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Abstract:  
 

Precision medicine is considered to be the future of healthcare. It allows doctors to select 

treatments based on the patient's genetic information. Precision medicine is being adapted 

to a few typical complicated treatments like cancer at an intermediate level. As genetic 

information is in large volumes, Big data analytics showing a reliable promise of the 

modern-day health care revolution. Extremely large and continuous collection of large 

volumes of data like Genomics, Proteomics, Glycomics etc. is creating a challenge in 

analysis and interpretation, which is addressed effectively by the Big data analytics. This 

research work reviews and highlights the evolution of Precision medicine, Big Data 

Analytics and its significance in Precision medicine and related work. Also detailed the 

Machine learning perspectives on the Precise medicine with genomic data models along 

with Challenges. 

 

1. Introduction 
 

Precision medicine is "an emerging approach for 

disease treatment and prevention that takes into 

account individual variability in genes, environment, 

and lifestyle for each person."  This method 

facilitates the medical practitioners and Researchers 

to assess the disease more precisely and lead to 

derive a better prevention strategies for each 

individual. It differs with the general practice of 

approving a common drug and treatment for all 

people in general. It takes the differences between 

every individual's physical responsive systems  into 

account and provides a tailored treatment plan. 

Precise medicine is an emerging field of medical 

science targeting several diagnostic tests to conclude 

the medical treatments that fit best for a specific 

patient, though its mentioned long ago that every 

human is distinct. There are several considerable 

steps in the success of Precise medicine. A brief 

description of the evolution of Precise medicine is 

presented.  

 In 1956, the "favism", the difference in individual 

toxicity to fava beans is identified due to 

metabolic deficiency of G6PD enzyme with 

Genetic basis 

  In 1988, Renato Dulbecco revealed the mandate 

of Sequencing the human genome to advance in 

cancer Research  

 In 1988, Genentech Inc. Formed a strong basis 

for Genomic Medicine by sequencing the entire 

human growth hormone. This made a 

revolutionized evidence about the feasibility of 

sequencing the human genome.  

 In 1990, the famous HGP (Human Genome 

Project) was established, which published a first 

draft in 2001, followed by final version in 2003.  

 In Early 1990's, the personalized treatments using 

the individual genome has started, but it couldn't 

get large focus  

 In 1994, a diagnostic test was designed to predict 

the accuracy of rHGH replacement therapy, 

which is the earliest registry of a CMDx test.  

 In 1998, there is an official approval of 

Herceptin( anti-EGFR mAb for EGFR+ breast 

tumors) by FDA.  There onwards a huge rise in 

the diagnostic package, precise medicine 

therapies.  

http://www.ijcesen.com/
http://dergipark.ulakbim.gov.tr/ijcesen


Badugu Sobhanbabu, K.F. Bharati  / IJCESEN 11-1(2025)558-567 

 

559 

 

Since that approval and advancements in 

computational capabilities, Precise medicine 

became the most emerging field of advanced 

medical research. The following subtopic explains 

the Precise medicine evolution in the 

technological/computational context.  

1.1 Evolution of Precision Medicine  

On a Data-driven approach, Precision medicine is an 

emerging field, that considers the patient's pertinent 

genetic, medical, environmental, and behavioural 

information to derive tailored therapy [1-5].  The 

Precision medicine or personalized medicine got a 

revolution with the massive collection of large-scale 

clinical and molecular data, it elevated the 

expectations of biomedical research and health care 

[3,6].  The soul of precision medicine is to consider 

individual genetic profiles in every phase of health 

care including prevention, diagnosis, and treatment 

of disease[3]. The advancements in high-precision 

data engineering approaches that are provided with 

large datasets facilitate the computations required 

for deriving properer predictions and 

recommendations [7].  As the data quantity is huge, 

there are various challenges in analyzing and 

integrating such large amounts of information. To 

address these challenges there is a requirement for 

faster computational methods, more integrated 

processors, enhanced sensors, advanced algorithms, 

and methodologies cloud-based solutions which can 

give future directions toward precision medicine 

[7,8].  In the other hand, Precision medicine is not 

yet achieved for many clinical problems. However, 

the increased utilization of hypothesis-free, big data 

approaches assure to reach the precision medicine 

[9]. There are various community  movements like 

Global Alliance for Genomics and Health (GA4GH, 

www.ga4gh.org), research infrastructures like 

ELIXIR [10], Big Data to Knowledge (BD2K)   [11] 

and international initiatives such as the International 

Cancer Genome Consortium (ICGC), the  
 

Table1. Consortiums working on Precision medicine 

 

