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Abstract:  
 

This paper formulates and examines the approach of integrating PSO into the tune of 

DNNs for boosting the predictive capability in renewable energy systems and green 

building designs. The PSO method was then employed to select Key features such as; 

Solar Irradiance, Ambient Temperature, Panel Efficiency and Energy Output. The PSO-

based feature selection resulted in significant enhancements across a set of four metrics, 

there was an improvement in accuracy from a previous 0.82 to 0.87, precision from the 

previous 0.78 to 0.83, as well as recall from the previous 0.76 to 0.81, and the F1-Score 

from a previous 0.77 to the current score of 0.82. Moreover, the RMSE values reduced 

from 0.27 to 0.23, and the AUC values enriched from 0.74 to 0.85. Thus, the results of 

the current study support PSO’s role in improving feature selection, which, in return, 

improves the predictive models of energy management. The paper presented emphasizes 

the possibility of the use of enhanced optimization algorithms in enhancing the best 

performing, less resource-intensive, and environmentally friendly energy solutions in 

architecture. 

 

1. Introduction 
 

Energy management is important, especially with 

the transition to renewable energy systems globally, 

efficient ways in which energy can be generated and 

used must be identified. Improvement of such 

inefficiencies to the highest possible level is the key 

step towards providing sustainable energy solutions 

globally. Applying AI to sustainability has brought 

remarkable changes within the architectures’ field. 

Improving the prognosis, manufacturing, and 

planning, it helps us to construct better, less 

parochial, and more sustainable solutions. [1]. 

Utility scale solar photovoltaic (PV) system 

constitutes the primary means of harnessing solar 

energy as a renewable energy form. Nevertheless, 

more variability like solar irradiance, temperature 

fluctuations and degradation of equipment has been 

shown to decrease the efficiency of such systems [1]. 

To this end, new advanced analytical instruments to 

solve these issues are required with the main focus 

on creating a system that will maintain maximum 

performance in more complex circumstances as a 

primary prerequisite. When machine learning 

techniques are incorporated with bio-inspired 

algorithms such as Particle Swarm Optimization 

(PSO), the performance of the system can be made 

more accurate to provide better information of PV 

systems. Like birds and fishes- PSO have social 

behaviors and demonstrated nonlinear and high 

screening capability [2, 3] which make the algorithm 

essential for fine-tuning predictive models including 

Deep Neural Networks (DNNs). 

This research presents a solution of PSO with DNN 

that offers intelligently a proper PV system. Rather 

than using a set of unchanging parameters as seen in 

the conventional method, this method adaptively 

identifies the key features (for example, irradiance 

rates and the efficiency of panel) to produce better 

predictions. Not only does this improve the ability to 

predict energy demand but it also reduces the margin 

of error in the estimation of energy produced which 

http://www.ijcesen.com/
http://dergipark.ulakbim.gov.tr/ijcesen
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would greatly improve energy planning and control 

for renewable energy systems [4, 5]. The work 

builds on earlier triumphs in biologically inspired 

computation and AI in energy systems [6, 7] and 

forms a solid base of enhancing the effectiveness of 

the PV. This shows why the future plan to use 

enhanced machine learning models with 

optimization algorithms relevant in solving critical 

issues in renewables. All of this builds the 

framework for green solutions for energy engineers, 

researchers, and policymakers they can use in 

residential and commercial settings. 

 

2. Methodology 

 
2.1 Dataset 

 
Accordingly, the dataset provides the basis for the 

ML approaches to mitigate PV system degradation 

performance loss factors. It is an open renewable 

energy dataset [1], that has the basic characteristics 

defining the most important characteristics of solar 

energy. The availability data includes some elements 

such as irradiance, ambient temperature, panel 

efficiency, the energy outputs, and system 

maintenance costs, some of which are the main 

factors to determine the PV system reliability. 

Before any data analysis could be performed, the 

data was pre-processed in several ways. Some of 

these things were like handling missing values and 

standardising continuous variables to the same 

range, and confirming that all the records kept were 

accurate across the whole set. Data Pre-processing 

was a key part to to keep our dataset clean and ensure 

that we could achieve the best performance out of 

applied machine learning models. 

