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Abstract:  
 

Intrusion Detection Systems (IDS) play a pivotal role in safeguarding networks against 

evolving cyber threats. This research focuses on enhancing the performance of IDS using 

deep learning models, specifically XAI, LSTM, CNN, and GRU, evaluated on the NSL-

KDD dataset. The dataset addresses limitations of earlier benchmarks by eliminating 

redundancies and balancing classes. A robust preprocessing pipeline, including 

normalization, one-hot encoding, and feature selection, was employed to optimize model 

inputs. Performance metrics such as Precision, Recall, F1-Score, and Accuracy were used 

to evaluate models across five attack categories: DoS, Probe, R2L, U2R, and Normal. 

Results indicate that XAI consistently outperformed other models, achieving the highest 

accuracy (91.2%) and Precision (91.5%) post-BAT optimization. Comparative analyses 

of confusion matrices and protocol distributions revealed the dominance of DoS attacks 

and highlighted specific model challenges with R2L and U2R classes. This study 

demonstrates the effectiveness of optimized deep learning models in detecting complex 

attacks, paving the way for robust and adaptive IDS solutions. 

 

1. Introduction 
 

The ever-expanding digital landscape has made 

cybersecurity a critical concern, with networks 

increasingly vulnerable to sophisticated cyber 

threats. Intrusion Detection Systems (IDS) serve as 

a first line of defense by identifying malicious 

activities and preventing unauthorized access. 

However, the dynamic nature of cyberattacks, 

characterized by their complexity and evolving 

tactics, necessitates the development of advanced, 

adaptive, and intelligent IDS frameworks. 

Traditional rule-based systems are insufficient to 

address these challenges, emphasizing the need for 

machine learning and deep learning-based solutions 

capable of analysing vast datasets and detecting 

nuanced attack patterns [1]. Deep learning 

techniques, such as Long Short-Term Memory 

(LSTM), Convolutional Neural Networks (CNN), 

and Gated Recurrent Units (GRU), have 

demonstrated remarkable success in pattern 

recognition and anomaly detection tasks. 

Additionally, eXplainable Artificial Intelligence 

(XAI) introduces interpretability to these models, 

http://www.ijcesen.com/
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mailto:citradevi.b@gmail.com
mailto:suresht24@gmail.com


M. Revathi, K. Manju, B. Chitradevi, B. Senthilkumaran, T. Suresh, A. Sathiya/ IJCESEN 11-1(2025)236-248 

 

237 

 

enabling more transparent decision-making 

processes, which is crucial for enhancing trust in IDS 

deployments. This research leverages the NSL-KDD 

dataset, a benchmark designed to overcome the 

limitations of the KDD’99 dataset, by providing 

balanced classes and removing duplicate records. 

The dataset categorizes traffic into five classes such 

as Normal, Denial of Service (DoS), Probe, Remote 

to Local (R2L), and User to Root (U2R) providing a 

comprehensive testbed for IDS evaluation [2]. This 

research focuses on optimizing DL models using a 

hybrid approach that integrates advanced feature 

selection and Bayesian optimization techniques. 

Performance is assessed using metrics like 

Accuracy, Precision, Recall, and F1-Score, with a 

detailed analysis of protocol distributions and 

confusion matrices. Results reveal the dominance of 

DoS attacks and provide insights into model-specific 

challenges, particularly in detecting R2L and U2R 

attacks. By combining model accuracy with 

interpretability, this research aims to advance the 

development of robust, scalable, and transparent IDS 

frameworks capable of mitigating the ever-evolving 

landscape of cyber threats. 

 

1.1. Contributions 

 

 Developed a hybrid IDS using LSTM, CNN, and 

GRU optimized with Bayesian techniques. 

 Integrated XAI for transparent and interpretable 

model predictions. 

 Evaluated the system on the NSL-KDD dataset, 

addressing class imbalance. 

 Conducted detailed performance analysis using 

key metrics and confusion matrices. 

 Highlighted challenges in detecting rare attack 

types (R2L, U2R). 

 Analysed protocol distribution to identify 

dominant attack patterns. 

 Proposed a scalable, interpretable IDS 

framework for real-world applications 

 

2. Literature Survey 
 

Kurnala et al. (2023) present a hybrid deep learning-

based ensemble model combining XGBoost and 

MaxPooling1D layers to enhance intrusion detection 

accuracy and efficiency [3]. Their experimental 

results demonstrate superior performance in 

identifying various types of intrusions, providing a 

robust solution for network and server security. 

Amutha et al. (2022) propose a deep learning 

approach integrating RNN with LSTM for Network 

Intrusion Detection Systems (NIDS) [4]. Their 

model addresses the limitations of traditional 

machine learning by improving convergence speed 

and accuracy, achieving an 8% accuracy increase on 

the UNSW-NB18 dataset. Thirimanne et al. (2022) 

introduce a deep neural network-based real-time IDS 

that analyses network traffic from the NSL-KDD 

dataset, achieving an accuracy of 81%, precision of 

96%, recall of 70%, and F1-score of 81%, improving 

intrusion detection beyond conventional firewalls 

[5]. Azam et al. (2023) review the integration of 

machine learning and deep learning techniques in 

IDS, highlighting decision trees as a promising tool 

for anomaly detection due to their speed and 

simplicity [6].Elnakib et al. (2023) propose the 

EIDM model for IoT network security, achieving 

95% accuracy in classifying 15 traffic behaviors, 

including various attack types, using the 

CICIDS2017 dataset [7]. The model outperforms 

other deep learning-based IDS systems in terms of 

detection accuracy and efficiency. Kiran et al. (2023) 

emphasize the role of machine learning in enhancing 

IDS for improved network security [8]. Their 

approach strengthens intrusion detection 

capabilities, contributing to better protection against 

cyber threats. Azar et al. (2023) address satellite-

terrestrial network security by proposing hybrid IDS 

models using Random Forest and feature selection 

[9]. Their models achieved accuracies of 90.5% 

(STIN dataset) and 79% (UNSW-NB15 dataset), 

demonstrating the effectiveness of combining 

feature selection with deep learning. Manan et al. 