International Human Epigenome Consortium 

(IHEC), and the International Rare Disease 

Consortium (IRDiRC), among others (Table 1)This 

review article provides an overview of Genomics, 

Big Data Analytics with respect to the Precise 

medicine with genomics,  Benefits and challenges of 

the Big Data Analytics in the Genomics Study.  The 

organization of the paper is as follows: Section 2 

introduces the Genomics data, and its significance in 

Precise or Personal medicine.  The Section 3 

presents the Big Data and its scope with thee 

Genomics based Precise medicine.  The Section 4 

presents the Benefits of BDA in Genomics.  The 

challenges in the Genomics-Big Data analytics is 

presented in Section 5.  The conclusion and future 

works are discussed in the Section 6.   

2. Genomics in Precise medicine  

In this section, introduction to the Genomics and its 

role in the Precise medicine is discussed.  

2.1 Genomics is a study of Genetic material 

It has processes like Sequencing, Mapping, and 

analysis of DNA and RNA codes of various 

population. The latest advancements and progress in 

Life Science & Healthcare is able to understand the 

genetic features of the people through determining 

entire DNA sequence. The major goal of this 

research is to present the relation between Genomics 

based Precision medicine through Big data analytics, 

which is also used for prevention and cure of 

diseases [12]. It is inevitable to adopt big data to 

analyze such a huge volume of data generated from 

sequencing, Mapping, and Analysis. Each human 

Genome has 20,000-25,000 genes, each consisting 

of 3 million base pairs. Overall, a human body’s 

Genome data is calculated to around 100 Giga Bytes. 

Thus, Genomics or Genetic analysis deals with 

Petabytes of the data. It would lead to much more 

huge in volume as proceeded answer much more.  

The average 100 GB volume of each human body 

genome data makes it a challenge to conduct 

analysis with large sample size. The forerunner of 

Genomics study, “Genome Wide Association 

Studies (GWAS)” has conducted several studies. 

Currently there are more than 1600 studies that 

formed a unique connection between 2000 genes and 

more than 400 common disease symptoms.  Some of 

the studies by the GWAS are mentioned below:  

 Diabetes: Few predictive models to identify 

“high-risk” patients for Diabetes Type-1.  

 Cancer: Classification models for guided clinical 

trials or highly focused cancer treatments 

 Toxicity and Efficacy condition filtration with 

high quality information processing.  
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Genomics Analytics applications

Genomics include several biomedical processes, 

each mandating huge amounts of data processing, 

analysis and Big Data storage and manipulations. 

This process can be categorized as following [12]: 

1. DNA Sequencing Library: DNA sequencing 

includes separating DNA pieces based on the 

length through a process of electrophoresis. The 

sequencing system needs to maintain a huge 

universal library for sequencing any DNA sample 

(It can be even a Virun or Bacterium or a living 

being). As this Sequencing library has huge 

archives, they call for Big Data Analytics 

Systems. 

2. Annotation:  
It represents addition of a description or 

commentary or explanation. This discription 

presents an explanation about each gene and its 

RNA product. It has the purpose of assigning a 

function to each gene product. Gene functions are 

assigned using Complex Automated Scripts’ 

decision analysis. It is obvious that currently, 

some aspects has to be performed manually, but 

in future it can fully automated.  

3. Genomic Comparisions:  This process involves 

comparing billions of DNA and yielding the 

similarities between random sequences. This 

needs such a systems that are capable of Big 

Sequence Data and complex correlation 

algorithms.  

4. Genomic Visualization: The complex 

correlations must be visualized along with the 

customizable options  

5. Synteny:  It is a process of assessing a couple of 

genomic regions to intuit whether its from a 

single ancestral genomic region. A similar 

Genomic comparisons based on complex 

statistical correlation algorithms are required for 

this process.  

