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Abstract:  
 

Electronic components of different sizes and types can be used in microelectronics, 

nanoelectronics, medical electronics, and optoelectronics. For this reason, accurate 

detection of all electronic components such as transistors, capacitors, resistors, light-

emitting diodes and electronic chips is of great importance. For this purpose, in this study, 

an open source dataset was used for the detection of five different types of electronic 

components. In order to increase the amount of the dataset, firstly, data augmentation 

processes were performed by rotating the electronic component images at certain angles 

in the right and left directions. After these processes, multi-class classifications were 

performed using five different deep learning based neural network models, namely 

Vision Transformer, MobileNetV2, EfficientNet, Swin Transformer and Data-efficient 

Image Transformer. As a result of the electronic component detection processes 

performed with these various deep learning based models, all necessary evaluation 

metrics such as precision, recall, f1-score and accuracy were obtained for each model, 

and the highest accuracy value result was obtained as 0.992 in the Data-efficient Image 

Transformer model. 

 

1. Introduction 
 

Different electronic components of various types 

and sizes can be used in fields such as 

microelectronics, medical electronics, 

nanoelectronics and optoelectronics in relation to the 

field of electronics, which has a great importance in 

Electrical and Electronics Engineering, one of the 

engineering branches. One of the most important of 

these components is transistors. Examining at the 

development of transistor technology, vacuum tube 

diodes and vacuum tube triodes were developed in 

the early 1900s, while field-effect transistors (FETs) 

and bipolar transistors were developed in the 1920s 

and 1940s, respectively.  

When the development of FET transistors is 

examined until today, it is observed that there are 

developments such as Metal-oxide FET, 

Complementary Metal Oxide Semiconductor 

(CMOS), Moore's law, Silicon on insulator (SOI), 

Strained silicon, High-k and Metal Gate Transistor 

(HKMG), FinFET, Stacked nanowire and Stacked 

nanosheet. Examining at the development of bipolar 

transistors until today; Germanium point-contact 

transistor, Bipolar junction transistor, 

Heterojunction bipolar transistor, Theory of the 

heterojunction bipolar transistor, Germanium 

integrated circuit, Silicon integrated circuit and SiGe 

heterojunction bipolar transistor developments have 

been realised respectively. Comparing the 

development of bipolar transistors and FET 

transistors, the latest and most important 

developments were achieved in 1987 with SiGe 

heterojunction bipolar transistors for bipolar 

transistors and with Stacked nanowire and Stacked 

nanosheet based transistors for FET transistors, 

which are still being developed today [1]. 

When the microelectronics field, which includes 

various electronic components, is examined, there 

are often devices containing components such as 

Metal-semiconductor field effect transistor 

(MESFET), Metal-oxide-semiconductor (MOS) 

capacitors and MOS field effect transistor 

(MOSFET). Devices related to optoelectronics 

include photodiodes, solar cells, light-emitting 

diodes (LEDs), laser diodes and heterojunction 

bipolar transistors [2]. 
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Examining medical electronics, another field that 

involves electronic components, it is observed that a 

wide variety of devices are used. When the 

development of most devices associated with 

medical electronics is examined until today; 

Artificial kidney, X-ray, Electrocardiogram and 

Defibrillator in 1950s, Ultrasound, Glucometer, 

Flow cytometry and cell sorting in 1960s, Computer 

assisted tomography (CT), Endoscopy, Artificial hip 

and knee in 1970s, Magnetic resonance imaging 

(MRI), pulse oximeter and laser surgery in the 

1980s, and positron emission tomography (PET), 

image-guided surgery, genomic sequencing and 

micro array developments have emerged since the 

1990s [3].  

When the electronic components and devices used in 

the field of nanoelectronics are examined, it is 

observed that Nanowire materials, 

Nanoelectromechanical systems (NEMS), Nanowire 

NEMS, Nanowire Electromechanical Resonators, 

Carbon nanotube (CNT) and CNT Y-Junctions [4]. 

In addition, there are materials and devices related to 

both electronics and optoelectronics using 

nanotechnology. When examining electronic 

devices that utilize nanotechnology, the following 

are included: Modulation-doped field effect 

transistor (MODFET), Resonant tunnel effect, Hot 

electron transistors (HETs), Resonant tunnelling 

transistors (RTT) and single electron transistor 

(SET).  

