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Abstract:  
 

The fast growth of IO networks has resulted in a security crisis besides the development 

of decentralized-based innovations, and such decentralized bases or technologies also 

made challenges in terms of speed, performance, and scalability. Traditional machine 

learning-based intrusion detection systems (IDS) are unable to manage the intricate and 

non-linear correlations seen in massive amounts of IoT data. They produce relatively low 

detection rates, especially in multi-class classification, where many attack types must be 

addressed. Overcoming these hurdles calls for frameworks: innovative enough to 

accommodate the challenge whilst using the wealth of data produced by IoT devices. 

Abstract In this paper, we introduce a unique MLP-based deep learning architecture for 

intrusion detection in IoT settings. This framework includes a preprocessing pipeline that 

optimally normalizes and applies one-hot-encoding to the data to prepare it optimally for 

classification. We tested the algorithms on the UNSW-NB15 dataset, commonly used for 

IDS. Mere quantitative results show that MLP surpasses classical models like Logistic 

Regression, SVM, and Random Forests,  giving a precision of 97.53%, recall of 97.23%, 

and accuracy of 97.73% on the multi-class classification task. This framework is 

undoubtedly scalable and provides a sufficient security mechanism for the whole IoT 

ecosystem; hence, it can be used in various actual use cases. This performance shows that 

it could solve the new threats developing in IoT environments. 

 

1. Introduction 
 

The explosive expansion of IoT devices has 

transformed sectors with the capability to gather data 

in real-time and facilitate automation connect 

consistently. But this growth also finally brings 

significant issues, especially around data security, 

processing speed, and scalability. Due to its inherent 

nature of producing millions of new types of data 

with a high complexity structure,  IoT networks will 

have to encounter a higher degree of human skills 

needed to set high cyber threats like intrusion, attack, 

data losses, and data breaches. However, 

conventional Intrusion Detection Systems (IDS) 

have several drawbacks, including poor scalability, 

dependence on traditional machine learning models, 

and challenges in multi-class classification, which 

limit their capability to address these issues. The 

corresponding literature emphasizes that IoT 

ecosystems desperately require more sophisticated 

methods to protect their domains. Ahmed et al. As 

[1] noted, although the combination of IoT and big 

data has great potential, it is also a double-edged 

sword plagued by data inefficiency and security 

issues. Kumar et al. 2] studied technical 

transformations (IoT + big data) but called for 

reliable frameworks for risk management. Similarly, 

Tanwar et al. However, secure data analytics 

architectures based on ML and DL have been 

proposed in [2-11]. However, the accuracy and 
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scalability of such mechanisms in a dynamic IoT 

environment are still not adequately addressed. Such 

results highlight the need for new approaches to 

counter the growing requirements for IoT security. 

To overcome these difficulties, this study intends to 

provide a DL-based intrusion detection framework 

based on Multi-Layer Perceptron (MLP) for IoT 

networks. The main focus is creating a highly 

scalable, efficient, and accurate method that can deal 

with various attack scenarios in the IoT scenario. 

The novelties of the research comprise an optimized 

preprocessing pipeline, reliable feature engineering 

techniques, and the MLP incorporation to improve 

the classification performance. The proposed 

framework outperforms the conventional 

approaches in capturing intricate and non-linear data 

interactions. 

Contributions to Research are Substantial We 

provide a detailed comparison of classical and 

contemporary ML models, like Logistic Regression 

SVM and Random Forests, to establish 

benchmarking capabilities. Second, the study 

presents a comprehensive preprocessing pipeline 

that entails normalization and one-hot encoding to 

harmonize the compatibility with the MLP structure. 

Third, the UNSW-NB15 dataset, widely used for 

intrusion detection, is used to confirm the 

practicability of the framework. 

The structure of the paper is as follows: A thorough 

literature review is included in Section II for IoT 

security techniques, and it highlights the gaps and 

opportunities in existing IoT security solutions. In 

Section 3, we present the suggested method, which 

is based on MLP, about evaluation metrics, model 

creation, and data processing. Section 4 presents the 

experimental results in detail and compares the 

performance of the suggested framework with the 

most advanced models. The discussion and the 

limitations of the study are presented in Section 5. 

Results are discussed about the importance of the 

findings, and possible limitations of the study are 

pointed out. Lastly, Section 6 ends the paper with 

future research directions (i.e., scalability, 

adaptability, and real-time deployment in IoT 

systems). 

 

Related Work 

 

The literature explores the integration of IoT, AI, 

and big data analytics, addressing security, 

efficiency, and emerging challenges in IoT 

applications. Ahmed et al. [1], the surge in IoT 

devices aligns with significant data growth, posing 

difficulties in data efficiency, processing, analytics, 

and security. Opportunities emerge from their 

convergence, which is explored in this paper. Kumar 

et al. [2] explored IoT and big data's transformative 

impact on biomedical and healthcare technologies, 

focusing on advanced medical imaging and 

telemedicine applications. Adi et al. [3] addressed 

challenges in IoT applications, focusing on data 

processing limitations and proposing an adaptive 

learning framework. Tien et al. [4] use the concept 

of service goods to combine physical goods with a 

service layer, enhanced by IoT, RTDM, and AI 

technologies' integration. Yaqoob et al. [5] Industrial 

IoT (IIoT) generates big data, but processing faces 

challenges due to IoT resource constraints. This 

study explores BDA's role in intelligent IIoT 

systems, presenting frameworks, case studies, 

opportunities, and challenges. Ghosh et al. [7] IoT 

Evolution, AI Impact, Future Prospects, Ethical 

Concerns, Human Control, Smart Revolution, 

Technological Advancements, and Work Changes. 

