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Abstract:  
 

The rapid evolution of smart systems, including Internet of Things (IoT) devices, smart 

grids, and autonomous vehicles, has led to the need for efficient resource management to 

optimize performance, reduce energy consumption, and enhance system reliability. This 

paper presents adaptive computational intelligence (CI) algorithms as an effective 

solution for addressing the dynamic challenges in resource management for smart 

systems. Specifically, we explore the application of techniques such as fuzzy logic, 

genetic algorithms, particle swarm optimization, and neural networks to adaptively 

manage resources like energy, bandwidth, processing power, and storage in real-time. 

These CI algorithms offer robust decision-making capabilities, enabling smart systems to 

efficiently allocate resources based on environmental changes, system demands, and user 

preferences. The paper discusses the integration of these algorithms with real-time data 

acquisition systems, providing a framework for adaptive and scalable resource 

management. Additionally, we evaluate the performance of these algorithms in various 

smart environments, highlighting their ability to optimize system efficiency, reduce 

operational costs, and improve the overall user experience. The proposed approach 

demonstrates significant improvements over traditional resource management 

techniques, making it a promising solution for next-generation smart systems. 

 

1. Introduction 

 
The advent of smart systems has revolutionized 

various sectors, including healthcare, transportation, 

and energy management. These systems, which 

comprise a wide range of interconnected devices and 

technologies such as Internet of Things (IoT) [1] 

networks, smart grids, autonomous vehicles, and 

more, require sophisticated resource management 

techniques to ensure efficient operation. The key 

challenge lies in dynamically and optimally 

allocating resources such as energy, bandwidth, 

processing power, and storage to meet the system's 

ever-changing demands. Traditional resource 

management methods often struggle to keep pace 
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with the dynamic nature of these systems, which are 

influenced by fluctuating user needs, environmental 

conditions, and technological advancements. 

Computational intelligence (CI) [2] offers a 

promising approach to tackle these challenges. CI 

algorithms, including fuzzy logic, genetic 

algorithms (GA), particle swarm optimization 

(PSO), and neural networks, can adaptively learn 

from the environment and make real-time decisions. 

These algorithms are capable of handling 

uncertainties and non-linearity, characteristics 

commonly encountered in smart systems. By 

leveraging CI techniques, resource management in 

smart systems can become more efficient, scalable, 

and responsive to changing conditions. 

In this paper, we explore the application of adaptive 

computational intelligence algorithms for efficient 

resource management in smart systems. We present 

a comprehensive overview of CI techniques and 

their integration into resource management 

frameworks. Additionally, we highlight the potential 

benefits of using these techniques, including 

improved energy efficiency, optimized bandwidth 

allocation, reduced operational costs, and enhanced 

system reliability. The goal is to demonstrate how 

adaptive CI algorithms [3] can transform resource 

management from a static, pre-defined process to a 

dynamic, responsive, and self-optimizing 

mechanism, capable of meeting the demands of 

next-generation smart systems. 

The remainder of the paper is organized as follows: 

Section 2 provides a review of related works on 

resource management techniques in smart systems. 

Section 3 introduces the CI algorithms [4] discussed 

in this study, including their principles and 

applications. Section 4 presents the proposed 

resource management framework. Section 5 

discusses the performance evaluation of the 

algorithms in various smart environments. Finally, 

Section 6 concludes the paper and suggests 

directions for future research. 

 

2. Literature survey 

 
Resource management in smart systems is a rapidly 

evolving field, driven by the increasing complexity 

and scale of modern technologies. Various methods 

and algorithms [5] have been proposed to address the 

challenges associated with dynamic resource 

allocation, energy optimization, and system 

efficiency in environments such as IoT networks, 

smart grids, and autonomous systems. In this 

section, we provide a review of the existing literature 

on resource management techniques, highlighting 

both traditional approaches and the application of 

adaptive computational intelligence (CI) algorithms. 

 

2.1 Traditional Resource Management 

Approaches 

 

Historically, resource management in smart systems 

has been approached through conventional 

optimization techniques such as linear 

programming, [6] greedy algorithms, and heuristic 

methods. These methods often assume a relatively 

stable and predictable environment where the 

resource demands do not change rapidly over time. 

Linear Programming: Linear programming (LP) 

[7] has been widely used in static resource allocation 

problems. It allows for optimization based on 

constraints such as resource availability and system 

demand. However, LP methods often fail to handle 

non-linearities or uncertainties that are inherent in 

smart systems. 

Greedy Algorithms: Greedy methods [8] have been 

applied in many IoT and smart grid applications, 

where decisions are made step-by-step, selecting the 

best option at each stage. While greedy algorithms 

are computationally efficient, they often do not 

provide globally optimal solutions. 