The distribution of various key features in the dataset 

is shown in Figure 1. The variety of conditions for 

solar energy can be appreciated in this graphical 

overview generated from the data. In addition, the 

statistics for each feature; standard deviation, mean, 

minimum, and maximum values and quartile 1, 2, 3 

distributions are elaborated in Table 1. For instance, 

the dataset describes an average irradiance of 600 

W/m² and a standard deviation of 50 W/m², 

demonstrating a moderate RV of sunlight intensity. 

Panel efficiency, for instance, has a mean of 18.5% 

and a standard deviation of 2.3% while the other 

features show their trends and distributions. 

 

 

 

 
Figure 1. Graphic Distribution of the dataset by important characteristics. 

 

 

Table 1.  Data Statistics 

Feature Mean Std Dev Min 25% (Q1) Median (Q2) 75% (Q3) 
 

Max 
 

Solar Irradiance (W/m²) 600.32 50.45 490.2 568.2 600.5 633.1 710.0 

Ambient Temperature (°C) 25.12 3.01 18.4 23.2 25.1 27.0 32.5 

Panel Efficiency (%) 18.43 2.35 13.8 16.9 18.5 19.9 23.2 

Energy Output (kWh) 250.21 30.14 190.4 230.5 250.3 270.7 310.8 

Maintenance Costs ($) 1000.5 200.45 650.0 870.2 1002.3 1150.1 1450.0 
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2.2 Feature Selection 

 

Particle Swarm Optimization (PSO) is performed for 

feature selection used in this experiment to identify 

optimum features for the best performance analysis 

of the PV system with some associated machine 

learning model. PSO is a bio-inspired approach that 

models the social behaviour of flocks of birds or 

schools of fish. Through competition and 

cooperation of the particles, PSO imitates this search 

process in order to discover optimal solutions by 

iteratively adjusting according to a fitness function 

[8]. 

PSO was utilized at multiple critical points in this 

study. Feature subsets were created initially to 

represent the attribute combinations that are likely to 

represent the datasets. A fitness function (the 

performance of the model on validation data, which 

was Root Mean Square Error [RMSE] in this case) 

was specified to evaluate how good each subset is. 

In the following iterations, features with lower 

RMSE were given higher priority and irrelevant 

attributes were eliminated. By repeatedly running 

this process, PSO converged onto the variables that 

were ultimately predictive in nature, providing a 

feature set that was both parsimonious and impactful 

[9]. 

The iterative feature selection process with PSO is 

depicted in Figure 2, showing that during the 

multiple generations the algorithm was able to 

narrow down the subsets of features it determined 

optimal for model performance. The features 

selected were built into the predictive model, 

providing more specific actionable insights about 

PV system optimization. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2. Feature selection process according to PSO 

Table 2 shows the selected features with their 

relative importance. As we noticed, solar irradiance 

emerged as the most significant feature, with a high 

score of 0.40, followed by panel efficiency (0.30) 

and energy output (0.20). Other features, including 

ambient temperature and system maintenance costs, 

played minor roles but still contributed to the 

model's prediction. These results showcase that PSO 

is efficient in identifying the minimal set of dataset 

features relevant to the research task, making the 

model both effective and accurate (Xie et al., 2023). 

 
Table 2. Corresponding importance scores of the 

features. 

 

2.3 Modelling with Deep Neural Networks 

(DNNs) 

 

Deep neural networks (DNNs) also represent a 

dominant machine learning approach, capable of 

capturing complex non-linear relationships in high-

dimensional data [10], and were utilized for 

modelling in this study. DNNs consist of multiple 

hidden layers in which each layer abstracts 

increasingly higher-level features from the input 

data to improve predictive performance in the 

current task [11]. In this research, the DNN was 

utilized, and the input variables were ascertained 

using the PSO method to predict and calculate the 

working of the PV system. We passed the model 

various appropriate inputs like solar irradiance, 

panel efficiency, energy output, and ambient 

temperature so that it can learn the complex patterns 

governing PV system efficiency. In this stage of 

modelling, the working function was driven and 

deeply explored, mostly on the application of the 

power of function approximation of DNNs in the 

rapid prediction of energy output and optimal 

configuration of the reliability and performance 

characteristics of these systems under dynamically 

varying environmental conditions in renewable 

energy (RE) systems. 