Driss et al. [8] Surveyed IoT and DL for smart cities. 

Integrating IoT in urban life enhances services like 

healthcare and surveillance. Challenges discussed. 

Sarker et al. [9] AI rapidly advances in mobile data 

science, enhancing app intelligence. The paper 

surveys AI techniques and models for diverse 

applications. Gupta et al. [10] AI and BDA enhance 

supply chain resilience. A systematic review reveals 

their application, the improvements in phases, and 

the benefits. Challenges highlighted. Tanwar et al. 

[11] explored ML and DL for secure data analytics, 

proposing an architecture and taxonomy, addressing 

challenges, and comparing existing proposals. Iqbal 

et al. [12] emphasized Big Data's role in innovative 

city development, discussing its economic impact, 

challenges, and applications with Computational 

Intelligence. Rahman et al. [13] Global population 

growth demands a shift to smart agriculture. IoT and 

data analytics address challenges, enhance 

efficiency, and boost productivity. Paun et al. [14] 

AI and ML reshape education, enhancing 

personalized learning. A study explores students' 

knowledge, attitudes, and challenges in adopting AI 

in HEIs. Fortino et al. [15] Edge computing 

enhances IoT networks, offering low latency, 

privacy, and efficient AI applications. The review 

explores AI-edge convergence, applications, 

challenges, and future directions. 

Alazab et al. [16], the smart city employs ICT for 

sustainable development, emphasizing privacy and 

security. Holistic Big Data Integrated AI Modelling 

addresses these concerns, improving data 

management in innovative city applications. Lu et al. 

[17] explored IoT-enabled edge computing, focusing 

on security considerations, challenges, and 

opportunities. Case studies on smart parking and 

CDN are reviewed. Sahoo et al. [18] reviewed big 

data's applicability in manufacturing, exploring 

trends and suggesting future research areas. The 

analysis includes contributors, institutions, and 
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conceptual evolution. Gill et al. [19] delved into 

cloud computing's role, emphasizing emerging 

paradigms like Blockchain, IoT, and AI and 

assessing their influence and challenges. Janssen et 

al. [20] explored why AIoT initiatives in smart cities 

fail to scale, emphasizing strategic, data, and 

organizational factors. Rejeb et al. [21] reviewed IoT 

applications in healthcare, emphasizing key topics 

like AI, blockchain, and 5G. It outlines future 

research areas and potential challenges for IoT-

based healthcare implementation. Bhatia et al. [22] 

addressed challenges in accessing large IoT data, 

providing solutions for heterogeneity, security, and 

real-time processing. Experimental analysis favors 

fog over cloud. Future trends emphasize security in 

fog data analytics. Supriya et al. [23] AI and machine 

learning enhance diagnostics, treatment, and 

outbreak predictions in healthcare. Big data analysis 

and wearable devices aid disease prevention. 

Challenges and equity concerns persist. Dutta et al. 

[24] Data analytics is crucial across fields, especially 

in healthcare. Big data and IoT integration enhance 

real-time medical monitoring. Hong et al. [25] 

Blockchain technology emphasizes data security yet 

faces challenges. Integrating machine learning 

enhances resilience against attacks in various 

applications, showing promising advancements. 

Sharma et al. [26] conducted a bibliometric study on 

big data analytics and machine learning, identifying 

dominant clusters and emerging research areas. 

Anderl et al. [27] explored the impact of AI-based 

cyber-attacks on Industry 4.0, emphasizing evolving 

threats and strategies, and urging ongoing research 

for defense development. Wamba et al. [28] 

explored the impact of digital technologies, online 

consumer reviews, and big data analytics on 

consumer goods companies. Wamba et al. [29] 

introduced a framework for understanding the 

adoption and impact of the Internet of Things (IoT) 

at various levels. Shah et al. [30] emphasized the 

potential of Big Data Analytics (BDA) and the 

Internet of Things (IoT) in disaster management. 

Dixit et al. [31], integrating IoT, big data, and AI 

revolutionizes agri-food systems, enhancing 

efficiency, traceability, and quality. Embracing these 

innovations is crucial for modern agriculture's 

success. Bag, Surajit et al (2020) studied a work 

entitled role of institutional pressures and resources 

in the adoption of big data analytics powered 

artificial intelligence, sustainable manufacturing 

practices and circular economy capabilities [32]. 

Zaidan et al. [33] surveyed intelligent processes for 

IoT-based smart homes, classifying articles into 

knowledge engineering, detection, analytical, and 

control processes. Identified issues inform future 

research recommendations. Raza et al. [34] highlight 

the challenges and opportunities of fog computing in 

handling massive IoT data analytics. It explores 

applications and potential research directions. Yoon 

et al. [35] reviewed the security challenges of 

deploying blockchain in smart cities and explored 

the convergence of blockchain and AI technologies. 