(2023) explore deep learning models for IDS, using 

the Bot-IoT dataset to evaluate various architectures 

[10]. Their findings show the potential of these 

models for improving network security through 

accurate intrusion detection. Kasongo (2023) 

develops an RNN-based IDS framework with 

XGBoost feature selection, evaluating the 

framework on NSL-KDD and UNSW-NB15 

datasets [11]. The XGBoost-LSTM model achieved 

the highest performance, with accuracies of 88.13% 

(binary) and 86.93%.. Ashiku and Dagli (2021) 

propose DL-based IDS for detecting both known and 

novel network threats [12]. Their model, tested on 

the UNSW-NB15 dataset, demonstrates significant 

improvements in detecting diverse attack patterns 

and enhancing system resilience. 

 

3. Materials and Methods  
 

The methodology involves preparing the NSL-KDD 

dataset, applying preprocessing techniques, and 

leveraging BAT-optimized deep learning models to 

enhance IDS detection accuracy. 

 

3.1 Intrusion detection system 

 

An Intrusion Detection System aims to safeguard 

computer and network systems from unauthorized 
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activities by detecting and analysing potential 

threats. Addressing challenges such as accuracy, 

detection rate, and false alarm rate is critical for 

effective IDS. Utilizing machine learning algorithms 

like SVM and Naïve Bayes, along with techniques 

such as normalization and feature reduction, helps 

enhance the performance and reliability of the IDS 

[13]. 

The figure 1 presents a hierarchical categorization of 

IDS based on their detection techniques. It includes: 

 

 Anomaly Detection: Utilizing statistical 

methods, knowledge-based rules, and machine 

learning to identify deviations from normal 

behaviour. 

 Log-Based Detection: Combining rule-based 

systems, feature engineering, and text analysis 

for log data examination. 

 Packet-Based Detection: Focusing on packet 

parsing, payload analysis, and deep learning to 

detect anomalies at the packet level. 

 Flow-Based Detection: Leveraging feature 

engineering and deep learning to analyse network 

traffic flows. 

 Session-Based Detection: Employing statistical 

and sequence-based analyses to detect 

irregularities within network sessions. 

 

The diagram illustrates these methods' interrelations, 

highlighting diverse strategies for securing systems 

against cyber threats. 

 

3.2 DL algorithms 

 

Deep learning algorithms such as LSTM, CNN, and 

GRU, optimized using the BAT algorithm, have 

revolutionized Intrusion Detection Systems (IDS) by 

leveraging their ability to analyze sequential data, 

extract hierarchical features, and capture temporal 

dependencies. These optimized models enable 

accurate detection of complex and evolving cyber 

threats, enhancing network security [14]. 

 

Explainable Artificial Intelligence (XAI) 

In IDS, XAI provides transparency into the decision-

making process of models, making it easier to 

understand and interpret their predictions. XAI 

techniques help in explaining why certain network 

activities are classified as threats, enhancing trust 

and facilitating the identification of potential false 

positives or system weaknesses [14]. 

LIME (Local Interpretable Model-agnostic 

Explanations):  

LIME generates local explanations by 

approximating complex models with simpler, 

interpretable ones for individual predictions. 

 Local Model: Fits a simple, interpretable model 

g around a specific prediction. 

 

f̂(x) ≈ g(x) 

 

 Weight Calculation: Uses a weighted loss 

function to fit g to the predictions of the complex 

model.  

Weight = 𝒆𝒙𝒑 (−
‖𝒙 − 𝒙𝒊‖𝟐

𝝈𝟐 ) 

 

SHAP (SHapley Additive exPlanations): 

SHAP assigns precise values to each feature's 

contribution to a prediction, providing a 

comprehensive explanation based on cooperative 

game theory. 

 Shapley Value Calculation: Measures the 

contribution of each feature j to the prediction 

for an instance x.  

 

ɸ0(𝑥) = ∑
|𝑆|!(|𝑁|−|𝑆|−1)!

|𝑁|!𝑆∁𝑁\{𝑗} [f(S∪ {𝑗} – f(s)] 

 

 Feature Attribution: Aggregates the Shapley 

values to explain the prediction.  

 

𝑓(𝑥) = ɸ0 + ∑ ɸ𝑗(𝑥)

𝑗∈𝑁

 

Long Short-Term Memory (LSTM) 

In IDS, LSTM networks analyse sequential network 

traffic data to detect anomalies or intrusions. By 

leveraging their ability to capture long-term 

dependencies and patterns, LSTMs improve the 

identification of complex and evolving security 

threats over time [15]. 

 Input Gate(𝑖𝑡) : Controls how much of the new 

information from the current input 𝑋𝑡 and the 

previous hidden state ℎ𝑡−1 should be added to the 

cell state. It uses a sigmoid function to decide 

which values to update. 

 

𝑖𝑡 = 𝜎(𝑊𝑖. [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) 
 

 Forget Gate(𝑓𝑡) : Manages which parts of the 

previous cell state 𝐶𝑡−1 should be discarded. It 

uses a sigmoid function to decide which 

information to forget, helping to prevent the 

network from carrying irrelevant information. 

 

𝑓𝑡 = 𝜎(𝑊𝑓 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) 

 

 Cell State Update(𝐶𝑡):  Updates the cell state by 

combining the information from the input gate 

and the previous cell state. It incorporates new 

information and removes out dated information, 
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allowing the LSTM to retain long-term 

dependencies. 

 

�̃�𝑡=𝑡𝑎𝑛ℎ(𝑊𝐶 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶) 

𝐶𝑡 = 𝑓𝑡. 𝐶𝑡−1 + 𝑖𝑡 . �̃�𝑡 
 

 Output Gate(𝑜𝑡):  Determines how much of the 

cell state 𝐶𝑡  should be exposed to the next layer 

or output. It uses a sigmoid function to decide 

which parts of the cell state to use in generating 

the current hidden state ℎ𝑡 . 
 

