise Filtering 0.5–45 Hz Bandpass Filter 

Normalization Min-Max Scaling 

Feature 

Extraction 

Power Spectral Density (PSD), 

Mean, Variance, etc. 

Window Size 4 Seconds 

 

Table 5 represents the architecture of the proposed 

model for the classification of EEG emotions. The 

Input Layer takes EEG data preprocessed as 

channel-wise spikes, hence preserving temporal 

dynamics of the signal. The Spike Layer is 

comprised of 128 neurons to model the temporal 

dynamics of the EEG spikes concerning the 

sequence and timing of neural activities. Now, the 

Fuzzy Layer applies fuzzy sets and membership 

functions to process uncertainty and, therefore, to 

classify emotional states subtlety. The Attention 

Mechanism leverages a hierarchical multi-level 

approach for dynamic focusing of attention on the 

most relevant features, which seriously enhances the  
 

            Table 4. Feature Extraction Methods 

Feature Type Extracted Features 

Time-Domain Features Mean, Variance, 

Skewness 

Frequency-Domain 

Features 

Power Spectral Density 

(PSD) 

Statistical Features Kurtosis, Entropy, 

Energy 

 

Table 5. NeuroFuzzy SpikeNet (NFS-Net) Architecture 

Layer Type Details 

Input Layer EEG Data (Channel-wise 

spikes) 

Spike Layer (SNN) 128 Neurons, Temporal 

Dynamics 

Fuzzy Layer Fuzzy Sets, Membership 

Functions 

Attention 

Mechanism 

Hierarchical, Multi-Level 

Focus 

Output Layer 4 Classes (Neutral, Sad, Fear, 

Happy) 

Table 6. Hyper parameters for Training 

Hyper parameter Value 

Learning Rate 0.001 

Batch Size 32 

Epochs 100 

Optimizer Adam 

Regularization Dropout (0.2) 

 

capability of distinguishing subtle emotional cues in 

this model. Finally, data in the Output Layer is 

classified into one of four emotional states: Neutral, 

Sad, Fear, or Happy, providing the final emotion 

classification.The hyperparameters used to train the 

NeuroFuzzy SpikeNet are listed in Table 6. The 

model was trained with a Learning Rate of 0.001, a 

Batch Size of 32, and running for 100 Epochs. The 

weights were adjusted using the Adam Optimizer, 

while the Dropout Regularization was set to 0.2 to 

avoid overfitting of the model. Table 7 shows the 

performance of the model achieved an accuracy of 

95.5% with the number of correct classifications. 

Precision was 95.2%, showing the ratio of true 

positive predictions against all positive predictions. 

Recall of 95.7% reflected the model skill in finding 

all relevant instances. The F1 score is a balance 

between precision and recall and accounted for 

95.4%. The model has a loss of 0.18, representing 

the difference in error between predicted values and 

true values during training. Table 8 shows the 

accuracy results for various configuration setups in 

NeuroFuzzy SpikeNet to measure the contribution of 

each component individually. First, it is observed 

that the SNN only configuration has reached an 

accuracy of 90.2%, exhibiting the power in spike-

based neural processing. On the other hand, Fuzzy 

Layer Only can provide an accuracy of 88.5%, 

depicting thereby the intrinsic contribution of fuzzy 

logic in uncertainty handling. It point out that 

attention-only setup has an accuracy of 92.1%, 

underlining the dynamic focusing on relevant 

features. The Full 

 
Table 7. Performance Metrics 

Metric Value 

Accuracy 95.5% 

Precision 95.2% 

Recall 95.7% 

F1 Score 95.4% 

Loss 0.18 

 

Table 8. Ablation Study Results 

Model Component Accuracy (%) 

SNN Only 90.2% 

Fuzzy Layer Only 88.5% 

Attention Only 92.1% 

Full NFS-Net 95.5% 
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NFS-Net integrated all components and had the 

highest accuracy with 95.5%. It clearly underlines 

that the SNN, fuzzy logic, and attention mechanisms 

are combined for most robust performance in 

emotion classification in EEG data. Figure 3 

visualizes these results and underlines the increment 

brought in by each component of the model toward 

the final accuracy. 

 
 

Figure 3. Results of ablation study 

 

 
 

Figure 4. The computational efficiency of proposed work 

with traditional CNN 

 

Table 9 gives the performance comparison between 

NeuroFuzzy SpikeNet and classic CNN regarding 

training time, inference time, and energy 

consumption. The NFS-Net depicts better efficiency 

and took 4 hours for training instead of 6 hours taken 

by a classic CNN, and it lowers the inference time to 

85 ms against 120 ms of a classic CNN. Energy 

consumption by NFS-Net is 10 W compared to 15 

W by a classic CNN. Figure 4 pictorially presents the 

efficiencies mentioned above and reflects that NFS-

Net has faster processing at low energy consumption 

compared to a traditional CNN. Table 10 presents 

the p-values of a statistical significance test 

comparing performances of NeuroFuzzy SpikeNet 

(NFS-Net) against CNN and LSTM models. The two 

values (0.003 and 0.002) represent that differences 

in performance by NFS-Net from those models are 

statistically significant, which signifies that NFS-

Net outperforms both the CNN and LSTM models. 

Figure 5 visualize the statistical comparisons and 

highlight the significant performance gains of NFS-

Net compared to CNN and LSTM models. 
 