 

3. Big Data in Personal medicine  

The Data is conceptualized in a number of different 

ways, including volume, velocity, diversity, value, 

variability, visualization, virality, and veracity, 

which describe the enormous amount of structured, 

semi-structured, and unstructured data (Figure 1) 

[13,14,15,16]. Health Directorate of the Directorate-

General for Research and Innovation of the 

European Commission defined big data as “Big data 

in health encompasses high volume, high diversity 

biological, clinical, environmental, and lifestyle 

information collected from single individuals to 

large cohorts, in relation to their health and wellness 

status, at one or several time points [17].  Big data is 

widely used in the healthcare industry for many 

purposes like electronic health records, diagnosis 

reports and hospital records etc [18].  There are a 

decent number of measurements for sequencing of 

DNA, RNA, and characterizations of proteins and 

their properties with clinical features.  For extracting 

useful information from a large amount of data, 

high-end computing solutions along with proper 

infrastructure are required. However, sophisticated 

Artificial intelligence methods including Deep 

learning, and cognitive computing represent their 

future application in healthcare in for delivering 

integrated solutions, predicting an outcome in big 

data applications [3]. Despite advances in machine 

learning solutions for big data, only a few have had 

a significant impact on clinical practice. The reasons 

may be a lack of validation via prospective clinical 

trials, inconsistent predictive performance, or 

difficulties interpreting complex models [18]. In 

working with genetic data, we should realize that the 

number of cases (patients) is usually very small 

compared to the number of genes or genetic 

variables measured. Because of this, the trouble is 

bounded through the wide variety of sufferers 

instead of the wide variety of variables. 

Consequently, the uncertainty area of the 

mathematical models constructed to resolve those 

sorts of troubles and make decisions (regressors or 

classifiers) could be very large, containing the set of 

models that are expecting the determined data with 

the identical error bounds. On the price feature 

landscape, those models are positioned in flat 

curvilinear valleys. The uncertainty evaluation of 

inverse problems and type troubles, which through 

definition are ill-posed, applies independently of the 

inverse trouble this is being solved. The noise from 

the information can also additionally generate 

spurious unphysical solutions, which makes those 

issues very tough to resolve. A sturdy uncertainty 

evaluation of the corresponding medical decision 

problem can then be accomplished through lowering 

the size of the problem [19-22]. This form of 

technique needs sturdy sampling strategies to 

recollect feasible a couple of scenarios. Data 

formatting and the storing of data additionally 

continue to be as huge challenges in the beyond 

years. However, the last decade has seen tremendous 

development in the improvement of standard 

genomic data codecs together with FASTQ, 

BAM/CRAM, and VCF files [23]. Such 

standardization, however, could result in 

incompatibility between inputs and outputs of 

various bioinformatics tools, or perhaps inaccurate 

results. As a result, imperfect standardization has 

enabled the sharing of genomic knowledge across 

institutions via federate databases such as 

aggregated databases such as ExAC [24] or Beacon 
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Network [25]. ExAC, GNOMAD, and therefore the 

Beacon Network databases give support in the 

understanding of genetic variations and 

distinguishing variants that are distinctive at 

intervals a selected ethnic group [24]. The 

challenges regarding downstream data formats 

remain, despite these successes with upstream 

genomic data formats. As a result, non-uniform 

analysis typically occurs, and re-analysis of an 

equivalent data exploitation completely different 

pipelines produces different results [26-29]. 

4. Big Data Applications in Genomics 
 

 

Figure 1. The Data is conceptualized in a number of 

different ways 

Since the completion of the sequencing of the human 

genome and the genetic cause of phenotyping in 

disease, researchers have investigated genetic 

markers across a large population [30-33]. This has 

improved efficiency by more than five orders of 

magnitude. Using microarrays, genome-wide 

analysis has been effective in evaluating population 

features and successfully treating complicated 

disorders including Crohn's disease and age-related 

muscle deterioration [33]. Human genome contains 

between 30,000 and 35,000 genes, analytics of high-

throughput sequencing techniques in genomics is 

essentially a big data challenge [34,35]. The 

integration of clinical data from the genetic level to 

the physiological level of a human being is now 

being explored over a number of years [30,36]. 