Optoelectronic devices using nanotechnology are 

Vertical cavity surface emitting lasers (VCSELs), 

Strained quantum well lasers, Quantum dot lasers, 

Quantum well and superlattice photodetectors, 

Quantum well modulators, Heterostructure 

semiconductor lasers and Quantum well 

semiconductor lasers [5].  

Within the scope of the study, detection processes 

were carried out with deep learning models using an 

open source dataset containing various electronic 

components. In this context, the main contributions 

and originalities of the literature are listed below: 

 The dataset was not used in its raw form; instead, 

various data augmentation operations were 

performed on it. 

 Multiple deep learning models were employed 

for electronic component detection, and the best 

classification model was identified. 

 The number of classes used in electronic 

component detection was selected more than two 

and multi-class classification processes were 

performed. 

 All important evalution metrics such as accuracy, 

recall, precision and f1-score, which are 

necessary for the correct analysis of the results, 

were obtained and the contribution to the 

detection results was clearly demonstrated. 

2. Related Works 
 

There are many studies in the literature where 

electronic components are detected with many 

different artificial intelligence approaches, 

especially deep learning. Using the dataset 

consisting of capacitors, potentiometers, and 

regulators, thanks to the Niryo Ned robotic arm and 

camera used in the study by Chand and Lal; Shallow 

Neural Network (SNN), Support Vector Machine 

(SVM), Principal Component Analysis (PCA) and 

the proposed Convolutional Neural Network (CNN) 

were used to perform classification operations, and 

the highest accuracy value was found to be 98.4% in 

the proposed CNN [6]. Soylu and Kaya used the 

deep learning-based MobileNet, Vision Transformer 

(ViT), Inception and EfficientNet models to classify 

electronic components, and the highest accuracy 

value of 96.21% was obtained in the ViT model [7]. 

As a result of the electronic component classification 

operations performed by Atik using an open source 

and three-class dataset containing capacitors, diodes, 

and resistors with four different deep learning-based 

models, namely GoogleNet, AlexNet, ShuffleNet, 

SqueezeNet, and the proposed CNN model, the 

highest accuracy value of 98.99% was found in the 

proposed CNN [8]. 

Varna and Abromavicius used various versions of 

convolutional neural networks based You Only 

Look Once (YOLO) model and SSD (Single Shot 

MultiBox Detector)-MobileNet models to classify 

and detect electronic components consisting of 

capacitors, resistors, diodes, and transistors, and the 

highest Average Precision (AP) value of 94.08% 

was obtained in YOLOv4 [9]. Cheng et al. used a 

Siamese Network model proposed as visual 

geometry group 16 (VGG-16) in the feature 

extraction part for the classification of seventeen 

different electronic components and by comparing 

the results with ResNet, GoogleNet, AlexNet, the 

highest area under the ROC (Receiver-operating 

characteristic) curve (AUC) score of 0.996 was 

found with the proposed model [10]. Zhou and 

Zhang proposed a 13-layer convolution neural 

networks model for electronic component detection 

and compared the results with deep learning based 

Xception and VGG models [11]. The highest Mean 

Average Precision (mAP) value obtained by Huang 

et al. using a deep learning model based on YOLOv3 

is 95.21% using a dataset consisting of four different 

electronic components consisting of three capacitors 

with different values and one inductor [12]. 

Li et al. used YOLOv3 deep learning model to detect 

electronic components on Printed circuit board 

(PCB) and the results were compared with SSD and 

Faster Region Based Convolutional Networks 

(Faster R-CNN) and the highest detection result was 



Fatih UYSAL / IJCESEN 11-1(2025)542-549 

 