Table 9. Computational Efficiency 

Comparison p-value 

CNN vs NFS-Net 0.003 

LSTM vs NFS-Net 0.002 

 

Table 10. Statistical Significance Testing 

Model 

Version 

Training 

Time 

(hrs) 

Inference 

Time (ms) 

Energy 

Consumption 

(W) 

Traditional 

CNN 

6 120 15 

NFS-Net 4 85 10 

 

 
Figure 5. Statistical Significance Testing 
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Table 11. Hyper parameter Tuning Results 

Hyperparameter Tested Values Best 

Value 

Learning Rate 0.0001, 0.001, 

0.01 

0.001 

Batch Size 16, 32, 64 32 

Dropout Rate 0.1, 0.2, 0.3 0.2 

 
Table 12. Feature Importance Ranking 

Feature Importance Score 

PSD (Alpha Band) 0.85 

Mean (Time-Domain) 0.78 

Variance (Frequency-Domain) 0.72 

 

Table 11 summarizes the best values found for some 

important hyper parameters in the model. The best 

learning rate is 0.001. The optimum batch size is 32  

and the optimum dropout rate is 0.2 based on the 

performance metrics during tuning. Table 12 lists the 

importance scores that are associated with the usage 

of various features within the model. It is observed 

that, out of all the generated features, the PSD in the 

Alpha band has the highest importance score of 0.85, 

seconded by the Mean in the Time-Domain with an 

importance score of 0.78 and followed by the 

Frequency-Domain variance with an importance 

score of 0.72. Figure 6 represents the importance 

scores and PSD features to the performance of model 

in comparison with time-domain and frequency-

domain features. 

The accuracy, precision, recall and f1 score of 

performance metrics are calculated using the 

equations (13) to (16) [12]. 

 

      𝐴𝑐𝑐

=
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
                                               (13) 

 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛  

=
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                                                            (14) 

 

 

𝑅𝑒𝑐𝑎𝑙𝑙 

=
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                                                     (15) 

 

𝐹1 𝑆𝑐𝑜𝑟𝑒
= 2

∗ 
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑟𝑒𝑐𝑎𝑙𝑙 
                                    (16) 

 

Figure 7 reveals the performance of an emotion 

classification model on how well it can distinguish 

between one emotional state and the rest. The matrix 

shows how many instances have been correctly and 

incorrectly classified in each kind of emotion 

category. Figure 8 represents the performance of a 

model during training. Accuracy Curve shows the 

improvement of the model with the classification of 

emotions correctly as it progresses over an epoch. 

Loss Curve is used to show the decrease in 

classification error, hence the learning progress and 

convergence of the model. Table 13 and figure 9 

show the performances of various models 

concerning the tasks of emotion classification in 

terms of accuracy, precision, recall, and F1 score. 

The proposed model, NFS-Net, outperforms all 

other models by showing 95.5% accuracy, 95.2% 

precision, 95.7% recall, and 95.4% F1 score. The 

Attention-Based LSTM reaches an accuracy of 

94.9% and obtains an F1 score of 94.9%. While TCN 

 

 
Figure 6. Ranking of feature importance 

 

 
 

   Figure 7. Confusion matrix for EEG emotion 

classification 
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Figure 8. Accuracy and loss visualization over epochs 

(NFS-Net) 

 

Table 13. Comparison with State-of-the-Art Methods 

Model Accurac

y (%) 

Precisio

n (%) 

Recal

l (%) 

F1 

Scor

e (%) 
CNN 92.0% 91.8% 92.2% 92.0% 

LSTM 93.1% 93.0% 93.5% 93.2% 

BiLSTM 93.8% 93.5% 94.0% 93.7% 

GRU 92.5% 92.3% 92.8% 92.6% 

Deep Belief 

Network 

91.7% 91.5% 92.0% 91.7% 

Temporal 

Convolutiona

l Network 

(TCN) 

94.3% 94.0% 94.6% 94.3% 

RNN-

Transformer 

94.8% 94.5% 95.0% 94.7% 

Attention-

Based LSTM 

94.9% 94.6% 95.2% 94.9% 

NFS-Net 

(Proposed) 

95.5% 95.2% 95.7% 95.4

% 

 

and the RNN-Transformer show good performances 

with 94.3% and 94.8% accuracies, respectively, 

NFS-Net outperforms than all for EEG emotion 

classification. 

 

4. Conclusions 
 

Emotion identification through neural signals is a 

challenging task in EEG-based emotion 

classification. The various fuzzy-based systems are 

effective in handling the uncertainty by the low 

adaptability to dynamic temporal patterns, and high-

dimensional processing inefficiency. Most 

approaches either have trouble effectively 

combining the temporal and spatial features. The 

traditional fuzzy methods are event-driven nature of 

EEG signals. These are important in distinguishing  

 

 
Figure 9. Comparison with state of art models 

 

nuanced emotional states. The proposed 

NeuroFuzzy SpikeNet is focused on addressing 

major challenges, such as dealing with high 

variability in the data, recognizing complex 

relationships in the information and handling noises 

when using EEG records. The NeuroFuzzy SpikeNet 

integrates SNNs, fuzzy logic, and attention 

mechanisms to leverage temporal dynamics and the 

spiking nature of EEG signals effectively. A spike-

based input layer for NFS-Net architecture is 

combined together with a fuzzy membership layer 

that handles uncertainty. It is combined with an 

attention mechanism to pay attention to the relevant 

features. The result shows accuracy 95.5% in 

comparison with other methods. These results 

confirm that the proposed model outperforms than 

other models in emotion recognition from EEG data. 

Future works   focused on deeper, more powerful 

deep learning methods coupled with real-time 

processing for better performance of fine-tuned 

emotion classification. Neural network is interesting 

approach and it has been widely studied for different 

application [23-39]. 
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