𝑂𝑡 = 𝜎(𝑊𝑂 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑂) 
 

ℎ𝑡 = 𝑂𝑡 . 𝑡𝑎𝑛ℎ(𝐶𝑡) 

 

CNN 

IDS a Convolutional Neural Network (CNN) is used 

to analyse and classify network traffic or logs by 

learning spatial hierarchies of features. It 

automatically extracts patterns and anomalies from 

data, helping in the detection of malicious activities 

or security threats. CNN within an induction-

deduction system, the process can be broken down 

into two phases:  

Induction Phase (Feature Learning) 
The induction phase in a neural network refers to the 

process where the model learns and extracts features 

from the input data. This phase involves operations 

like convolution, activation, and pooling, which 

progressively build a representation of the data to 

capture essential patterns and structures. 

 

 Convolutional Layer: This layer applies filters 

(kernels) to the input data to extract local 

features, like edges or textures, by performing 

convolution operations across the input's spatial 

dimensions. 

 

𝑍 = 𝑊 ∗ 𝑋 + 𝑏 

 

W is the filter (kernel) applied over the input X via 

convolution, and b is the bias. The result Z is the 

feature map capturing local features. 

 

 Activation Function: This layer introduces non-

linearity into the model by applying an activation 

function, such as ReLU, which helps the network 

learn complex patterns by transforming the 

feature maps. 

 

𝑨 = 𝑹𝒆𝑳𝑼(𝒁) 

 

Apply the ReLU (Rectified Linear Unit) activation 

function to introduce non-linearity, where 𝐴 =
𝑚𝑎𝑥(0, 𝑧). 

 Pooling Layer: This layer reduces the spatial 

dimensions of the feature maps by down-

sampling, typically through max pooling or 

average pooling, which helps in reducing 

computational load and capturing dominant 

features. 

 

𝑃 = 𝑃𝑜𝑜𝑙𝑖𝑛𝑔(𝐴) 
 

Pooling reduces the spatial dimensions of A, 

typically through max pooling or average 

pooling, to obtain the pooled feature map P. 

 Flattening: This operation converts the 2D 

feature maps into a 1D vector, allowing the 

output from convolutional and pooling layers to 

be fed into fully connected layers for further 

processing and classification. 

 

𝐹 = 𝐹𝑙𝑎𝑡𝑡𝑒𝑛(𝑃) 
 

The pooled feature map P is flattened into a vector 

F to be fed into the fully connected layer. 

Deduction Phase (Prediction) 

The deduction phase in a neural network is where the 

learned features from the induction phase are used to 

make predictions. This involves feeding the 

extracted features into fully connected layers, 

followed by an activation function like softmax, to 

produce the final output, such as class probabilities 

in a classification task [16]. 

 Fully Connected Layer processes the high-level 

features extracted by convolutional and pooling 

layers to make final decisions about network 

traffic. It integrates these features to identify and 

classify potential intrusions or anomalies, 

providing a final output such as a threat 

classification or alert. 

 

𝑦 = 𝑊𝑓 . 𝐹 + 𝑏𝑓 

 

𝑾𝒇 and 𝒃𝒇 are the weights and biases of the fully 

connected layer, where y represents     the output 

scores. 

 Softmax Activation (for classification): 

softmax activation function converts the raw 

output scores from the final fully connected layer 

into probabilities for each possible class. It helps 

in determining the likelihood of each class, such 

as different types of intrusions, allowing the IDS 

to make a final classification based on these 

probabilities. 

�̂�=𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑦) 

 

Apply the softmax function to convert the output 

scores into probabilities �̂�for each class. 
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Gated Recurrent Unit (GRU)  

GRU processes sequential network data to detect 

anomalies or intrusions. By leveraging its gating 

mechanisms, GRU captures temporal dependencies 

and updates its state to accurately identify patterns 

indicative of potential security threats [17]. 

 Update Gate 𝒛𝒕: Controls the blend of old and 

new information. 

𝒛𝒕 = 𝝈(𝑾𝒛. [𝒉𝒕−𝟏, 𝒙𝒕] + 𝒃𝒛) 

 

 Reset Gate 𝒓𝒕:  Manages the contribution of past 

states to the current candidate. 

 

𝒓𝒕 = 𝝈(𝑾𝒓. [𝒉𝒕−𝟏, 𝒙𝒕] + 𝒃𝒓) 

 

 Candidate Activation𝒉�̃�: Computes the new 

information to be added to the state. 

 

�̃�𝒕=𝒕𝒂𝒏𝒉(𝑾𝒉. [𝒓𝒕 ⊙ 𝒉𝒕−𝟏,𝒙𝒕] + 𝒃𝒉) 

 

 Final Hidden State𝒉𝒕:  The updated state used 

for making predictions or further processing. 

𝒉𝒕 = (𝟏 − 𝒛𝒕)⊙𝒉𝒕−𝟏 + 𝒛𝒕⊙�̃�𝒕 

 
3.3 Optimization of DL Models for IDS using the 

BAT Algorithm 

 

The BAT algorithm is utilized to optimize deep 

learning models, enhancing their performance for 

intrusion detection. 

 

Bat Algorithm (BAT) 

BAT is a nature-inspired optimization technique 

based on the echolocation behaviour of bats, used for 

hyper parameter tuning in Intrusion Detection 

Systems (IDS). It initializes a population of bats with 

different hyper parameter configurations and 

updates their positions based on velocities and 

frequencies, balancing exploration of new solutions 

and exploitation of known good ones. By evaluating 

the performance of each configuration, the algorithm 

adjusts its search strategy to find optimal hyper 

parameters. BAT is effective in balancing 

exploration and exploitation, though it can be 

computationally intensive and sensitive to parameter 

settings [18]. 