Heuristic Methods: Heuristic approaches [9] such 

as simulated annealing and tabu search have been 

explored for solving resource allocation problems, 

especially in large, dynamic environments. While 

these methods can escape local optima, they still rely 

on fixed decision rules that may not adapt well to 

changing system conditions. 

While these traditional techniques have provided 

solutions in some contexts, their limitations in 

handling complex, dynamic, and uncertain 

environments have spurred interest in more adaptive 

and intelligent approaches. 

 

2.2 Computational Intelligence Algorithms for 

Resource Management 
 

The growing complexity of modern smart systems 

has led to the adoption of computational intelligence 

(CI) [10] techniques, which are better suited for 

dynamic environments characterized by uncertainty 

and non-linearity. Several CI algorithms have been 

employed to enhance resource management in smart 

systems, offering greater flexibility, scalability, and 

real-time adaptability. 

 

Fuzzy Logic 

Fuzzy logic, introduced by Zadeh in the 1960s, is a 

method that deals with uncertainty and imprecision. 

Fuzzy logic systems are based on fuzzy sets, which 

allow for partial membership, unlike traditional 

Boolean logic that deals with binary decisions. In 

resource management, fuzzy logic [11] has been 

applied to control energy consumption, bandwidth 
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allocation, and task scheduling in smart grids and 

IoT networks. 

Smart Grids: Fuzzy logic-based controllers have 

been developed for dynamic power management in 

smart grids, optimizing energy distribution [12] 

based on fluctuating demand and supply. 

IoT Networks: Fuzzy-based systems are used in IoT 

resource allocation, where they dynamically allocate 

bandwidth and processing resources to sensors and 

devices based on environmental conditions and 

usage patterns. 

While fuzzy logic systems [13] are effective in 

managing uncertainties, they require careful tuning 

of membership functions and inference rules to 

achieve optimal performance. 

 

Genetic Algorithms (GA) 

Genetic algorithms (GAs) [14] are inspired by the 

process of natural selection and have been widely 

used in optimization problems, including resource 

management. GAs are particularly useful in handling 

complex, non-linear optimization problems with 

large search spaces. 

IoT Resource Allocation: Gas  have been applied 

to optimize resource allocation in IoT networks, 

where they evolve solutions [15] over generations to 

find the most efficient resource distribution strategy. 

Task Scheduling: In cloud computing and edge 

computing systems, Gas [16] are used for efficient 

task scheduling and load balancing, ensuring optimal 

use of processing power and minimizing energy 

consumption. 

GAs are effective in solving multi-objective 

optimization problems, but they may require a large 

number of iterations to converge to the optimal 

solution, which can be computationally expensive. 

 

Particle Swarm Optimization (PSO) 

Particle swarm optimization (PSO) [17] is a heuristic 

optimization technique based on the collective 

behavior of particles in a swarm. PSO has been 

successfully applied to resource management in 

dynamic systems, where the swarm of particles 

explores the solution space to find the best allocation 

of resources. 

Smart Grid Management: PSO has been used for 

dynamic energy management in smart grids, where 

it helps to optimize power generation and 

distribution based on real-time demand. 

IoT Networks: PSO is applied to IoT resource 

scheduling, where the algorithm searches for optimal 

communication and energy resource allocation 

strategies for a network of devices. 

PSO is known for its simplicity and ability to find 

near-optimal solutions quickly. However, it may 

struggle with local minima in highly complex [18] 

and multi-dimensional problems. 

 

Neural Networks 

Neural networks (NNs) [19] are computational 

models inspired by the human brain's neural 

architecture. They have been widely used for 

predicting and controlling system behaviors, making 

them ideal for resource management in smart 

systems. 

Energy Management: In smart grids, NNs are 

employed for energy prediction and optimization, 

where they learn patterns in energy consumption and 

adjust distribution strategies accordingly. 

Traffic Management in Autonomous Vehicles: 
Neural networks are used to predict traffic patterns 

and manage resource allocation for autonomous 

vehicles, optimizing routes and energy consumption 

in real-time. 

While NNs can handle complex, non-linear 

relationships, they require large datasets [20] for 

training and may suffer from overfitting if not 

properly managed. 

 

2.3 Hybrid Approaches 

 

To overcome the limitations of individual CI 

techniques, hybrid approaches that combine the 

strengths of multiple algorithms have been proposed. 

These hybrid models aim to enhance the robustness, 

accuracy, and efficiency of resource management in 

smart systems. 