 

Modelling Steps 

The initial step in modelling with DNN involved 

configuring the algorithm with the relevant hyper 

parameters. These parameters are essential as they 

administrate the model's behaviour and the learning 

process. Our DNN model employed the following 

key hyper parameters: 

Feature Importance Score 

Solar Irradiance 0.4 

Panel Efficiency 0.3 

Energy Output 0.2 

Ambient Temperature 0.07 

System Maintenance Costs 0.03 

Step 2 

Step 3 

Step 4 

Step 5 
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•Number of Hidden Layers: Set to 3, the 

configurational parameters of the model comprised 

three layers to estimate the presence of intricate 

nonlinearity in the data. 

•Number of Neurons per Layer: The hidden layers 

were defined as 128-64-32 nodes as this helped in 

achieving a hierarchical learning feature. 

•Activation Function: Regularization techniques 

were not used explicitly in the model, while the 

ReLU activation function was used to improve 

training by providing nonlinearity. 

•Learning Rate: The learning rate was set at 0.001 

to allow the learner to converge as well as reach the 

best solution in as short time as possible. 

•Batch Size: In an attempt to maintain stability 

during training and computation, a batch size of 32 

was utilized. 

•Epochs: The DNN was trained for 50 epochs which 

provided good iterations to help the DNN get to 

converge at the best solutions. 

 

 In this way, the initial part of the set of data was used 

for training, and the remaining part was used as the 

set for validation. The latter is important when 

assessing the model; one part is used to train and 

another is used to test something that the model has 

not learned. To ensure high reliability of the model, 

we applied K-fold cross-validation technique with k 

5.  This means the dataset was split into 5 parts. The 

model was trained 5 times, each time using a 

different part for validation and the remaining 4 parts 

for training. The final performance metrics, such as 

Mean Absolute Error (MAE) and Root Mean 

Squared Error (RMSE), were averaged across all 

folds to give a reliable measure of how well the 

model performed [12, 13].  

PSO-based input features for DNN include Solar 

Irradiance, Panel Efficiency, and Energy Output and 

Ambient Temperature. The network trained us to 

estimate PV system performance and output, and 

thus can model photovoltaic systems under a wide 

variety of environmental scenarios. 

 

DNN Algorithm and Equations 

Deep Neural Networks (DNN — as abbreviated) are 

set of functions with the goal of learning mapping 

function from input features to output prediction 

utilizing multiple layers of neurons connected to 

each other. In training, the network is minimizing the 

following objective function: 

 

 Objective Function = 𝐉(𝛉) =
𝟏

𝒏
∑  𝑛

𝑖=1 𝑙(𝑦𝑖 , �̂�𝑖) +

λ ∥ θ ∥2                                                   (1) 
 

Where: 

 𝑙(𝑦𝑖 , �̂�𝑖) is the loss function, typically MSE for 

regression tasks or Log Loss for classification 

tasks, representing the difference between the 

predicted value �̂�𝑖 and the actual value 𝑦𝑖. 

 θ represents the weights and biases in the 

network, and λ ∥ θ ∥2 is the L2 regularization 

term, which helps prevent overfitting by 

penalizing large weights. 

 𝑛 is the points number of the data, and trees 

number is presented by 𝑘. 

The algorithm proceeds as follows: 

The DNN training process follows these steps 

1. Initialize Weights and Biases: The weights 

and biases of the network are initialized 

randomly or using specific initialization 

techniques (e.g., Xavier or He initialization). 

2. Forward Propagation: 

 Input features X are passed through the 

network layer by layer. 

 Each layer computes the output using the 

following equation: 

      

                  𝐳𝒍 = 𝐖𝒍𝐚[𝐥−𝟏] + 𝐛𝒍  (2) 
 

Where 𝐳𝒍 is the linear combination of 

inputs, 𝐖𝒍 are the weights, 𝐚[𝐥−𝟏] are the 

activations from the previous layer, and 𝐛𝒍 

are the biases. 

 The activation function (e.g., ReLU or 

sigmoid) is applied: 

 

𝒂𝒍 = 𝒈(𝒛𝒍) (3) 

 

Where 𝒈 is the activation function, and 

𝒂𝒍 represents the activations for layer 𝒍 

   

3. Compute the Loss: 

The loss function measures how well the 

network's predictions match the actual 

values. 