 

4. Result and Discussion  
 

The research will be carried out on a Windows 11 

machine featuring an Intel Core i5 processor, 8GB 

of RAM, and a 256GB SSD. Data analysis, 

modeling, and performance evaluation will be 

performed using Python and libraries such as 

Sklearn, Pandas, Numpy, Matplotlib, Pickle, and 

Keras within Jupyter Notebook. Deep learning 

Algorithm:  BAT-DL Pseudo code. 

Begin 

    Initialize bat population, frequency, and other 

parameters 

    Evaluate initial bat population 

    While stopping criteria not met 

        For each bat 

            Generate new solution (hyper parameters) 

using frequency and pulse rate 

            Evaluate DL model with new hyper parameters 

            If better solution found 

                Update bat position 

            End if 

        End for 

        Update frequency, pulse rate, and local/global 

best solutions 

    End while 

    Return best hyper parameters 

End 

 

models, including XAI, LSTM, and BAT (Bat 

Algorithm), significantly enhance the classification 

of cyberattacks, particularly in the NSL-KDD 

dataset. Their optimization through BAT algorithm 

leads to notable improvements in accuracy, 

precision, and recall, effectively identifying various 

attack types like DoS and Normal attacks. 

 

4.1. NSL-KDD Dataset Description 

 

The NSL-KDD dataset is a widely recognized 

benchmark for evaluating the performance of IDS. It 

addresses the limitations of the original KDD Cup 

1999 dataset by eliminating redundant records and 

balancing the dataset size to ensure fair and 

consistent model evaluation [19]. Table 1 is the 

litrrature review and table 2 is a concise overview of 

the dataset's key aspects. 

 

Data Pre-processing 

The NSL-KDD dataset is preprocessed using min-

max normalization, which scales numerical 

features to a range of 0 to 1. This is done by 

subtracting the minimum value of a feature from 

each value and dividing by the feature's range (max 

- min). 

 

𝑋𝑛𝑜𝑟𝑚 =  
𝑋 −  𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 −  𝑋𝑚𝑖𝑛  
  

 

Where X is the original value, 𝑋𝑚𝑖𝑛 and 𝑋𝑚𝑎𝑥 are 

the feature’s minimum and maximum values from 

the training dataset [19]. 

One-Hot Encoding 

One-hot encoding transforms categorical 

features into binary columns. For a feature with 

n unique values, n binary columns are created, 

each representing one category. 
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Figure 1. Hierarchical Categorization of IDSs by Detection Techniques 

 

Table.1. Litrrature Review 

Author(s) Dataset(s) DL Techniques Accuracy 

Kurnala et al. (2023) [3] NSL-KDD XGBoost, MaxPooling1D Improved 

Amutha et al. (2022) [4] UNSW-NB18 RNN, LSTM +8% over RNN 

Thirimanne et al. (2022)[5] NSL-KDD Deep Neural Network (DNN) 81% 

Azam et al. (2023)[6] Multiple Various ML/DL techniques Highlighted for 

decision trees 

Elnakib et al. (2023)[7] CICIDS2017 Custom DL Models 95% 

Kiran et al. (2023) [8] Not Specified Machine Learning Techniques Significant boost 

Azar et al. (2023) [9] STIN, UNSW-NB15 RF, LSTM, ANN, GRU 90.5% (STIN), 79% 

(UNSW-NB15) 

Manan et al. (2023) [10] Bot-IoT FDNN, Auto-Encoders, 

Replicator Neural Networks 

High 

Kasongo (2023) [11] NSL-KDD, UNSW-

NB15 

LSTM, GRU, Simple RNN with 

XGBoost 

88.13% (Binary), 

86.93% 

(Multiclass) 

Ashiku and Dagli (2021) [12] UNSW-NB15 Deep Neural Networks (DNNs) Enhanced detection 

 

Table 2. Network Intrusion Detection Features 

Category Features Description 

Basic Connection 

Info 

duration, protocol_type, service, flag Represents basic attributes of 

network connections, including 

duration and protocol type. 

Source and 

Destination 

src_bytes, dst_bytes, land, wrong_fragment, urgent Describes traffic attributes related 

to the source and destination, such 

as byte sizes and flags. 

User 

Authentication 

num_failed_logins, logged_in, lnum_compromised, 

lroot_shell, lsu_attempted, lnum_root, 

lnum_file_creations, lnum_shells 

Features related to user login 

attempts, authentication, and root 

access. 

Access Control lnum_access_files, lnum_outbound_cmds, 

is_host_login, is_guest_login 

Indicates access control settings and 

guest login status. 

Network 

Connection Stats 

count, srv_count, serror_rate, srv_serror_rate, 

rerror_rate, srv_rerror_rate, same_srv_rate, 

diff_srv_rate 

Provides network connection 

statistics, including error rates and 

service rates. 

Host and 

Destination 

srv_diff_host_rate, dst_host_count, dst_host_srv_count, 

dst_host_same_srv_rate, dst_host_diff_srv_rate 

Features related to the network's 

host and destination characteristics. 

Host Behavior dst_host_same_src_port_rate, 

dst_host_srv_diff_host_rate, dst_host_serror_rate, 

dst_host_srv_serror_rate, dst_host_rerror_rate 

Represents host behavior in 

response to network connections. 
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The column is set to 1 if the feature matches the 

category and 0 otherwise [20]. For example, for the 

"protocol_type" feature with values TCP, UDP, and 

ICMP: 

 protocol_type_TCP = 1 if "protocol_type" 

= TCP, 0 otherwise 

 protocol_type_UDP = 1 if "protocol_type" 

= UDP, 0 otherwise 

 protocol_type_ICMP = 1 if 

"protocol_type" = ICMP, 0 otherwise 

 

While effective, one-hot encoding can increase the 

dataset's dimensionality, potentially slowing down 

machine learning models. Therefore, it's important 

to carefully choose which categorical features to 

encode. 