These programmes will aid in providing each patient 

with individualised treatment. Fast and accurate 

analysis of genome-scale big data is necessary to 

provide suggestions in a therapeutic environment. 

Because investigating this big data problem requires 

a lot of money, time, and effort, this discipline is still 

in its infancy and has applications in narrowly 

defined emphasis areas, including cancer [37–40]. 

Numerous issues are covered by big data 

applications in genomics. Here, pathway analysis—

where the functional implications of genes that are 

differentially expressed in experiments or gene sets 

of particular interest have been studied, and network 

reconstruction is the main focus of investigating 

signals obtained with high-throughput techniques to 

reconstruct the underlying regulatory network. The 

focus. These networks affect a variety of cellular 

functions that affect a person's physiological state 

[41]. 

4.1. Pathway Analysis 

 

The resources for deriving the functional effects of 

"-omics" big data are primarily based on the 

statistical relationship between observed changes in 

gene expression and predicted functional effects. 

Experimental and analytical practices lead to error 

and batch effects [42,43]. Interpretation of 

functional effects should include a continuous 

increase in available genomic data and 

corresponding genetic annotations [44]. There are 

various tools, but there is no "gold standard" for 

functional pathway analysis of high-throughput 

genomic scale data [45-47]. The three generation 

methods used for path analysis [44] are described 

below. The first generation includes 

overrepresentation analysis techniques that quantify 

the proportion of genes involved in a certain 

pathway that are present among the genes that 

exhibit differential expression [44]. Onto-Express 

[45, 46], GoMiner [48], and ClueGo [46] are a few 

examples of first-generation tools. In the second 

generation, functional class scoring methods are 

included that take expression level variations in 

specific genes as well as functionally related genes 

into account [49]. A well-liked technique from the 

second generation of route analysis is GSEA [50]. 

The third generation of tools includes tools that are 

based on route topology, which are publically 

accessible pathway knowledge databases with 

precise information on the relationships of gene 

products, including where and how particular gene 

products interact with one another [44]. A third 

generation is demonstrated by Pathway-Analysis 

[51]. 

4.2. Reconstruction of Regulatory Networks 

 

As an integrated operation of dynamic systems, 

pathway analysis does not try to understand high-

throughput big data in biology [44]. Data analysis at 

the genome scale has been approached in a variety 

of ways [52-60]. Due to the broad scope of the field, 

the focus is on techniques for predicting networks 

from biological big data in this section. Systems 

biology uses two broad categories of network 

inference for big data applications: metabolic 

network reconstruction and gene regulatory network 

reconstruction [41]. A combination of different 
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approaches to network inference has been shown to 

produce better predictions [53,61]. Over the past 

decades, metabolic networks for reconstruction have 

been advanced. Through integrating genomics, 

transcriptomics, and proteomics high-throughput 

sequencing techniques, metabolic networks may be 

reconstructed to expand an know-how of organism-

unique metabolism [52,62–68]. Constraint-primarily 

based totally techniques are broadly carried out to 

probe the genotype-phenotype dating and try to 

triumph over the constrained availability of kinetic 

constants [69, 70]. There are multitude of demanding 

situations in phrases of reading genome-scale facts 

consisting of the test and inherent organic noise, 

variations amongst experimental platforms, and 

connecting gene expression to response flux utilized 

in constraint-based techniques [71,72].  

Available reconstructed metabolic networks 

encompass Recon 1 [62], Recon 2 [52], SEED [64], 

IOMA [66], and MADE [73]. Recon 2 (a 

development over Recon 1) is a model to symbolize 

human metabolism and contains 7,440 reactions 

related to 5,063 metabolites. Recon 2 has been 

accelerated to account for recognized drugs for drug 

target prediction studies [74-81] and to examine off-

target consequences of drugs [74]. Reconstruction of 

gene regulatory networks from gene expression 

statistics is another emerging field. Network 

inference strategies may be split into five classes 

primarily based on the underlying version in every 

case: Regression, Mutual records, Correlation, 

Boolean regulatory networks, and other strategies 

[53].  

More than 30 inference strategies have been assessed 

after DREAM5 task in 2010 [53]. Performance 

various inside every class and there has been no class 

located to be continuously higher than the others. 