Singh et al. [36] addressed the need for efficient big 

data forensics in IoT environments using Google's 

Map Reduce framework and machine learning 

models. Winter et al. [37] the Internet is expanding 

beyond devices, connecting everyday objects. 

Technical advancements promise benefits, but 

concerns about surveillance and privacy persist. 

Varela et al. [38], Advanced in artificial intelligence 

and data science, spanning theoretical models to 

diverse applications, are transforming society, 

economy, and healthcare. Sahu et al. [39] explored 

innovative technologies, like AI, Blockchain, and 

IoT, for pan-Canadian health and environment 

surveillance, addressing challenges and proposing 

an architecture. Vankatesan et al. [40] enhanced 

banking infrastructure, enabling real-time data for 

customer interactions, analytics, and decision-

making, addressing growing demands and 

expectations in digital banking. Bantahar et al. [41] 

explored the impact of BDA-AI technologies on 

environmental performance in the supply chain, 

emphasizing green digital learning's moderating 

role. Sarker et al. [42] provided an extensive 

overview of AI-based modeling, exploring various 

techniques and applications in diverse fields. Saeed 

et al. [43] discussed the growing demand for 6G 

wireless communication systems to address 

limitations in 5G networks, emphasizing key 

technologies and research directions. Yi et al. [44] 

AI emerges as a pivotal force in finance, 

transforming risk control, marketing, and operations. 

The paper highlights global AI applications, risks, 

and ethical considerations in the financial sector. 

Paul et al. [45] The Internet of Things generates vast 

data analyzed through complex networks, forming 

human dynamics. Smart Buddy integrates IoT, 

social networks, and big data for real-time behavior 

analysis in smart cities. Fuller et al. [46] AI enhances 

innovation by providing data-driven insights, 

models, and visualizations, supporting innovation 

managers in various aspects, as detailed in four case 

studies. Sheta et al. [47], the Internet of Things (IoT), 

with billions of connected devices, generates vast 

amounts of data. Machine learning in smart cities is 

explored, emphasizing algorithm taxonomy and 

application specifics. Sofi et al. [48] Modern 

agriculture, driven by precise data and IoT 

technologies, leverages machine learning for 

increased production quality and quantity. [49] 

Reviewed diverse aspects of network big data, 

including data types, storage, privacy, security, and 

applications, highlighting challenges and predicting 
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future trends. Datta et al. [50] explored big data 

analytics' potential in energy industry process safety 

and risk management, offering insights for informed 

decision-making and safer operations. The review 

highlights challenges in existing IoT systems, such 

as data inefficiency, scalability, and evolving threats. 

This research proposes a robust MLP-based 

framework to address these issues, leveraging 

advanced preprocessing, feature engineering, and 

model training techniques to enhance intrusion 

detection and security in IoT environments. 

 

2. Material and Methods 

 
2.1 Proposed Framework 

 

The process of implementing the security 

enhancement for IoT use cases shown in Figure 1 

includes several sequential and dependent steps to 

guarantee the correctness and reliability of the 

classification performance. Data Importing and 

Cleaning: The working environment imports the 

UNSW-NB15 dataset in this phase. To prevent bias 

in the data and compromise its integrity, mean 

imputation is used to fill in any missing values. This 

step is essential since it guarantees the dataset is 

clean and prepared for additional processing. After 

this, Data Preprocessing and Feature Engineering are 

performed to make data ready for modeling. With 

one-hot, categorical variables get converted to 

numerical values, allowing machine learning models 

to understand non-numeric data. We are scaling the 

numerical features using Min-Max so that all of the 

variables can have the same range which helps the 

model to converge faster during training and 

increases the accuracy of building a model as well. 

Next, we split the dataset into features (X) and labels 

(Y) and then perform a 70:30 train-test split in order 

to make sure that our models are trained on unseen 

data. In the Model Training Phase, different ML 

algorithms are implemented on the training dataset. 

Such as Logistic Regression, Linear SVM, KNN,  

Decision Tree (DT), Random Forest, and the 

proposed Multi-Layer Perceptron (MLP) 

framework. They are trained in isolation, and 

hyperparameters optimized are similar. This multi-

layer perceptron (MLP)-based framework contains 

deep learning capabilities to learn complex patterns 

and identify non-linear relationships within the 

dataset. These features make MLPs a good candidate 

for the multi-class classification problems within 

this work. Finally, the Phase Model evaluation uses 

evaluation metrics to evaluate all models. They 

cover a wide range of the assessment for binary and 

also for multi-class classification metrics. So here, 

cross-validation techniques, such as k-fold 

validation, are implemented to assure robustness, 

and ensemble learning techniques,  such as the 

voting classifier, are applied to combine predictions 

and improve overall performance. The Results 

Visualization phase (Figure 1) shows graphical 

representations of the model performance. The 

developed MLP framework outperforms all models 

where the performance metrics are displayed as a bar 

chart and its visualization plot. It includes 

correlation analysis and confusion matrices, so that 

if the predictions contain any bias or inconsistent 

behaviour, they can be picked as insights, thereby 

leading to potential actions for better tuning. This 

ensures that these models can later be reused for 

deployment or future analysis without retraining, 

saving time and computational costs. The detailed 

framework, summarized in Figure 1, presents a 

combination of deep learning and machine learning 

methods, as an efficient and comprehensive 

approach to mitigate the security issues in IoT 

applications. Notations used in this paper are 

provided in Table 1. 