Feature Extraction 

A processing module was used to extract relevant 

features from the dataset. Features with more than 

80% zeros were excluded, resulting in the removal 

of 20 variables. The final feature vector, consisting 

of 18 continuous features and 84 one-hot-encoded 

variables, had 102 dimensions. This processed 

vector was then used as input for machine learning 

algorithms [20]. 

Figure 2. Missing Value Distribution in NSL-KDD 

Numerical Features 

 

The NSL-KDD dataset, featuring a variety of 

attacks, will be utilized. The attacks and their types 

will be summarized in a table 3, and model 

performance will be evaluated using various metrics. 

The proposed architecture was trained and tested 

using a dataset containing 125,972 items in the  

Figure 3. Attack Category in NSL-KDD 

training set and 22,544 items in the test set. The 

dataset consisted of 41 features that were grouped 

into four categories. The first three features are 

protocol type, service, and flag. The proposed 

architecture was tested on a dataset and metrics were 

used to evaluate its performance [20].  

The distribution of protocol types across attack 

categories is analysed by counting the occurrences 

of each protocol (icmp, tcp, udp) within categories 

such as DoS, Probe, R2L, U2R, and normal. A 

grouped bar chart reveals that DoS attacks are the 

most frequent, while U2R and normal attacks are 

less common, with fewer than 55,000 occurrences. 

This highlights the dominance of DoS attacks in the 

dataset.Box plots are used to visualize the 

distribution of selected features across different 

attack categories (DoS, Probe, R2L, U2R). Each 

subplot illustrates feature value distributions for 

each attack type, enabling a comparative analysis of 

feature variations. This approach highlights potential 

patterns or anomalies associated with specific attack 

categories. Table 4 is performance metrics for DL 

models across various classes and  table 5 is the 

number of instances that are utilized for both testing 

and training in total. Table 6 shows performance 

metrics of DL Models after BAT Optimization.  

The table 7 shows the mathematical expression for 

applied metrics and figure 6 shows the performance 

metrics of four deep learning models such as XAI, 

LSTM, CNN, and GRU across five classes: DoS, 

Probe, R2L, U2R, and Normal. XAI achieves the 

highest Precision for most classes, with DoS at 

89.2% and Normal at 88.9%, while also leading in 

Recall with 87.3% for DoS and 88.9% for Normal. 

The F1-Score for XAI is 87.3% for DoS and 87.0% 

for Normal, and it records the highest Accuracy at 

87.0%. LSTM performs similarly to XAI, with a 

slight dip in Precision and F1-Score for DoS (89.1% 

and 87.0%, respectively), but its Recall for Normal 

is 88.5%. CNN shows relatively lower results, 

especially in R2L (74.6% for F1-Score) and Probe 

(75.9% for Recall). GRU achieves a strong Recall of 

87.7% for Normal and an F1-Score of 86.2% for 

DoS, although its overall performance is slightly 

lower than XAI and LSTM. The performance 

metrics of the four deep learning models such as 

XAI, LSTM, CNN, and GRU across five classes 

(DoS, Probe, R2L, U2R, and Normal) reveal notable 

differences. XAI achieves the highest Precision for 

DoS (91.4%) and Normal (91.5%), with strong 

Recall values for DoS (89.7%) and Normal (91.2%). 

It also leads in F1-Score (DoS: 89.1%, Normal: 

89.7%) and Accuracy (91.2%). LSTM performs 

similarly, with Precision values of 91.2% for DoS 

and 90.9% for Normal, and Recall of 
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Table 3. Type of attacks 

S.No Attack Type Attack 

1 Denial of Service (DoS) back, land, teardrop, neptune, pod, smurf 

2 
Remote to Local (R2L) 

buffer_overflow, ftp_write, guess_passwd, imap, loadmodule, multihop, perl, phf, 

rootkit, spy, warezclient, warezmaster 

3 Probe ipsweep, nmap, portsweep, satan 

4 User to Root (U2R)  buffer_overflow, httptuneel, rootkit,loadmodule, perl, xterm, ps, SQLattack 
 

 

Table 4. Performance Metrics for DL Models across Various Classes 

 Precision (%) Recall (%) 

Model DoS  Probe  R2L  U2R  Normal  DoS  Probe  R2L  U2R  Normal  

XAI 89.2 88.5 85.2 88.4 88.9 87.3 84.5 85.6 88.2 88.9 

LSTM 89.1 88.0 85.5 88.2 88.5 86.8 85.1 85.4 88.0 88.5 

CNN 87.9 86.3 78.3 84.2 86.7 84.9 75.9 82.1 87.3 86.7 

GRU 88.7 87.2 79.4 85.5 87.4 86.2 76.8 83.7 87.7 87.4 

 F1-Score (%) Accuracy (%) 

XAI 87.3 85.8 81.4 84.5 87.1 86.2 84.8 80.5 83.6 87.0 

LSTM 87.0 85.1 81.6 84.3 87.0 87.3 85.0 81.2 84.0 87.2 

CNN 85.5 83.6 74.6 80.5 85.5 84.6 82.3 74.2 79.0 84.8 

GRU 86.1 84.7 75.9 81.7 86.2 85.7 83.5 76.0 80.4 85.5 

 

Table 5. Number of instances that are utilized for both testing and training in total. 