 The loss function 𝒍 (y, ŷ) Calculates the 

error between the predicted outputs (ŷ) and 

the actual targets (y).. 

 

4. Backward Propagation:  

 

 The gradients of the loss function with 

respect to each weight and bias are 

calculated using the chain rule: 

 
𝛛𝐉

𝛛𝐛𝒍 = 𝛅 𝒍  (4) 

 

Where δ 𝑙 is the error term for layer 𝒍 

 

5. Update Weights and Biases: 
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The weights and biases are updated using an 

optimization algorithm like Stochastic 

Gradient Descent (SGD): 

 

𝑿𝒍 =  𝑿𝒍  −  𝜶 ∗  (
𝝏𝑱  

𝝏𝑿𝒍) (5) 

 

Where X is either weight matrix or bias 

vector for layer 𝒍   

6. Repeat Until Convergence:  

Steps 2 to 5 are repeated for a set number of 

iterations (epochs) or until the loss 

converges to a satisfactory level.  

 

2.4 Optimization Process 

 

This work used the PSO process to find a set of 

features that can optimize DNN model. Particle 

swarm optimization (PSO) is an iterative population-

based stochastic optimization method inspired by the 

collective motion of birds and fishes to discover 

approximate solutions in a complex search space. In 

this study, features were optimized by iteratively 

removing the least informative ones to retain the 

most important for the final model used in inverse 

modeling. This process ensures that unique 

combinations maximize predictive accuracy while 

minimizing computational overload, a well-known 

characteristic of PSO. 

 

Refining Feature Set with PSO 

Hence, at the beginning of the tuning phase, features 

selected by PSO are applied. PSO was then applied 

to fine-tune this feature set to better the model’s 

performance iteratively. In this step, amount of role 

of each feature in performance of model was 

evaluated and then incremented to eliminate features 

with minimum significance level. The threshold was 

judged in accordance with changes in performance 

measure indices on accuracy, precision, and RMSE 

at the subsequent iterations. 

This second iteration highlighted the iterative nature 

of PSO and an opportunity to improve upon the 

feature set. In each iteration, a swarm of particles 

representing possible feature subsets was generated 

and evaluated through the DNN model, followed by 

updating their positions in features space according 

to individual and collective knowledge. So the 

process involved: 

Algorithm: PSO-Based Feature Set Refinement 

1. Initialize with the initial swarm of particles, each 

representing a random subset of features 𝐹0 and 

evaluate the initial DNN model performance𝑃0. 

2. Iteration Loop: For each iteration, from t = 1 to T 

(T represents the max number of iterations): 

 Generate a population of swarm of particles 

{𝐹𝑡,𝑗} based on the previous best solution. 

 Evaluate the performance of each particle  𝐹𝑡,𝑗 

using the DNN model and compute the 

performance metric 𝑃𝑡,𝑗 (example: accuracy, 

RMSE). 

 Select the global best-performing feature 

subset 𝐹𝑡 with the highest performance metric 

𝑃𝑡 = max(𝑃𝑡,𝑗). 

 Apply a threshold 𝛿 to check if the 

performance development is significant 

 If (𝑃𝑡 − 𝑃𝑡−1)
< 𝛿, then close the optimization process. 

  Update feature set  𝐹𝑡 once the performance 

advances considerably. 

3. Retrieve the optimized feature set 𝐹𝑇 and match 

the model - DNN. 

During each iteration, the performance of the Deep 

Neural Network (DNN) model was evaluated using 

the following objective function: 

 Objective Function = ∑  𝑛
𝑖=1 𝑙(𝑦𝑖 , �̂�𝑖; 𝐹𝑡) +

∑  𝑘
𝑗−1 Ω(𝑓𝑡,𝑗) (6) 

Where: 

  𝑙(𝑦𝑖 , �̂�𝑖; 𝐹𝑡) represents the loss function, such 

as the Mean Squared Error (MSE) for 

regression tasks, which quantifies the 

discrepancy between the predicted value  �̂�𝑖 

and the true value 𝑦𝑖, based on the feature set 

𝐹𝑡.  