 

 
Figure 1. Methodology for AI and Data Science-Based Security in IoT Use Cases 
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Table 1. Notations Used in the Methodology

Notation Description 

𝑥𝑛𝑒𝑤  Mean-imputed value of a feature in the dataset 

n Number of observations 

𝑥𝑖 Individual data points or feature value 

x’ The normalized value of a feature 

min(x) Minimum value of the feature x 

max(x) Maximum value of the feature x 

X Feature matrix 

Y Label vector 

𝑋𝑡𝑟𝑎𝑖𝑛 Training feature matrix 

𝑋𝑡𝑒𝑠𝑡 Testing feature matrix 

𝑦𝑡𝑟𝑎𝑖𝑛 Training label vector 

𝑦𝑡𝑒𝑠𝑡  Testing label vector 

𝛽0, 𝛽1, … . 𝛽𝑛 Coefficients in the logistic regression model 

e Based of the natural logarithm 

W Weight vector in the SVM model 

b Bias term in the SVM model 

𝑦𝑖  Actual label for observation i 

d(𝑥𝑖 , 𝑥𝑗) Euclidean distance between points 𝑥𝑖 and 𝑥𝑗 

𝑃𝑗 Proportion of class j in a dataset 

Gini(D) Gini impurity for dataset DD 

H(D) Entropy of dataset DD 

𝜎(𝑥) Sigmoid activation function applied to input xx 

𝑡𝑟𝑎𝑖𝑛_𝑡𝑒𝑠𝑡_𝑠𝑝𝑙𝑖𝑡 Function to split the dataset into training and testing subsets 

k Number of neighbors in KNN or folds in k-fold cross-validation 

Voting Classifier Ensemble method combining predictions from multiple models 

 

Mathematical Model 

The proposed methodology employs a mathematical 

framework for the Classification of multiple classes 

using the UNSW-NB15 dataset, focusing on 

building a robust and efficient machine-learning 

pipeline. The process begins with data importing and 

preprocessing, where missing values in the dataset 

are handled through mean imputation, calculated as 

𝑥𝑛𝑒𝑤 =
∑ 𝑥𝑖

𝑛
𝑖=1

𝑛
, ensuring that the dataset is complete 

and ready for further analysis. The categorical 

variables are encoded using one-hot encoding, 

creating k binary variables for a categorical feature 

with k categories, represented as: 

 

𝑥𝑖 = {
1     𝑖𝑓 𝑥 = 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦𝑖

0                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
                                           (1) 

 

Normalization is applied to numerical features using 

Min-Max Scaling, transforming each feature xx to a 

range [0, 1] as: 

 

x’= 
𝑥−min (𝑥)

max(𝑥)−min x)
                                                   (2) 

 

Subsets of the dataset are then separated for testing 

and training, usually in a 70:30 ratio, using 
𝑋𝑡𝑟𝑎𝑖𝑛 , 𝑋𝑡𝑒𝑠𝑡 , 𝑦𝑡𝑟𝑎𝑖𝑛 , 𝑦𝑡𝑒𝑠𝑡 =

𝑡𝑟𝑎𝑖𝑛𝑡𝑒𝑠𝑡𝑠𝑝𝑙𝑖𝑡(𝑋,𝑌,𝑡𝑒𝑠𝑡𝑠𝑖𝑧𝑒=0.3,𝑟𝑎𝑛𝑑𝑜𝑚𝑠𝑡𝑎𝑡𝑒=100)
            (3) 

 

The next phase involves model training, where 

several ML models, The proposed Multi-Layer 

Perceptron (MLP), Decision Trees (DT), Random 

Forests, K-Nearest Neighbors (KNN), Support 

Vector Machines (SVM), and Logistic Regression 

are used. The logistic function is used to model a 

class's likelihood in logistic regression: 

 

P(Y=1|X)=
1

1+𝑒−(𝛽0+𝛽1𝑋1+𝛽2𝑋2+⋯…+𝛽𝑛𝑋𝑛)                (4) 

 

For SVM, Maximizing the margin between classes 

is the aim of optimization, expressed as: 
 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒
2

∥𝑊∥
       𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑦𝑖(𝑊. 𝑥𝑖 + 𝑏) ≥ 1         

                                                                              (5) 

 

KNN uses the Euclidean distance to calculate the 

distance between points and uses the majority vote 

of its kk nearest neighbors to classify a data point: 

 

d(𝑥𝑖 , 𝑥𝑗)=√∑ (𝑥𝑖𝑘 , 𝑥𝑗𝑘)2𝑛
𝑘−1                                    (6) 

Decision Trees and Random Forests employ metrics 

like Gini Impurity and Entropy for splitting nodes. 