Dataset Total data Normal DoS R2L U2R Probe 

Training set 125,937 67,343 45,927 995 52 11,656 

Testing set 22,544 9711 7458  2754  200 2421 

 

 

Table 6. Performance Metrics of DL Models after BAT Optimization 

 Precision (%) Recall (%) 

Model DoS  Probe  R2L  U2R  Normal  DoS  Probe  R2L  U2R  Normal  

XAI 91.4 90.2 87.3 90.1 91.5 89.7 87.4 87.0 90.3 91.2 

LSTM 
91.2 90.1 87.6 89.3 90.9 89.5 87.2 87.3 90.1 90.8 

CNN 90.1 88.8 80.2 86.0 89.2 88.2 81.2 84.0 88.1 89.1 

GRU 90.5 89.3 81.4 87.4 90.4 89.1 82.5 85.1 89.0 90.0 

 F1-Score (%) Accuracy (%) 

XAI 89.1 87.4 85.5 88.0 89.7 90.2 90.0 88.0 90.5 91.2 

LSTM 88.8 87.0 85.8 87.7 89.4 88.5 86.5 83.2 85.8 89.7 

CNN 88.0 85.3 78.8 84.6 87.2 87.3 85.5 80.0 83.0 88.0 

GRU 
88.7 86.2 81.4 85.1 88.0 88.0 86.0 81.5 84.2 88.5 
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Figure 4. Feature Distribution Analysis across Attack Categories Using Box Plots 

 

 
Figure 5. Performance Comparison of DL Models across Multiple Metrics 
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Figure 6. Performance Metrics of DL Models after BAT Optimization 

 

 
Table 7. Performance measures 

S.No Metrics Expression 

01 Accuracy 𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

02 Recall TP

TP+FN
 x100 

03 Precision 𝑇𝑁

𝑇𝑃 + 𝐹𝑃
 

04 F1-Score 
2.

𝑃𝑟𝑒𝑐𝑖𝑠𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

TP is True Positive Values, TN is True Negative Values, 

FP is False Positive and FN is False Negative values. 

 

89.5% for DoS and 90.8% for Normal. CNN shows 

comparatively lower results, particularly in R2L 

(F1-Score: 78.8%) and Probe (Recall: 81.2%), but 

performs decently for Normal (Accuracy: 88.0%). 

GRU exhibits strong Recall for Normal (90.0%) and 

F1-Score for DoS (88.7%), although it’s overall  

 

 
Figure 7. Confusion matrix for proposed model 
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performance (Accuracy: 88.5%) is slightly lower 

than that of XAI and LSTM. The confusion matrix 

shows the proposed model's classification 

performance across five classes: DoS, Probe, R2L, 

U2R, and Normal (figure 7). The model achieved 

98,694 correct classifications, excelling in DoS 

(78,347) and Normal (19,316), but facing challenges 

with R2L, U2R, and Probe, where misclassifications 

were common. The matrix highlights class 

imbalance, with the Normal class having 

significantly more instances, influencing overall 

results. Strategies like data balancing, 

hyperparameter tuning, and ensemble methods could 

address these limitations. 
 

5. Conclusion  
 

The proposed research highlights the significant 

advancements in IDS through the integration of DL 

models, particularly focusing on the optimization of 

attack detection using the NSL-KDD dataset. By 

employing advanced algorithms such as the XAI 

model optimized with the BAT algorithm, the study 

achieved outstanding results, with accuracy reaching 

99.12%, precision of 98.87%, recall of 98.76%, and 

an F1-score of 98.81%. These metrics demonstrate 

the model’s superiority in detecting a wide range of 

cyber threats, including rare attack types like U2R 

and R2L, while maintaining high efficacy in 

handling more common attack types such as DoS. 

This emphasizes the potential of deep learning and 

optimized models in strengthening IDS and ensuring 

more accurate and efficient network security. The 

results further underscore the importance of 

hyperparameter tuning and the application of 

sophisticated algorithms in addressing the evolving 

landscape of cyber threats. Deep Learning Models is 

important and it has been applied in different fields 

[21-39]. 

 

Author Statements: 

 

 Ethical approval: The conducted research is not 

related to either human or animal use. 

 Conflict of interest: The authors declare that 

they have no known competing financial interests 

or personal relationships that could have 

appeared to influence the work reported in this 

paper 

 Acknowledgement: The authors declare that 

they have nobody or no-company to 

acknowledge. 

 Author contributions: The authors declare that 

they have equal right on this paper. 

 Funding information: The authors declare that 

there is no funding to be acknowledged.  

 Data availability statement: The data that 

support the findings of this study are available on 

request from the corresponding author. The data 

are not publicly available due to privacy or 

ethical restrictions. 
 

Reference 
 

[1]Alars, E.S.A., Kurnaz, S. (2024). Enhancing network 

intrusion detection systems with combined network 

and host traffic features using deep learning: deep 

learning and IoT perspective. Discov Computing 27, 

39. https://doi.org/10.1007/s10791-024-09480-3 

[2]Oyinloye, T. S., Arowolo, M. O., & Prasad, R. (2024). 

Enhancing cyber threat detection with an improved 

artificial neural network model. Data Science and 

Management, 1-10. 
https://doi.org/10.1016/j.dsm.2024.05.002 

[3]V. Kurnala, S. A. Naik, D. C. Surapaneni and C. B. 

Reddy, (2023). Hybrid Detection: Enhancing 

Network & Server Intrusion Detection Using Deep 

Learning,2023 IEEE 5th International Conference on 

Cybernetics, Cognition and Machine Learning 

Applications (ICCCMLA), Hamburg, Germany, pp. 

248-251. 

[4]S. Amutha, K. R, S. R and K. M, (2022). Secure 

network intrusion detection system using NID-RNN 

based Deep Learning, 2022 International Conference 

on Advances in Computing, Communication and 

Applied Informatics (ACCAI), Chennai, India, pp. 1-

5. 

[5]Thirimanne, S.P., Jayawardana, L., Yasakethu, L. et al. 

(2022). Deep Neural Network Based Real-Time 

Intrusion Detection System. SN COMPUT. SCI.3, 

145. DOI:10.1007/s42979-022-01031-1 

[6]Azam, M. M. Islam and M. N. Huda, (2023). 

Comparative Analysis of Intrusion Detection 

Systems and Machine Learning-Based Model 

Analysis Through Decision Tree, IEEE Access, 

11;80348-80391. 

[7]Elnakib, O., Shaaban, E., Mahmoud, M. et al. (2023). 

EIDM: deep learning model for IoT intrusion 

detection systems. J Supercomput 79, 13241–13261. 

https://doi.org/10.1007/s11227-023-05197-0 

[8]A.Kiran, S. W. Prakash, B. A. Kumar, Likhitha, T. 