544 

 

found as 93.07% mAP in YOLOv3 based model 

[13]. By Chand and Assaf, the highest accuracy 

value was obtained as 99.62% with CNN as a result 

of classifications with VGG, ResNet, GoogleNet, 

EfficientNet, MobileNet and the proposed CNN 

model by passing the data containing electronic 

components through various preprocessing steps 

[14]. Guo et al. used a proposed deep learning model 

based on YOLOv4-tiny and SSD, RefineNet, Faster 

R-CNN, YOLOv4, EfficientDet models to detect 20 

different types of electronic components in real-time 

and the highest mAP value was found to be 98.6% 

in the proposed model [15]. The highest AP value 

obtained using the YOLOv5 based deep learning 

model proposed by Chen et al. to detect 10 different 

types of electronic components on PCB is 38.3% 

[16]. Glucina et al. obtained the highest mAP of 

99.5% as a result of the detection processes 

performed with YOLOv5-based deep learning 

models using an open-source shared PCB dataset 

with 13 classes containing various electronic 

components [17]. 

Using two different PCB datasets, the highest AP 

value found by Sharma and Kumar with the 

YOLOv3 model for the detection of electronic 

components is 79.1% [18]. Osmani et al. proposed a 

transfer learning model called VoltaVision, which 

aims to classify electronic components and 

compared with VGG, ResNet models and the highest 

accuracy value of 95.2% was obtained in the 

proposed model [19]. The highest mAP value found 

by detecting electronic components with the 

YOLOv7 deep learning model developed by Luo et 

al. using open source PCB dataset is 94.4% [20]. As 

a result of the classification processes performed 

with VGG, Xception, Inception, ResNet and Custom 

model using the dataset with 10 different electronic 

component classes obtained by Hożyń, the highest 

accuracy was obtained as 99.03% with the ResNet-

based model [21]. In defect detection operations 

performed with the deep learning based model 

proposed by Weiss et al. using a dataset consisting 

of three different electronic components, namely 

capacitor, resistor and small outline transistor 

(SOT), over 90% accuracy value was obtained in 

each class [22]. The highest mAP value obtained by 

Yining and Honglei using a dataset consisting of 

four different electronic component classes, namely 

chip, electronic board, electrical connection piece, 

electronic slice, with YOLOv5 based deep learning 

model was 96.7% [23]. 

The highest accuracy values obtained by Surmeli 

and Ekenel with a ViT-based deep learning model 

called ViT-Mini for binary classification and 

multiclass classification with six classes in the 

dataset containing electronic components on PCBs 

are 99.46% and 96.52% for binary and multiclass 

classifications, respectively [24]. Lu et al. found a 

mAP value of 98% with the YOLOv3 deep learning 

model using a dataset consisting of six different 

classes of electronic components used in PCBs: film 

capacitor, inductor, aluminium electric capacitor 

(AEC), microchips, resistor and transistor [25]. Liu 

et al. used YOLOv8n based focusing dynamic 

channel-YOLO (FDC-YOLO) model for waste 

detection in a dataset consisting of electronic 

components and obtained a mAP value of 93.8% 

[26]. The highest mAP value obtained by Mohsin et 

al. for the detection of electronic components on 

waste PCBs using YOLOv8, YOLOv9 and Real-

Time Detection Transformer (RT-DETR) deep-

based models is 99% [27]. With the EfficientNetv2-

L-YOLOv4 deep learning model proposed by Chi et 

al. for the detection of integrated circuits (ICs) on 

PCBs, a mAP value of 98.23% was obtained [28]. 

In the literature, it is observed that deep learning 

based VGG, MobileNet, DenseNet, YOLO and ViTs 

are mostly used for the detection of electronic 

components. In this study, unlike the majority of the 

literature, multiclass classification studies were 

carried out for electronic component detection with 

five different deep learning models by using data 

augmentation on open source dataset. 

 

3. Materials and Methods 
 

Within the scope of the study, a dataset shared as 

open source from the Kaggle platform and 

containing electronic components with 5 different 

types of classes was used as a dataset [29]. The 

classes in this dataset containing electronic 

components are Capacitors, Chips, LEDs, Resistors 

and Transistors. The initial values of the amount of 

the dataset are 100 for each class and 500 in total. 