 The loss function is denoted as 

l(𝑦𝑖 , �̂�𝑖; 𝐹𝑡)corresponding to Mean Squared 

Error for regression problems indicating the 

‘discrepancy between the predicted value y ˆi 

and actual value 𝑦𝑖, with actions available at 

future time t in the feature set F^t. 

 Ω(𝑓𝑡,𝑗) is the regularization term applied to 

the model, designed to mitigate overfitting by 

penalizing overly complex models. 

 The performance metric 𝑃𝑡 is calculated as 

below: 

𝑃𝑡 =  Accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (7) 

For classification tasks, or 

𝑃𝑡 = RMSE = √
1

𝑛
∑  𝑛

𝑖=1   (𝑦𝑖 − �̂�𝑖)2 (8) 
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For regression tasks. 

The threshold δ was determined founded on 

preliminary experimental results. Naturally, a small 

positive value (e.g., δ=0.01) was chosen to make 

sure that significant developments in the 

performance metrics triggered additional 

improvement of the feature set. 

Figure 3 shows the PSO-DNN hybrid model for the 

current iteration process of optimization of the DNN 

model. This diagram demonstrates the cyclical 

nature of the optimization, as the feature set in 

continuously optimized, and the model retrained 

until the optimal set of features is found. This 

iterative approach guarantees that the ultimate DNN 

model is both highly predictive and efficient, using 

the most apt features as shown by the PSO process. 

 

Figure 3. Iterative Optimization Process Using PSO in 

Combination with DNN. 

  

2.5 Evaluation Metrics  

 

Seven ground truth notes are used to determine key 

metrics such as Accuracy, Precision, Recall, and F1-

Score by the root mean square error (RMSE) 

performance of this study [14, 15, 16]. Overall 

accuracy provides a broad indication of the 

performance of your model; however, because often 

you will be working with datasets that are 

imbalanced, Precision and Recall become extremely 

important. Precision is simply how many selected 

instances are positive, while Recall asks how many 

of the actual positive instances are identified. Since 

Precision and Recall are two contradictory 

measurements, F1-Score is recommended in case of 

class imbalance. RMSE gives an idea of how much 

prediction errors are within the limitation, and one 

can focus on decreasing large errors (when they 

exist). A combination of the metrics provides a 

detailed evaluation of capability of the model can 

predict its target outcome, which is essential to 

achieving study objectives in smart sustainable 

architecture. Table 3 includes a description for these 

metrics. 

 

3. Results 

 
3.1 Descriptive Analysis 

 
These critical insights draw from the data which 

drove this study's modelling efforts informed by 

initial exploratory data that were observed. Solar 

Irradiance, Panel Efficiency, Energy Output, 

Ambient Temperature, and System Maintenance 

Costs are some of the factors found in this dataset 

that are critical to assess the performance and 

sustainability of solar energy systems.  Table 4,5 

provide a summary statistics: Solar Irradiance means 

700.5 with some variability (SD 150.2), indicating 

that it is dynamic. Panel Efficiency is stable, with an 

average equal to 0.85 and standard deviation 0.04. 

Energy output is 120.3, but its distribution is 

moderate at 15.8, as it is dependent on irradiance and 

efficiency. The Ambient Temperature has an 

average of 25.5°C, and displays the behaviour we 

expect (5.2 standard deviation), affecting panel 

performance. The System Operating Expense Cost 

also shows plenty of room for variability with an 

average cost of 200 with a standard deviation of 50.0 

hinting towards different operating coftnditions 

across the fleet of vehicles. In conclusion, the results 

of the scenarios provide valuable insights into how 

the solar system behaves under different conditions 

and the impact of infrastructure and technological 

variables on energy systems. These insights are the 

core of the fine-grained modelling and study. 