Fuzzy-GA Hybrid Systems: The combination of 

fuzzy logic and genetic algorithms has been explored 

for energy management in smart homes, where fuzzy 

logic handles uncertainties in user behavior, and GA 

optimizes energy usage. 

PSO-NN Hybrid Models: Hybrid models that 

integrate PSO and neural networks have been used 

for dynamic resource scheduling in cloud 

computing, where PSO optimizes resource 

allocation and neural networks predict future 

resource needs. 

These hybrid systems leverage the complementary 

strengths of multiple algorithms to improve 

decision-making, system optimization, and 

adaptability. 

 

2.4 Challenges and Future Directions 

 

Despite the progress in CI-based resource 

management, several challenges remain. These 

include the need for real-time decision-making, 

scalability in large networks, and the ability to 

handle varying system dynamics. Future research 

should focus on improving the computational 

efficiency of CI algorithms, developing hybrid 

models tailored for specific applications, and 
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enhancing the integration of real-time data from IoT 

devices and sensors. 

Additionally, the emergence of edge computing and 

5G networks presents new opportunities for 

applying CI algorithms in resource management. 

These technologies enable distributed decision-

making and real-time optimization, which can 

significantly enhance the performance and 

scalability of smart systems. 

In conclusion, computational intelligence algorithms 

offer significant promise in addressing the 

challenges of resource management in smart 

systems. By leveraging adaptive, dynamic, and 

intelligent approaches, CI techniques can improve 

the efficiency, scalability, and reliability of resource 

allocation in various smart environments. 

 

3. Proposed Methodologies 
 

This section presents the proposed methodologies 

for adaptive resource management in smart systems 

using computational intelligence (CI) algorithms. 

The goal is to integrate advanced CI techniques, such 

as fuzzy logic, genetic algorithms (GA), particle 

swarm optimization (PSO), and neural networks, 

into a unified framework that dynamically allocates 

resources like energy, bandwidth, processing power, 

and storage in real-time. The proposed 

methodologies aim to address the challenges of 

optimizing system performance, reducing energy 

consumption, and enhancing scalability and 

adaptability. Figure 1 shows block diagram of the 

Adaptive Computational Intelligence Framework for 

Resource Management in Smart Systems. 

 

 
Figure 1. Block Diagram of the Adaptive Computational 

Intelligence Framework. 

 

3.1 Framework Overview 

 

The proposed resource management framework 

leverages a hybrid approach that combines multiple 

CI techniques for adaptive decision-making in smart 

systems. The framework operates in the following 

manner: 

Real-Time Data Acquisition: The system 

continuously collects real-time data from various 

smart devices and environmental sensors. This data 

includes metrics such as energy consumption, device 

status, network traffic, and user demand. 

Preprocessing and Feature Extraction: Data 

preprocessing techniques, including noise reduction 

and feature extraction, are employed to prepare the 

data for the CI algorithms. Key features such as 

energy usage patterns, device locations, network 

load, and user preferences are extracted. 

CI-Based Resource Management: The core of the 

framework involves the application of adaptive CI 

algorithms. Depending on the system's requirements 

and conditions, different CI techniques are 

employed: 

 Fuzzy Logic is used to handle uncertainties in 

resource availability and user demand. 

 Genetic Algorithms (GA) are applied to solve 

complex optimization problems and find 

efficient resource allocation solutions. 

 Particle Swarm Optimization (PSO) is used to 

search for optimal configurations in dynamic 

environments. 

 Neural Networks are utilized for predictive 

modelling, forecasting resource needs, and 

providing decision support. 

Optimization and Adaptation: The resource 

allocation process is continuously optimized based 

on feedback from the system's performance. The 

system adapts its decisions based on changing 

conditions such as fluctuating energy demands, 

network congestion, and device activity. 

Execution and Feedback Loop: After the resource 

allocation decisions are made, the system executes 

them and monitors the results. Performance metrics 

such as energy efficiency, system reliability, and 

user satisfaction are evaluated, and adjustments are 

made to ensure continuous improvement. 

 

3.2 Detailed Methodologies for Each CI 

Technique 

 

Fuzzy Logic-Based Resource Allocation 

Fuzzy logic is used to manage uncertainties and 

imprecision in smart systems. It is particularly useful 

when dealing with vague or incomplete information, 

such as fluctuating user demands or environmental 

changes. 
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Fuzzy Inference System (FIS): A FIS is used to 

infer optimal resource allocation strategies. The 

system operates with fuzzy rules, such as "If energy 

consumption is high, then allocate more power from 

renewable sources," to guide decision-making. 

Membership Functions: The fuzzy sets for input 

variables like energy consumption, network load, 

and device status are defined with appropriate 

membership functions. These functions allow for 

partial membership in multiple sets, enabling more 

flexible decision-making. 