For the training of deep learning models, the dataset 

was augmented by rotating the electronic component 

images for each class to the right and left at certain 

angles. After these data augmentation steps, the 

amount of the dataset was increased by 300 for each 

class, totalling 1500 in total. Thus, the amount of 

dataset was tripled compared to its initial state. For 

the deep learning models used in the study, the 

dataset was divided into 75% training and 25% 

validation. Thus, a total of 1125 electronic 

components, 225 in the training phase and 375 

electronic components, 75 in the validation phase, 

were used in each class. These quantities for the 

initial and final versions of the dataset quantities are 

shown in figure 1. When figure 1 is analysed, it can 

be seen that the initial amount of data for each 

electronic component class, which was equal to 500 

in total, was increased by 1000 images in total by 

performing data augmentation operations twice as 

much as the initial amount for each class and as a 
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Figure 1. Electronic components dataset amount 

distribution after initial and data augmentation 

 

 

 
 

Figure 2. Training and validation distribution in 

electronic components dataset 

 

result, 1500 electronic component data sets were 

obtained. The distribution of the training and 

validation parts of the dataset is given in figure 2. 

When figure 2 is examined in detail; it is observed 

that the total amount of electronic components 

corresponding to 25% validation distribution 

percentage in each class is 375 and the total amount 

of electronic components corresponding to 75% 

training distribution is 1125. Figure 3 shows sample 

electronic component images for each class. When 

figure 3 is analysed, it is observed that for each class 

of the dataset used for electronic components, there 

are images of different sizes, different shapes and 

different directions. Within the scope of the study, 5 

different deep learning models, namely Vision 

Transformer (ViT), MobileNetV2, EfficientNet, 

Swin Transformer and Data-efficient Image 

Transformer (DeiT), were used to detect electronic 

components belonging to different classes. The 

related flowchart is given in figure 4. 
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(b) Chips 

 

     
(c) LEDs 
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Figure 3. Samples of electronic components classes 

 

 

 
 

Figure 4. Electronic components detection flowchart 
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When figure 4 is analysed, it is seen that the open 

source electronic components dataset used in the 

study is not used in its raw form, but firstly it is 

subjected to data augmentation steps. After this step, 

multi-class classification processes were performed 

for the detection of electronic components with 3 

different deep learning models based on 

Transformer and MobileNetV2 and EfficientNet 

deep learning models. For the deep learning models, 

the versions shared by Google, Facebook and 

Microsoft were used in the Image Classification task 

in the Models section of the Hugging Face platform 

[30]. The details of these models used are mentioned 

in detail in the subsections below. 

 

3.1 Vision Transformer (ViT) 

 

ViT deep learning model, which is frequently used 

in image classification problems, consists of Linear 

Projection of Flattened Patches, Transformer 

Encoder and MLP Head. There are three versions, 

‘base, large, huge’, which differ depending on the 

number of layers and heads [31]. In this study, the 

ViT-base model, which has 12 layers and 12 heads 

and shared by Google on the Hugging Face platform, 

was used to detect electronic components. 

 

3.2 MobileNetV2 

 

MobileNetV2 deep learning model can be used in 

image classification, object detection and semantic 

segmentation problems. In this model, which 

includes Inverted residual blocks, there are also 

depthwise convolution layer and pointwise 

convolution layer [32]. The deep learning model 

used for this study in the detection of electronic 

components is the MobileNetV2 model shared by 

Google from the Hugging Face platform, as in the 

ViT model. 

 

3.3 EfficientNet 

 

In EfficientNet deep learning model, resolution, 

depth and width dimensions are scaled equally by 

using effective compound coefficient. This model, 

which uses compound scaling method, includes 

mobile inverted bottleneck MBConv [33]. This 

EfficientNet model, which is used for the electronic 

component detection process performed within the 

scope of this study, is the type of model shared 

through Google's Hugging Face platform. 

 

3.4 Swin Transformer 

 

Swin Transformer deep learning model is a model in 

which Shifted Windows is used unlike ViT model 

and can be used in image classification, semantic 

segmentation and object detection problems. The 

model basically includes Linear Embedding and 

Swin Transformer Block [34]. This type of deep 

learning model used in this study for the detection of 

electronic components is the Swin Transformer 

model shared by Microsoft from the Hugging Face 

platform. 