 

3.2 Feature Selection Results 

 

PSO was integrated and used in the to-be-fed 

variables of DNN model since it played an important 

role in variable screening process. Using the 

optimization of PSO by its swarm nature, the model 

concentrated on the characteristics that have a larger 

impact on prediction accuracy and improved overall 

performance. Based on the feature selection, it was 

concluded that Solar Irradiance, Panel Efficiency, 

Energy Output, Ambient Temperature and System 

Maintenance Costs are the features deciding the 

behavior of model output variable. Solar Irradiance 

was the most important feature with importance 

score 0.40 among them, which confirms that solar 

irradiance is a key factor which drives energy output 

prediction. Next was Panel Efficiency (0.30) — 

panel efficiency is a key performance indicator and 

optimization target in renewable energy engineering, 

thus making it an important factor as well. Energy 

Output, scored with an importance value of 0.20, had 

a modest but necessary contribution to predictive  
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Table 3. Used Metrics Definitions and Formulas 

 

 

Table 4. Summary Statistics and Key Observations from the Dataset 

 

 

 

Count Mean Std Min 25% 50% 75% Max Observations 

Solar 

Irradiance 

100 700.5 150.2 400 600.25 700 800.75 1000 Solar irradiance exhibits 

moderate variability, 

reflecting its dynamic 

nature. 

Panel 

Efficiency 

100 0.85 0.04 0.75 0.83 0.85 0.87 0.90 Panel efficiency is 

consistent with a slight 

variation across samples. 

Energy Output 100 120.3 15.8 90 110.0 120 130.0 150 Energy output varies 

moderately, influenced by 

irradiance and efficiency. 

 

Ambient 

Temperature 

100 25.5 5.2 15 22.0 25 29.0 35 Ambient temperature 

shows expected 

variability, impacting 

panel performance. 

System 

Maintenance 

Costs 

100 200.0 50.0 100 175.0 200 225.0 300 Maintenance costs exhibit 

a wide range, reflecting 

differing system 

conditions. 

 

performance Ambient Temperature (0.07), System 

Maintenance Costs (0.03) were less impactful yet 

still important in considering environmental and 

economic factors affecting influencing system 

reliability and efficiency. Illustrated in Figure 4, 

these results indicate that although other features 

play a supporting and secondary role, Solar 

Irradiance and Panel Efficiency dominate model 

predictions. The relevance of these influential 

variables was efficiently prioritized through the 

application of PSO, producing a simplified and 

effective predictive structure. The implemented 

feature selection technique not only enhanced the 

accuracy of the model, but also simplified its 

computational complexity which makes it 

seamlessly valuable for renewable energy analytics 

and operational purposes. 

 
3.3 Model Performance 

 

Results of pre and post application of particle swarm 

optimization algorithm to performance evaluation of 

DNN model reveals improved performances in 

several performance metrics. Through PSO feature 

selection optimization, the selection process allows 

the model to pay much courtesy to the selected 

relevant features, hence allowing its predictability 

and efficiency during execution. 

 

Metric Definition Formula 

Accuracy The ratio of correctly predicted observations to the total number of 

observations. 
Accuracy 

=
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

Precision The ratio of correctly predicted positive observations to the total 

number of predicted positive observations. 
Precision =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Recall The ratio of correctly predicted positive observations to all 

observations in the actual positive class. 
Recall =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

F1-Score The weighted average of Precision and Recall, providing a balance 

between them. 
F1-Score 

= 2

×
 Precision ×  Recall 

 Precision +  Recall 
 

RMSE (Root Mean 

Square Error) 

The square root of the average of the squared differences between 

predicted values and actual values. 
RMSE 

= √
1

𝑛
∑  

𝑛

𝑖=1

(𝑦𝑖 − �̂�𝑖)
2 
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Figure 4. Plot of feature importance for the features. 

 

The most important aspect of correctness of the 

model, i.e. accuracy, improved considerably from 

0.82 – 0.87. Thereby, proving that the PSO really 

helped the DNN model to predict more accurate 

results.  

Precision, which measures the accuracy of 

predictions which are positive, increased from .78 to 

.83. This improvement implies that the model is 

better at reducing incorrect positives while 

maintaining a high rate of correctly identified true 

positives. 

Recall, the metric measuring capability of the model 

to accurately classify all positive instances increased 

from .76 to .81. This becomes significant where it is 

critical for all positive cases to be found.   