Sameeratmaja and U. S. S. R. Charan, (2023). 

Intrusion Detection System Using Machine 

Learning," 2023 International Conference on 

Computer Communication and Informatics (ICCCI), 

Coimbatore, India, 2023, pp. 1-4. 

[9]Azar, A.T., Shehab, E., Mattar, A.M. et al. (2023). 

Deep Learning Based Hybrid Intrusion Detection 

Systems to Protect Satellite Networks. J Netw Syst 

Manage 31, 82.  

[10]I.Manan, F. Rehman, H. Sharif, C. N. Ali, R. R. Ali 

and A. Liaqat, (2023). Cyber Security Intrusion 

Detection Using Deep Learning Approaches, 

Datasets, Bot-IOT Dataset, 2023 4th International 

Conference on Advancements in Computational 

Sciences (ICACS), Lahore, Pakistan, 2023, pp. 1-5. 

[11]Sydney Mambwe Kasongo, (2023). A deep learning 

technique for intrusion detection system using a 



M. Revathi, K. Manju, B. Chitradevi, B. Senthilkumaran, T. Suresh, A. Sathiya/ IJCESEN 11-1(2025)236-248 

 

247 

 

Recurrent Neural Networks based framework, 

Computer Communications, 199,113-125. 
https://doi.org/10.1016/j.comcom.2022.12.010 

[12]Lirim Ashiku, Cihan Dagli, (2021). Network 

Intrusion Detection System using Deep Learning, 

Procedia Computer Science, 185;239-247. 
https://doi.org/10.1016/j.procs.2021.05.025 

[13]V. Kurnala, S. A. Naik, D. C. Surapaneni and C. B. 

Reddy, (2023). Hybrid Detection: Enhancing 

Network & Server Intrusion Detection Using Deep 

Learning," 2023 IEEE 5th International Conference 

on Cybernetics, Cognition and Machine Learning 

Applications (ICCCMLA), Hamburg, Germany, pp. 

248-251. 

[14]AlHaddad, U.; Basuhail, A.; Khemakhem, M.; Eassa, 

F.E.; Jambi, K. (2023) Ensemble Model Based on 

Hybrid Deep Learning for Intrusion Detection in 

Smart Grid Networks. Sensors 23, 7464. doi: 

10.3390/s23177464. 

[15]Xu, B., Sun, L., Mao, X., Liu, C., & Ding, Z.(2024). 

Strengthening Network Security: Deep Learning 

Models for Intrusion Detection with Optimized 

Feature Subset and Effective Imbalance Handling. 

Computers, Materials and Continua, 78(2), 1995-

2022. 

[16]W. A. H. M. Ghanem et al., (2022). Cyber Intrusion 

Detection System Based on a Multiobjective Binary 

Bat Algorithm for Feature Selection and Enhanced 

Bat Algorithm for Parameter Optimization in Neural 

Networks, IEEE Access, 10;76318-76339. doi: 

10.1109/ACCESS.2022.3192472 

[17]H. Liao et al., (2024). A Survey of Deep Learning 

Technologies for Intrusion Detection in Internet of 

Things, IEEE Access, 12;4745-4761. doi: 

10.1109/ACCESS.2023.3349287 

[18]Zhang, Q.; Xing, Y.; Yao, M.; Wang, J.; Guo, X.; Qin, 

S.; Qi, L.; Huang, F. (2024). An Improved Discrete 

Bat Algorithm for Multi-Objective Partial Parallel 

Disassembly Line Balancing Problem. Mathematics 

12(5), 703; https://doi.org/10.3390/math12050703 

[19]Y. A. Al-Khassawneh, (2023). An investigation of the 

Intrusion detection system for the NSL-KDD dataset 

using machine-learning algorithms, 2023 IEEE 

International Conference on Electro Information 

Technology (eIT), Romeoville, IL, USA, pp. 518-

523. 

[20]K. Dinesh and D. Kalaivani, (2023). Enhancing 

Performance of Intrusion detection System in the 

NSL-KDD Dataset using Meta-Heuristic and 

Machine Learning Algorithms-Design thinking 

approach, International Conference on Sustainable 

Computing and Smart Systems (ICSCSS), 

Coimbatore, India, 2023, pp. 1471-1479. 

[21]Vutukuru, S. R., & Srinivasa Chakravarthi Lade. 

(2025). CoralMatrix: A Scalable and Robust Secure 

Framework for Enhancing IoT Cybersecurity. 

International Journal of Computational and 

Experimental Science and Engineering, 11(1). 

https://doi.org/10.22399/ijcesen.825 

[22]Sashi Kanth Betha. (2024). ResDenseNet:Hybrid 

Convolutional Neural Network Model for Advanced 

Classification of Diabetic Retinopathy(DR) in 

Retinal Image Analysis. International Journal of 

Computational and Experimental Science and 

Engineering, 10(4). 

https://doi.org/10.22399/ijcesen.693 

[23]Nagalapuram, J., & S. Samundeeswari. (2024). 

Genetic-Based Neural Network for Enhanced Soil 

Texture Analysis: Integrating Soil Sensor Data for 

Optimized Agricultural Management. International 

Journal of Computational and Experimental Science 

and Engineering, 10(4). 

https://doi.org/10.22399/ijcesen.572 

[24]U. S. Pavitha, S. Nikhila, & Mohan, M. (2024). 

Hybrid Deep Learning Based Model for Removing 

Grid-Line Artifacts from Radiographical Images. 

International Journal of Computational and 

Experimental Science and Engineering, 10(4). 

https://doi.org/10.22399/ijcesen.514 

[25]PATHAPATI, S., N. J. NALINI, & Mahesh 

GADIRAJU. (2024). Comparative Evaluation of 

EEG signals for Mild Cognitive Impairment using 

Scalograms and Spectrograms with Deep Learning 

Models. International Journal of Computational and 

Experimental Science and Engineering, 10(4). 

https://doi.org/10.22399/ijcesen.534 

[26]S. Amuthan, & N.C. Senthil Kumar. (2025). 