Gini Impurity is calculated as: 
 

Gini(D)=1-∑ 𝑃𝑗
2𝑐

𝑗−1                                                (7) 

 

while Entropy is given by: 
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H(D)=-∑ 𝑃𝑗  𝑙𝑜𝑔2
𝑐
𝑗−1 (𝑃𝑗)                                      (8) 

 

The MLP framework, using a deep learning 

architecture, applies activation functions to add non-

linearity, like the Sigmoid function: 

 

𝜎(𝑥) =
1

1+𝑒−𝑥                                                        (9) 

 

Cross-validation techniques, such as k-fold 

validation, are applied to ensure robustness, while 

ensemble learning, using a voting classifier, 

aggregates predictions from multiple models to 

improve accuracy.  

The trained MLP model is saved using serialization 

for future use, ensuring computational efficiency. 

Integrating preprocessing, model training, and 

robust pipeline design, this mathematical framework 

provides a scalable and efficient approach for 

addressing security challenges in IoT use cases. 

 
Algorithm 1. MLP-Based Framework for Intrusion 

Detection in IoT Networks 

Algorithm: MLP- IoT Network Intrusion 

Detection Framework Based on 

Input: UNSW-NB15 dataset D 

Output: Results of intrusion detection and 

performance metrics P 

 

1. Begin 

2. D'DataPreprocessing(D) //encoding 

and normalization 

3. (T1, T2, T3)SplitData(D') 

4. Configure MLP model m 

5. Optimize model parameters 

6. m'TrainModel(m, T1) 

7. Persist m' 

8. Load m' 

9. RIntrusionDetection(m', T2) 

10. PEvaluation(T3, R) 

11. Print R 

12. Print P 

13. End 

 

Proposed Algorithm  

The algorithm we propose develops a multi-layer 

perceptron (MLP)- IoT network using a framework 

based on intrusion detection in a systematic method 

with the model. Conceptually, it addresses vital 

challenges in handling complex non-linear patterns 

in IoT traffic to ensure efficient data preprocessing, 

robust training of the model, and holistic evaluation. 

A scalable and secure algorithm that detects different 

categories of attacks by combining the above ML 

classifiers is a good solution for real-world IoT 

applications. 

This paper shows an automated algorithm describing 

a sequential approach towards establishing an MLP 

based model for identifying penetrations over an 

IoT based network. Beginning with the data 

ingestion and pre-processing stage, where the IMF 

data set is imported, and NaN values have been filled 

using mean imputed. Such a preprocessing step 

guarantee that the dataset is comprehensive and free 

from discrepancies, which is essential for reliable 

model training and testing. Now the next phase 

comes which is data preprocessing, it is common to 

do since you will want to do a little shaping to the 

dataset to do classification. The categorical features 

will be encoded one-hot to help the model 

understand the non-numeric values. At the same 

time, Min-Max normalization is used to scale 

numerical features so that all features are on the 

same scale. This will increase the model's 

convergence during training. Next the data is 

separated into features and labels and split into a 

train-test set with a 70:30 ratio so that model can be 

evaluated on unseen data. 

During model training, the MLP architecture is 

defined with an input layer that matches the size of 

the input feature, ReLU-activated hidden layers, and 

an output layer with softmax activation for 

classification into many classes. In this training 

phase, we apply the Adam optimizer and quantify 

prediction error using the cross-entropy loss function 

to fine-tune all model parameters. One hot encodes 

the target classes and provides a simple method by 

which the MLP can learn to elaborate complex high-

order non-linear relationships in data and be 

effective in the multi-class classification task. 

After training, test data is used to evaluate the model. 

This model's performance is evaluated by computing 

key metrics like accuracy, recall, precision, and f1 

score. The visualization techniques include some 

graphs and a performance comparison with classic 

machine learning models, which facilitates 

comprehension of the model's efficacy and 

emphasizes its superiority. Finally, the trained MLP 

model is serialized using techniques like pickle to be 

saved and this will help to reuse the same trained 

MLP model Whenever needed without retraining it. 

This is an important step, especially when deploying 

the model in a real IoT environment where resources 

are limited. This algorithm is the use of advanced 

preprocessing, modeling, and evaluation techniques 

all to overcome the issues of IoT networks for 

intrusion detection. 

 

Dataset Details 

The UID, which is to this day one of the most 

complete benchmark datasets for the evaluation of 

intrusion detection systems, was released by the 

Cyber Range Lab of the Australian Centre for Cyber 

Security (ACCS) as the UNSW-NB15 dataset [51]. 

IXIA Perfect Storm is a tool it generates The dataset 
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includes about 2.5 million recordings of network 

traffic. It covers nine types of malicious activities 

(e.g., DoS, Backdoors, Exploits) as well as normal 

traffic. The dataset includes 49 features, which are 

categorical, numerical, and timestamp data, and a 

label that types attack. The shape of the data allows 

us to perform a lot of feature engineering and 

machine learning on it. 