Further, the increase of F1 score from 0.77 to 0.82, 

also implied that after applying PSO optimization  

 
Table 5. Comparison of DNN Model Performance 

Metrics pre and post PSO-Driven Feature Selection 

Metric Pre_PSO Post_PSO 

Accuracy .82 .87 

Precision .78 .83 

Recall .76 .81 

F1 .77 .82 

RMSE 0.27 0.23 

 
Figure 5. A comparison of the performance of the model 

metrics pre and post the application of PSO-based 

feature selection. 

the DNN model has enhanced in Recall as well as 

Precision in equal measure. Root Mean Square Error 

(RSME), which quantifies the model’s error in 

predicting constant outcomes, went down from 0.27 

to 0.23. This reduction indicates that the model was 

accurate at predicting  

endless outcomes, further corroborating the 

effectiveness of the optimization. Table 5 provides 

an overview of the metrics of performance pre and 

post application of PSO-based feature selection, 

emphasizing improvements in Accuracy, Precision, 

Recall, F1-Score, and RMSE. It illustrates beneficial 

impression of PSO on enhancing the predictive 

abilities of DNN model. 

 

3.4 Comparative Analysis 

 

The result of comparing the DNN model before and 

after elimination and using PSO shows a clear 

upgrade in the values of the performance 

dimensions. This illustrates the fact that PSO is 

inclined in setting a balance between the precision 

and complexity of the computation. For instance, 

main metric Model Accuracy was raised from 0.82 

to 0.87 proving the model was adjusted for more 

precise data prediction with help of only the most 

useful set of features. Similarly, Precision increased 

to 0.83 from 0.78 proving that the model was 

improved to accurately predict positive outcomes 

while including fewer numbers of other results. This 

improvement is especially useful in scenarios 

whereby false or incorrect positives attract some cost 

or unfavourable outcome.  

Furthermore, Recall, the metric used to determine 

the model’s capacity to capture all the positives i.e. 

RSME, increased from 0.76 to 0.81. It is crucial in 

situations, where absence of positive instance might 

be disadvantageous; it will make the outcome of the 

model more thorough and accurate. Likewise, 

reflecting a fair and balanced improvement brought 

about by PSO in selecting better features for the 

algorithm, the F1-Score which calculates the mean 

of Precision and Recall gave values from 0.77 to 

0.82. 

In addition, the RMSE improved by 0.04, from 0.27, 

to 0.23 in medical diagnosis. This shows that the 

predicted values by the model have shifted nearer to 

these actual values, thereby decreasing potential 

errors and increasing the performance quality of its 

results. Further, the Area Under the Curve (AUC) 

raised from .74 to .85, improving significantly as 

well. This implies that the proposed PSO optimized 

model performs much better in the ability to classify 

classes of negative and positive more suitably, 

especially when it comes to binary classification. A 

higher value of AUC means that our model makes 

better ranking of the positive instances over negative 
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ones, which again supports the claim of improved 

accuracy of the model. 

The curves for both models presented in Figure 6 

corroborates with the obtained results. As evident 

from the plots the proposed PSO optimized model 

curve is clustered more towards the topmost left part 

of the plots, indicating low false positive rates and 

hence better performance for varying classification 

levels. This therefore provides graphical proof of the 

enhanced discriminatory capacity of the model 

following the reduction of what constitutes the 

features and a clearer observational deduction of the 

transformative value that the PSO brings to bear on 

the overall enhancement of model performance.  

The table 6 shows the usual performance features pre 

and post applying PSO based feature selection,  

 
Table 6. Comparison of primary Performance Metrics 

for Models With and Without PSO-Driven Feature 

Selection 

Metric Pre_PSO Post_PSO 

Accuracy .82 .87 

Precision .78 .83 

Recall .76 .81 

F1-Score .77 .82 

RMSE .27 .23 

AUC .74 .85 

 

 
Figure 6. DNN’s ROC curves pre and post 

which are amongst; Accuracy, Precision, Recall, F1-

Score, RMSE. The computational results can speak 

for themselves that for enhancing the predictability 

of the DNN model there exists positive impact of 

PSO. 

 

4. Discussion 

 
The use of DNNs as machine learning models along 

with optimization features that include PSO reveal 

some enhance prospects in the prognosis of results 

in RE and sustainable architectural design. In the 

subsequent sections, various optimization 

techniques, including PSO, have been illustrated in 

the literature to optimise the performance and 

robustness of machine learning models with respect 

to a large and fluctuating input data set. One of them 

is the potential of PSO to enhance the incoming 

models of renewable system predictive models 

based on stochastic parameters like solar irradiance 

and temperature. This fine-tuning capability is 

crucial for energy output prediction, and this bears a 

serious implication in the development of efficient 

architectural systems.  