Defuzzification: The fuzzy outputs are then 

defuzzified to produce crisp values for resource 

allocation, ensuring that the decisions are actionable. 

 

Genetic Algorithm-Based Resource Optimization 

Genetic algorithms (GAs) are used to find efficient 

solutions to resource allocation problems by 

simulating the process of natural selection. GAs are 

well-suited for multi-objective optimization 

problems in smart systems. 

Initialization: The algorithm begins with a 

population of potential solutions, each representing 

a possible configuration of resource allocations. 

Each solution (or chromosome) contains parameters 

such as power levels, bandwidth allocation, and task 

scheduling. 

Fitness Evaluation: The fitness function evaluates 

how well each solution meets the system’s 

objectives, such as minimizing energy consumption, 

reducing latency, or maximizing throughput. 

Selection, Crossover, and Mutation: Through 

these evolutionary operations, the GA explores the 

solution space to generate new, potentially better 

solutions. Selection chooses the fittest individuals, 

crossover combines solutions, and mutation 

introduces diversity to avoid premature 

convergence. 

Termination: The process continues until a 

stopping condition, such as a maximum number of 

generations or convergence to a satisfactory 

solution, is met. 

 

Particle Swarm Optimization (PSO) for Dynamic 

Resource Scheduling 

PSO is used to optimize dynamic resource 

scheduling by mimicking the social behaviour of 

particles in a swarm. In this context, the particles 

represent potential resource allocation 

configurations, and the swarm collectively searches 

for the best solution. 

Initialization: Each particle in the swarm starts with 

a random position (representing a resource 

allocation strategy) and a random velocity 

(indicating the direction of change). 

Fitness Function: The fitness function measures 

how well the particle’s position (resource allocation) 

performs in terms of system efficiency, energy 

usage, and other key performance indicators. 

Velocity and Position Update: Particles update 

their velocity and position based on their previous 

experiences and the best position found by any 

particle in the swarm. The position update is guided 

by personal and social factors that influence particle 

behaviour. 

Convergence: The swarm converges toward an 

optimal solution, balancing exploration (searching 

new areas) and exploitation (refining existing 

solutions) to achieve the best resource allocation. 

 

Neural Network-Based Predictive Resource 

Management 

Neural networks (NNs) are used for predictive 

modelling in the proposed framework. By learning 

from historical data, NNs can forecast future 

resource demands, enabling proactive resource 

management. 

Training: The neural network is trained on 

historical data from various sensors and devices, 

such as energy consumption patterns, traffic load, 

and device usage. 

Modelling and Forecasting: Once trained, the 

neural network can predict future resource needs, 

such as upcoming energy consumption spikes or 

bandwidth demand. This allows the system to adjust 

resource allocation in advance. 

Backpropagation: The network uses 

backpropagation to minimize prediction errors, 

continuously improving its ability to forecast future 

conditions and optimize resource allocation. 

 

3.3 Hybrid Approach for Enhanced Performance 

 

While each CI algorithm is effective on its own, the 

hybrid approach combines the strengths of multiple 

algorithms to achieve superior results. The hybrid 

model integrates fuzzy logic, GA, PSO, and neural 

networks into a cohesive system where each 

algorithm contributes to different stages of resource 

management: 

 

Fuzzy Logic handles uncertainties in real-time data 

and decision-making processes. 

 

Genetic Algorithms optimize resource allocation 

configurations based on fitness criteria. 

Particle Swarm Optimization dynamically adjusts 

resource scheduling in response to changing system 

conditions. 

 

Neural Networks predict future demands and 

provide foresight for proactive resource 

management. 
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3.4 System Integration and Implementation 

 

The proposed methodologies are implemented 

within a cloud-based or edge-based system 

architecture, where data from IoT devices, sensors, 

and environmental inputs are collected and 

processed. The resource management framework is 

implemented as a distributed system, with each node 

(e.g., sensor, device, or system component) using the 

CI algorithms to make local resource allocation 

decisions. These decisions are then aggregated at 

higher levels to ensure global optimization. 

The system is designed to be scalable, allowing it to 

handle large numbers of devices and varying levels 

of complexity. The integration of the CI-based 

framework enables real-time adaptation and 

continuous optimization, ensuring that the system 

efficiently manages resources even in dynamic, 

uncertain environments. 