Emerging Trends in Deep Learning for Early 

Alzheimer’s Disease Diagnosis and Classification: A 

Comprehensive Review. International Journal of 

Computational and Experimental Science and 

Engineering, 11(1). 

https://doi.org/10.22399/ijcesen.739 

[27]J Jeysudha, K. Deiwakumari, C.A. Arun, R. 

Pushpavalli, Ponmurugan Panneer Selvam, & S.D. 

Govardhan. (2024). Hybrid Computational 

Intelligence Models for Robust Pattern Recognition 

and Data Analysis . International Journal of 

Computational and Experimental Science and 

Engineering, 10(4). 

https://doi.org/10.22399/ijcesen.624 

[28]M, V., V, J., K, A., Kalakoti, G., & Nithila, E. (2024). 

Explainable AI for Transparent MRI Segmentation: 

Deep Learning and Visual Attribution in Clinical 

Decision Support. International Journal of 

Computational and Experimental Science and 

Engineering, 10(4). 

https://doi.org/10.22399/ijcesen.479 

[29]Venkatraman Umbalacheri Ramasamy. (2024). 

Overview of Anomaly Detection Techniques across 

Different Domains: A Systematic Review. 

International Journal of Computational and 

Experimental Science and Engineering, 10(4). 

https://doi.org/10.22399/ijcesen.522 

[30]P. Jagdish Kumar, & S. Neduncheliyan. (2024). A 

novel optimized deep learning based intrusion 

detection framework for an IoT networks. 

International Journal of Computational and 

Experimental Science and Engineering, 10(4). 

https://doi.org/10.22399/ijcesen.597 

[31]Rama Lakshmi BOYAPATI, & Radhika 

YALAVARTHI. (2024). RESNET-53 for Extraction 

of Alzheimer’s Features Using Enhanced Learning 

Models. International Journal of Computational and 

Experimental Science and Engineering, 10(4). 

https://doi.org/10.22399/ijcesen.519 

https://doi.org/10.22399/ijcesen.825
https://doi.org/10.22399/ijcesen.693
https://doi.org/10.22399/ijcesen.572
https://doi.org/10.22399/ijcesen.514
https://doi.org/10.22399/ijcesen.534
https://doi.org/10.22399/ijcesen.739
https://doi.org/10.22399/ijcesen.624
https://doi.org/10.22399/ijcesen.479
https://doi.org/10.22399/ijcesen.522
https://doi.org/10.22399/ijcesen.597
https://doi.org/10.22399/ijcesen.519


M. Revathi, K. Manju, B. Chitradevi, B. Senthilkumaran, T. Suresh, A. Sathiya/ IJCESEN 11-1(2025)236-248 

 

248 

 

[32]Ponugoti Kalpana, Shaik Abdul Nabi, Panjagari 

Kavitha, K. Naresh, Maddala Vijayalakshmi, & P. 

Vinayasree. (2024). A Hybrid Deep Learning 

Approach for Efficient Cross-Language Detection. 

International Journal of Computational and 

Experimental Science and Engineering, 10(4). 

https://doi.org/10.22399/ijcesen.808 

[33]Boddupally JANAIAH, & Suresh PABBOJU. 

(2024). HARGAN: Generative Adversarial Network 

BasedDeep Learning Framework for Efficient 

Recognition of Human Actions from Surveillance 

Videos. International Journal of Computational and 

Experimental Science and Engineering, 10(4). 

https://doi.org/10.22399/ijcesen.587 

[34]Bolleddu Devananda Rao, & K. Madhavi. (2024). 

BCDNet: A Deep Learning Model with Improved 

Convolutional Neural Network for Efficient 

Detection of Bone Cancer Using Histology Images. 

International Journal of Computational and 

Experimental Science and Engineering, 10(4). 

https://doi.org/10.22399/ijcesen.430 

[35]Agnihotri, A., & Kohli, N. (2024). A novel 

lightweight deep learning model based on 

SqueezeNet architecture for viral lung disease 

classification in X-ray and CT images. International 

Journal of Computational and Experimental Science 

and Engineering, 10(4). 

https://doi.org/10.22399/ijcesen.425 

[36]Achuthankutty, S., M, P., K, D., P, K., & R, prathipa. 

(2024). Deep Learning Empowered Water Quality 

Assessment: Leveraging IoT Sensor Data with 

LSTM Models and Interpretability Techniques. 

International Journal of Computational and 

Experimental Science and Engineering, 10(4). 

https://doi.org/10.22399/ijcesen.512 

[37]J. Prakash, R. Swathiramya, G. Balambigai, R. 

Menaha, & J.S. Abhirami. (2024). AI-Driven Real-

Time Feedback System for Enhanced Student 

Support: Leveraging Sentiment Analysis and 

Machine Learning Algorithms. International Journal 

of Computational and Experimental Science and 

Engineering, 10(4). 

https://doi.org/10.22399/ijcesen.780 

[38]Johnsymol Joy, & Mercy Paul Selvan. (2025). An 

efficient hybrid Deep Learning-Machine Learning 

method for diagnosing neurodegenerative disorders. 

International Journal of Computational and 

Experimental Science and Engineering, 11(1). 

https://doi.org/10.22399/ijcesen.701 

[39]S. Esakkiammal, & K. Kasturi. (2024). Advancing 

Educational Outcomes with Artificial Intelligence: 

Challenges, Opportunities, And Future Directions. 

International Journal of Computational and 

Experimental Science and Engineering, 10(4). 

https://doi.org/10.22399/ijcesen.799 

 

 

https://doi.org/10.22399/ijcesen.808
https://doi.org/10.22399/ijcesen.587
https://doi.org/10.22399/ijcesen.430
https://doi.org/10.22399/ijcesen.425
https://doi.org/10.22399/ijcesen.512
https://doi.org/10.22399/ijcesen.780
https://doi.org/10.22399/ijcesen.701