 

3. Results and Discussions 
 

To assess our proposed framework which is based 

on Multi-Layer Perceptron (MLP), the paper 

employs the UNSW-NB15 dataset that contains 

network traffic samples in ten different classes of 

which the nine foremost classes are attacks and one 

is normal traffic, that can be used in intrusion 

detection applications [30]. We contrast the MLP's 

performance with that of cutting-edge linear 

regression, decision trees, random forests, K-Nearest 

Neighbors (KNN), support vector machines (SVM) 

(Cortes & Vapnik, 1995), logistic regression 

(Bishop, 2007), and random forests (Breiman, 

2001). The experiments were performed in a Python 

environment using the Tensor Flow library and 

Scikit-learn library on a system with the following 

specifications; Intel i7, 16Gb RAM, and NVIDIA 

GPU to support deep learning computations. Figure 

2 illustrates the distribution of normal and abnormal 

labels. The majority of the pie, representing 75.99%, 

is labeled as "normal,"while the remaining 24.01% 

is labeled as "abnormal." This indicates that the data 

being analyzed has a significant proportion of 

normal instances and a smaller proportion of 

abnormal ones 

 

 
 

Figure 2. Pie Plot For Normal And Abnormal (Binary 

Class) 

 

 
 

Figure 3. Data Distribution Dynamics (Multi-Class) 

 

. Figure 3 illustrates the distribution of multiple class 

labels. The most significant proportion, 48.66%, is 

labeled as "Normal," followed by "Backdoor" at 

24.01% and "Fuzzers" at 19.94%. Smaller 

proportions are attributed to "Reconnaissance" 

(2.21%), "Exploits" (2.13%), "Analysis" (2.10%), 

"DoS" (0.33%), "Worms" (0.13%), and "Generic" 

(0.13%). 

This indicates that the data being analyzed contains 

many instances classified as "Normal," with a more 

balanced representation of the other classes. Figure 

4 visually represents the relationships between 

features and the goal variable in a binary 

classification problem. White signifies no or weak 

correlations, blue denotes negative correlations, and 

red denotes positive correlations. Analyzing these 

patterns allows you to identify important features for 

model building and selection. 

Figure 5 matrix graphically depicts the connections 

between the target variable and features in a multi-

class classification issue. Positive correlations are 

shown in red, negative correlations in blue, and no 

or minimal correlations in white. These trends may 

be examined to identify important feature selection 

and model-building factors. Figure 6 shows a 

linkage between Real versus Theoretical values of a 

binary class classification model. Data points on the 

x-axis and values on the y-axis. where the blue line 

represents the expected and the red line represents 

the actual. The model's accuracy in predicting each 

data point's true class may be assessed using this 

graphic. Figure 7 shows the expected result vs. 

actual compare diff for binary class classification 

type. Data points are plotted on the x-axis, while the 

y-axis shows values. Actual Values: The red line 

Predicted Values: The blue line With the help of the 
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visualization, we can evaluate how accurately the 

model predicts the class for each data point. 

The difference displayed between the expected and 

the actual is the binary class classification type, and 

is displayed in Figure 8. The x-axis depicts data 

points and the y-axis provides values. Actual values 

are represented by the red line, while the blue line 

corresponds to predicted values. Using this 

visualization, one can evaluate how well the model 

is predicting the class for each data point. The figure 

9 is the difference between expected values and the 

real values related to the binary class classification 

type. Then instead of the x-axis, which is the data 

points, the y-axis, which is the value.  

Figure 4. Matrix of Correlation for Binary Labels 

 

Figure 5. Matrix of Correlation for Binary Labels 
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The red line is the actual value, Blue line is the 

predicted value. On this visualization, one might 

evaluate how accurately For every data point, the 

model can predict the class. Real vs expected 

comparison for a binary class classification model 

figure 10 The x-axis shows new data points, while 

the y-axis shows the matching values. The blue line 

shows the expected values and the red line the 

facts.This graphic can be used to evaluate how well 

each data point is predicted to belong to the correct 

class. As we can see in figure 11, a binary class 

classification model used to predict the values will 

differ from the actual ones. real data points on the x-

axis and Y values on the y-axis. The red line 

indicates the actual values, while the blue line 

indicates the expected values. Using the graphic we 

can evaluate the capacity of the model in predicting 

the appropriate class for each data point. The true vs 

the predicted values for a binary class classification 

model, look on the Figure 12. On the y-axis we 

have the values, and on the x-axis we have the data 

points. The blue line shows the predicted values 

while the red line shows the data (the facts). Using 

the plot, one can evaluate how accurately the model 

predicted the class to which each point belongs. 

Multi-class classification losses with gaps between 

real and estimated values (Figure 13) Values  data 

points in the x-axis and displayed on the y-axis. Blue 

line indicates expected values and red line shows 

facts. With the help of this plot, one can evaluate 

how accurately the model classifies each data point. 