 

3.5 Data-efficient Image Transformer (DeiT) 

 

Data-efficient Image Transformer (DeiT) deep 

learning model is a model that can be used in image 

classification problems and can include Soft 

distillation, Hard-label distillation and Distillation 

token parts [35]. The model used for the electronic 

component detection process in this study is the 

DeiT model shared from Facebook's Hugging Face 

platform. 

 

4. Results 
 

Within the scope of the study, all necessary 

evaluation metrics including precision, recall, f1 

score, accuracy and loss were obtained by using 5 

different deep learning based models and multiclass 

classification processes in order to detect electronic 

components with 5 different classes. Precision (P.) 

value is equal to the ratio of true-positive (TP) value 

to the sum of itself and false-positive (FP) value and 

is given in equation 1. The Recall (R.) value is equal 

to the ratio of the sum of the TP value and the false-

negative (FN) value and is given in equation 2. The 

calculation of the F1 score is equal to the ratio of 

twice the TP value and the sum of this value and the 

sum of the FP and FN values, and is given in 

equation 3. The Accuracy (Acc.) value is equal to the 

ratio of the sum of the true-negative (TN) value and 

the TP value to the sum of the TP, TN, FP and FN 

values and is given in equation 4. 

 
                                    P = TP / (TP + FP)                         (1) 
 
                                  R = TP / (TP + FN)                          (2) 
 
                             F1 = 2TP / (2TP + FP + FN)             (3) 
 
                Acc = (TP + TN) / (TP + TN + FP + FN)   (4) 
 

As a result of the multiclass classification processes 

performed for the detection of electronic 

components, the results obtained using 5 different 

deep learning models, 3 of which are based on 

Transformer, are given in detail in table 1. 

According to table 1, it is observed that the results of 

ViT and Swin Transformer deep learning models, 

 



Fatih UYSAL / IJCESEN 11-1(2025)542-549 

 

547 

 

Table 1. Electronic components detection results 
Models P. R. F1 Acc. Loss 

ViT 

 

0.987 0.986 0.986 0.986 0.067 

Mobile 

NetV2 

0.757 0.744 0.735 0.744 0.806 

Efficient

Net 

0.597 0.6 0.595 0.6 1.374 

Swin T. 

 

0.987 0.986 0.986 0.986 0.077 

DeiT 

 

0.992 0.992 0.991 0.992 0.040 

 

which have a similar structure among Transformer 

models, are very close and approximately the same 

except for the loss results. In addition, when the loss 

values are analysed, it is understood that the lowest 

loss belongs to the DeiT model. Figure 5 shows a 

graphical comparison of the results of the precision, 

recall, f1 score and accuracy values of the deep 

learning models used in the study. 

 

 
 

Figure 5. Results of precision, recall, f1 score and 

accuracy 

 

When figure 5 is analysed in detail, it is observed 

that the highest precision, recall, f1 score and 

accuracy values are obtained in the DeiT model. 

Analyzing the results for electronic component 

detection, it is evident that the accuracy value 

obtained with the DeiT model, which yields the best 

classification result, is 0.992. 

 

5. Conclusions and Future Works 
 

Within the scope of the study, data augmentation 

steps were first performed on a 5-class and open-

source dataset for the detection of electronic 

components. After these steps, 5 different deep 

learning-based models were used for multiclass 

classification operations. Upon examining the deep 

learning models for which accuracy values were 

obtained within the scope of this study, in which all 

necessary evaluation metrics were considered, it was 

observed that the models EfficientNet, 

MobileNetV2, Swin Transformer, ViT, and DeiT 

ranked from lowest to highest, respectively. A 

similar ranking is also available for precision, recall 

and f1 score values. As a result, considering all 

metrics, it is evident that the most suitable model for 

electronic component detection within the scope of 

this study is the DeiT model, a deep learning-based 

Transformer architecture. In addition to these 5 

different classes of electronic components in future 

studies, other electronic components can also be 

added to the dataset. In addition to deep learning 

models for the detection of electronic components, 

classification studies can be carried out with 

machine learning models in future studies. 

Additionally, future research on electronic 

components can focus on various tasks such as 

classification, object detection, anomaly detection, 

and segmentation of printed circuit boards using AI. 
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