Explicit use of PSO in feature selection techniques 

also show that the model performance with several 

indices can be raised. The efficacy of the proposed 

model with the use of PSO in feature selection 

techniques comes out perfectly clear from this 

analysis. For the enhancement and promotion of 

stimulating and effective or enhanced predictions, 

PSO enables the shortening and scope down to the 

best or essential features and consequently increase 

Accuracy/ Precision, Recall/ Sensitivity, and F- 

measure / F1-Score. In terms of error rate and the 

efficiency of the classifier in giving the right 

classification (classification metrics), it has been 

discovered by various researchers that PSO is one 

improvement over the other optimization 

algorithms. For example, it has been used for energy 

usage forecasting in smart structures using PFSM for 

the simultaneous optimization of the features subset 

and the parameters of the model for higher efficiency 

of predictions and resources in these structures.  

Moreover, the flexibility of PSO has been 

established in disparate domains inclusive of; solar 

energy forecast and predictive maintenance of 

renewable power systems. Some of the real-time and 

dynamic modes are PSO-based dynamic 

optimization approaches incorporating an 

optimization of external and variable parameters to 

prevent premature convergence of the PSO and to 

enhance the degree of approximation of neural 

network models utilized in wind energy forecasts 

[17]. Similarly to forecast solar energy PSO has been 

used to apply support vector regression models to 

enhance the accurate prediction of the energy output 

with less error. Additionally, works that employed 

both PSO and ensemble methods, like Random 

Forest, stress the ability of the former to build strong 

predictions in noisy and large feature space 

environments.  

The evolution of Feature signification, Performance, 

and ROC curve is depicted in the response plots from 

Figure 5 and 6 respectively showing a progresses of 

PSO based Feature Selection in Renewable Energy 

& Sustainable Architectural Systems. But this work 

has some limitations; for instance, a small sample 
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size as well as the concern of selected features 

including the solar irradiance and panel efficiency 

may limit the generality of the findings. The results 

support the hypothesis that simple PSO if applied to 

a small data set of features can return good results 

and encourage the future research to apply PSO to a 

larager and more representative data set and 

investigate the performance of features optimization 

within a broader range of contemporary architectural 

and energy designs. 

 

5. Conclusion 
 

Performance improvements have been evident 

across all evaluated measures where Particle Swarm 

Optimization (PSO) was applied to yield 

significantly enhanced predictions. Accuracy of the 

model was enhanced from 0.82 to 0.87, for Precision 

from 0.78 to 0.83, and for Recall from 0.76 to 0.81. 

They suggest that the model is now better at 

identifying true positive instances while minimizing 

the confusion with other instances – false positives. 

Precision, which is also inversely related to Recall, 

was augmented from 0.77 to 0.82 according to the 

F1-Score that combines both measures and proved 

the improvement of the classifier’s performance. 

Also, the Root Mean Square Error (RMSE) has been 

reduced to 0.23 from 0.27 on continuous outcomes 

revealing reduced MSE of prediction. The 

performance of the Area Under the Curve (AUC) 

improved from 0.74 up to 0.85, which means 

improved ability to classify positive and negative 

classes of the model. The results obtained in this 

study therefore support the applicability of PSO 

methodology in enhancing the accuracy and 

robustness of feature selection. Thus, such dynamics 

of the feature set allows one to construct more 

accurate, computationally efficient, and reliable 

predictive models by PN methods implemented in 

the PSO framework. These improvements are 

especially significant for applications in renewable 

energy systems and Sustainable Architecture where 

reliable prediction is crucial. This allows 

highlighting the applicability of PSO for a broad 

range of disciplines including health care, financial, 

and environmental sciences where predictive 

accuracy, and features extraction are critical. 

However, the survey also narrows that PSO can be 

combined with other optimization approaches, or 

other models would be more robust; for that reason, 

it is an effective approach when dealing with more 

dimensions of data. The results reported in this paper 

may encourage extended investigations of variable-

oriented approaches and learning schemes that are 

innovative and more adaptive in large-scale 

applications. Particle Swarm Optimization (PSO) is 

interesting and thus studied in literature [18-26]. 
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