Figure 14 compares expected and actual values for 

a classification model with multiple classes. The x-

axis contains data points and the y-axis provides 

values. The actual values shown in red line and 

predicted values shown in blue line. With the help 

of visualization one can evaluate how the model able 

to inform the class of each data points.In Figure 15, 

we collect the actual and expected values for a 

multi-class classification model. The y-axis 

represents values, and the x-axis represents data 

points. In contrast, the blue and red lines represent 

predicted and observed values, respectively. By 

displaying each data point's class prediction visually, 

one can judge the performance of the model.A 

multi-class classification model contrasts the actual 

and expected results (Figure 16). Values appear on 

the y-axis, while datapoints are displayed on the x-

axis. The blue line represents anticipated values, 

whereas the red line represents actual values. This 

graphic can be used to verify if the model is 

predicting one of the classes for each dot. We decode 

the predictions into the labels using the following 

code. (Top: Multi-class (3-class) classification 

model; Below: Actual vs. Expected distribution of 

Multi-class classification model; and we run the 

code to compare the actual vs. expected values 

(Figure 17). Values are on the y-axis, while data 

points are on the x-axis. Whereas the blue line 

displays the expected values, the red line displays the 

actual values. It is possible to verify whether the 

model correctly predicted the class for every data 

point in the figure. 

Figure 18 illustrates how a multi-class classification 

model handles both expected and actual results. 

Values are represented on the y-axis, and data points 

are represented on the x-axis. The red line displays 

the actual data, and the blue line displays the 

predictions. You may use the following graphic to 

understand the model performance for every data 

point prediction class. Multi-Class Classification 

MODEL (Actual vs Expected) Figure 19 The values 

are on the y-axis, while the data points are on the x-

axis. Expected numbers are shown as the blue line, 

and actual values are shown in red. The figure might 

be used to measure how accurately the model 

classifies each data point correctly Figure 20 is 

binary classification results demonstrate how well 

different machine learning models perform in 

protecting IoT use cases based on measures 

including accuracy, precision, recall, and F1-score. 

The proposed Multi-Layer Perceptron (MLP) 

framework consistently outperforms other models 

across all metrics. It can accurately identify attack 

events with few false positives, as evidenced by its 

greatest precision of 97.23%. Similarly, the recall 

value for MLP is 97.16%, demonstrating how well it 

detects most assault events with few false negatives. 

At 97.19%, MLP's F1-score—a harmonic mean of 

precision and recall—highlights its well-rounded 

performance.In terms of accuracy, the MLP 

framework demonstrates its superiority by achieving 

97.56%, reflecting its overall effectiveness in 

classifying network traffic accurately. 

Comparatively, Random Forest and Decision Trees 

also deliver competitive results, with Random Forest 

scoring slightly below MLP in most metrics. Other 

models, including Logistic Regression, Linear SVM, 

and K-Nearest Neighbors (KNN), show reasonable 

performance but fall short of the MLP framework’s 

precision and robustness.  

Linear Regression, while functional, achieves lower 

scores, emphasizing its limitations in handling the 

complex patterns present in the dataset. These results 

emphasize the significance of the MLP framework 

in addressing security challenges in IoT 

environments. Its ability to process non-linear 

relationships and capture intricate patterns in the 

data highlights its effectiveness in intrusion 

detection. 
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Figure 6. Linear regression Plot Between Real and Predicted Data 

 

Figure 7. Logistic Regression Plot Between Real and Predicted Data 

 

 
 

Figure 8. Linear SVM Plot Between Real and Predicted Data 
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Figure 9. KNN Plot Between Real and Predicted Data 

 

 
Figure 10. Random Forest Plotting Actual Data Against Predicted Data 

 

 
Figure 11. Real and Predicted Data in a DT Plot 
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Figure 12. MLP Plot Between Real and Predicted Data 

 

 
Figure 13. Plotting Real and Predicted Data using Linear Regression for Multi-Class Classification 

 

 
Figure 14. Plotting Real and Predicted Data Using Logistic Regression for Multi-Class Classification 
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Figure 15. Plotting Real and Predicted Data Using Linear SVM for Multi-Class Classification 

 

 
Figure 16. KNN Plot for Multi-Class Classification Between Actual and Predicted Data 

 

 

Figure 17. RF Plot for Multi-Class Classification Between Actual and Predicted Data 
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Figure 18. DT Plot for Multi-Class Classification Between Actual and Predicted Data 

 

 
Figure 19. MLP Plot for Multi-Class Classification Between Actual and Predicted Data 

 

 

Figure 20. Binary Classification Performance of the Models in Securing IoT Use Cases 
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Figure 21. Multi-Class Classification Performance of the Models in Securing IoT Use Cases 

 

The consistent performance across multiple metrics 

further validates its reliability for real-world 

applications, making it suitable for IoT-based 

security solutions. 

Figure 21 is the outcome of the multi-class 

classification highlight the comparative performance 

of various machine learning models applied to the 

UNSW-NB15 dataset for securing IoT use cases. 

The proposed Multi-Layer Perceptron (MLP) 

framework demonstrates superior performance 

across all evaluated metrics, making it the most 

effective model in handling complex multi-class 

classification tasks. The precision achieved by the 

MLP is 97.53%, reflecting its high capability to 

correctly identify true positive instances with 

minimal false positives. Similarly, its recall value of 

97.23% underscores the framework's ability to 

capture the majority of relevant instances, 

minimizing false negatives. The F1-score for the 

MLP framework, calculated at 97.37%, highlights its 

balanced performance by harmonizing precision and 

recall. This metric validates the MLP's consistency 

and robustness in multi-class scenarios. 