 

4. Results and Discussions 

 
The results from our proposed hybrid computational 

intelligence framework for resource management in 

smart systems indicate promising improvements in 

performance, efficiency, and adaptability. Through 

extensive simulations and performance evaluations, 

we found that the integration of fuzzy logic, genetic 

algorithms (GA), particle swarm optimization 

(PSO), and neural networks led to a significant 

enhancement in resource allocation, especially in 

dynamic and complex environments. The hybrid 

system exhibited a remarkable ability to adapt to 

varying conditions, such as changes in user demand, 

network congestion, and environmental factors, 

which is often a challenge in traditional resource 

management approaches. 

In terms of energy efficiency, the proposed 

framework demonstrated a substantial reduction in 

energy consumption compared to conventional 

methods. This was achieved by efficiently 

distributing energy across devices and components, 

ensuring that power usage was minimized without 

compromising system performance. The fuzzy logic 

component played a key role in managing 

uncertainties, while GA and PSO effectively 

optimized resource allocation to minimize 

overheads. Neural networks contributed by 

predicting future resource requirements, enabling 

proactive management of system resources. 

Latency Comparison: This graph shows that the 

hybrid approach consistently maintains lower 

latency, demonstrating better responsiveness in real-

time resource allocation (figure 2). 

Energy Consumption Comparison: The hybrid 

approach leads to a significant reduction in energy 

consumption, providing a more efficient solution for 

energy management in smart systems (figure 3). 

Reliability Comparison: The hybrid approach 

outperforms traditional methods in terms of 

reliability, ensuring more stable and consistent 

system performance (figure 4). 

Throughput Comparison: The hybrid approach 

shows higher throughput, indicating better data 

transmission and network performance (figure 5). 

 

Figure 2. Latency Comparison. 

 

Figure 3. Energy Consumption Comparison. 

 

Figure 4. Reliability Comparison. 
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Figure 5. Throughput Comparison 

 

Figure 6. Resource Efficiency Comparison. 

 

Resource Efficiency Comparison: The hybrid 

approach consistently achieves better resource 

efficiency, reflecting its ability to optimize resource 

allocation effectively (figure 6). 

In contrast, the red line for the hybrid approach 

demonstrates a more stable and consistent 

performance, maintaining higher resource 

efficiency. This indicates that the hybrid approach is 

more effective in managing resources dynamically, 

reducing inefficiencies compared to conventional 

methods. The results highlight the advantages of 

adaptive computational intelligence techniques in 

optimizing resource allocation for smart systems. 

Additionally, the system displayed superior 

performance in terms of network reliability and 

latency. The optimization algorithms helped reduce 

delays in communication between devices, ensuring 

that data transmission was more efficient and 

responsive. This improvement in latency was 

particularly evident in real-time applications such as 

IoT networks and smart grids, where fast and 

efficient resource allocation is critical. 

However, while the results were promising, some 

challenges remain. The convergence time for certain 

algorithms, particularly GA and PSO, was observed 

to be relatively long in highly dynamic 

environments. This can impact the real-time 

applicability of the system in scenarios requiring 

immediate resource allocation decisions. 

Furthermore, the system's performance could be 

further optimized by refining the balance between 

exploration and exploitation in the optimization 

processes. 

In conclusion, the proposed hybrid approach 

demonstrates a clear advantage over traditional 

methods, showing its potential to optimize resource 

management in smart systems. The results highlight 

the effectiveness of combining adaptive CI 

algorithms to handle the complexities of modern 

systems. Future work will focus on addressing the 

convergence time issue, enhancing the scalability of 

the framework for large-scale systems, and 

conducting real-world validations to ensure its 

practical applicability in diverse smart 

environments. 

 

5. Conclusions 

 
In this paper, we proposed a hybrid computational 

intelligence framework for adaptive resource 

management in smart systems, aiming to optimize 

the allocation of resources like energy, bandwidth, 

processing power, and storage in dynamic and 

complex environments. By integrating fuzzy logic, 

genetic algorithms (GA), particle swarm 

optimization (PSO), and neural networks, our 

approach ensures real-time optimization, scalability, 

and adaptability in smart environments such as IoT 

networks, smart grids, and autonomous vehicles. 

The framework combines the strengths of each 

algorithm to address the challenges of uncertainty, 

complex optimization, and dynamic resource 

allocation, providing a flexible solution that adapts 

to fluctuating system demands. Our experimental 

results indicate that this hybrid approach 

significantly improves system performance, energy 

efficiency, and resource allocation, outperforming 

traditional methods. The proposed framework offers 

a promising direction for next-generation smart 

systems, with potential applications in large-scale 

IoT deployments, smart cities, and industrial 

automation. Future research will focus on enhancing 

the framework's predictive capabilities with 

advanced machine learning techniques and testing it 

in real-world environments for broader scalability 

and practical deployment. IoT is widely studied and 

reported in the literature [21-32]. 
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