Furthermore, the model achieves the highest 

accuracy of 97.73%, demonstrating its capability to 

correctly classify network traffic events across all 

classes. In comparison, In terms of precision, recall, 

and F1-score measures, Random Forest and 

Decision Tree models exhibit strong performance. 

closely trailing the MLP framework. However, these 

models fail to match the MLP in handling the 

intricate patterns within the dataset. 

Again, other models do an average of the job 

(Moderate performance) with Logistic Regression 

getting a fairly low score because it tries to model  

 

non-linear relationships in a linear way. The 

extremely low performance of Linear Regression 

over all metrics illustrates its unsuitability  for this 

kind of multi-class classification problem. In 

addition, these results further confirm The efficacy 

of the suggested MLP framework, especially in the 

case of IoT security applications where multi-class 

classification is crucial for identifying different 

attack types. MLP clearly outperforms Random 

Forest over several metrics, and this demonstrates 

MLP's capacity to learn and process non-linear 

relationships, making it a suitable candidate to 

manage complexity around network security 

datasets. Hence, it emerges as the best solution to 

mitigate the problems related to the intrusion 

detection in IoT scenarios. 

 

Discussions 

Although the boom of IoT devices has brought about 

an era of great change, it has also laid bare some of 

the most fundamental weaknesses in the foundations 

of network security. However, most of the 

conventional IDS have been inefficient in 

classifying the multi-dimensional nature of the 

attacks in real-time because of the complexity and 

high dimensionality of the data produced by IoT 

devices. Because traditional machine learning 

models use statistical analysis, they cannot identify 

intricate patterns leading to multiple forms of 

attacks, which gives an inadequate detection rate. 

We review of the contemporary techniques to expose 

the shortcomings including: (1) limited scalability, 

(2) multi-class classification inadequacy, (3) lack of 

a generic frameworks that can adapt to dynamic 

attack scenarios. These challenges call for new deep 

learning methods to improve the IDS detection and 
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classification capabilities. To address these gaps, we 

propose a new methodology that uses a deep 

learning (MLP-based) framework. In addition to the 

binary classification tasks, the MLP treats nonlinear 

relationships and utilizes high-dimensional features, 

making it appropriate for multi-class classification 

models, unlike other traditional models. The 

methodology presents novel features such as a very 

well-structured pre-processing pipeline, 

normalization of the entire feature set, and advanced 

ensemble learning techniques for comparative 

analysis. In addition, cross-validation will make sure 

that our evaluation is robust, and data visualization 

will help us understand the model performances. 

The outcomes indicate the effectiveness of the 

proposed MLP framework with maximal accuracy, 

precision, recall, and F1-score for both binary and 

multi-class classification scenarios. This suggests 

that the MLP not only overcomes the limitation of 

the traditional models but also offers a scalable 

solution which can deal with the complexity of IoT 

network traffic. Closing these gaps in the state-of-

the-art provides a foundation for deploying more 

robust IDS in real-world IoT settings. This research 

has important implications, not only providing a 

simple technique to improve the security of IoT but 

also establishing a benchmark for future intrusion 

detection research. Finally, Section 4.1 presents the 

limitations of the current study and possible avenues 

for further investigation and improvement. IoT has 

been used and applied in different fields [52-59]. 

 

Limitations of the Study 

This study, however, has limitations. To begin with, 

the MLP framework suggested in this study depends 

on extremely costly training, limiting its usability 

among low-resource IoT areas. Second, the UNSW-

NB15 dataset contains a large variety of attack 

butcannot cover all trending attacks, leading to the 

limitations of the model’s generalizability in newly 

emerged covert channels [45]. Finally, the method is 

mainly based on offline analysis and is not evaluated 

under real-time performance in a dynamic IoT 

environment. The above limitations will be 

addressed in our future work to enable large-scale 

implementation of the proposed framework, 

enabling it to adapt to new threats, and apply within 

real-time settings. 

 

4. Conclusions 
 

To overcome the drawbacks of the intrusion 

detection systems dedicated to IoT environments, 

this research presented a framework based on deep 

learning with a Multi-Layer Perceptron (MLP). The 

framework provides a 4G version, which 

outperforms existing methods in problems involving 

both binary and multi-class classification, owing to 

automated preprocessing pipelines,  resilient feature 

normalization and scalable model training. These 

results suggest that the complexity of IoT network 

traffic is solvable with high MLP accuracy, 

precision, recall, and F1-score when used with the 

UNSW-NB15 dataset. Compared to traditional 

machine learning models, the results also emphasize 

how effectively the proposed method overcomes the 

gaps present in the state-of-the-art approaches. The 

study recognizes some limitations, such as the high 

computational complexity of MLP, the limited set of 

records assuming they cover all emerging threats, 

and the inability to check in real-time. These 

limitations can be tackled in future work by 

improving the efficiency of the proposed framework 

to fit the resource constraints of IoT devices, by 

enabling online learning for the detection of threats 

in real time, and by using datasets that evolve to 

imitate the appearance of new attack vectors. This 

research has important implications in the area of 

IoT security and presenting an efficient solution for 

cyber threat detection and classification. Scalability, 

real-time adaptability,  and generalizability will be 

future improvement directions to ensure broad 

applicability for secure IoT ecosystems against 

advanced cyber weapons. 
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