Different strategies make use of distinctive records 

to be utilized in experiments which may be 

withinside the shape of time series, drug perturbation 

experiments, gene knockouts, and mixtures of 

experimental conditions.  

A tree based method (the use of ensembles of 

regression trees) [75] and two-manner ANOVA 

(evaluation of variance) method [76] gave the best 

overall performance in a current DREAM task [61]. 

Nodes and sets of nodes are governed by boolean 

regulatory networks [41], which are special cases of 

discrete dynamical models. Using Boolean 

operations on the states of other nodes in the 

network, the state of each node or set of nodes can 

be determined by determining the actual state of 

each node or set of nodes [54].  

By using prior information, boolean networks may 

be able to reduce the number of false positives (i.e., 

when a condition appears to be satisfied while in 

reality it is not) although they can be extremely 

useful when the amount of quantitative data is small 

[41, 54]. When there are many nodes in a network, 

Boolean networks are prohibitively expensive. 

There are more global states than entities, which is 

due to the exponential increase in the number of 

entities [41]. Utilizing clustering to reduce the size 

of the problem is one way to get around this 

bottleneck. For instance, Martin et al. [79] used 

clustering methods to divide a microarray gene 

expression dataset containing 34,000 probes in 23 

sets of metagenes. For two separate immunology 

microarray datasets, our Boolean model effectively 

represented network dynamics. ODEs may be used 

to model the dynamics of a gene regulatory network 

[56–59]. This method has been used to identify the 

yeast regulatory network [56].  

The regulatory network which molecular biologists 

have used experiments to define was successfully 

captured by the study. It takes a lot of computing 

power to reconstruct a gene regulation network on a 

Genome scale system as a dynamic model [41]. To 

deal with this issue, a parallelizable dynamical ODE 

model has been created[80]. It drastically cuts down 

on computation time[80]. Exploring nearly a billion 

potential connections is necessary to identify 

connections in the regulatory network for a 

challenge the size of the human genome, which 

contains 30,000–35,000 genes [34, 35]. The 

cardiogenic gene regulation network of the 

mammalian heart has been rebuilt using the 

dynamical ODE model [59]. Table 2 lists many 

techniques and toolkits along with the applications 

they can be used for. 

Table 2. Famous projects methods details with their 

applications 
Projects Analysis category Applications  

Onto-

Express 

[45,46] 

Pathway analysis. Breast 

cancer[46] 

 GoMiner 

[48]  

Pathway analysis. Pancreatic 

cancer [44] 

ClueGo [49] Pathway analysis. Colorectal 

tumors [46] 

GSEA [50] Pathway analysis. Diabetes [48] 

 Pathway-

Express [51]    

Pathway analysis. Leukemia [50] 

Recon 2 

[52] 

Reconstruction of 

metabolic 

networks 

Drug target 

prediction 

studies [52] 

Boolean 

methods 

[41,53,54] 

Reconstruction of 

gene regulatory 

networks 

Cardiac 

differentiation 

[55] 

ODE 

models [56-

59] 

 

Reconstruction of 

gene regulatory 

networks 

Cardiac 

development 

[59] 
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4.3 Genome Sequencing Cost reduction 

 

The cost of sequencing the human genome was 

around $100 million a few years ago [12].  It may be 

less than $50 million today. The downward trend 

will only continue in the coming years as Big Data 

adoption grows. In recent years, healthcare 

researchers have also worked to reduce the cost of 

genome sequencing and make it more accessible for 

everyone. Today, an individual human genome 

sequencing costs only around $5000[12]. 

4.4 Time Saving 

 

With a traditional setup and a lot of data stored in 

databases, extract, transform, load (ETL) tests would 

take a long time. There is no ETL with Big Data 

solutions like Hadoop. Thus, data analysis is 

relatively quick, which would save a lot of time. 

Spark and Python are being widely adopted tools 

enabling a steady handshake and an easier time to 

market solution to work on this Big Data with far 

greater results.” 

4.5 Better Analysis 

 

Hadoop like Big Data systems permits us to conduct 

analysis that is not possible in a regular machine 

intelligence tool, it will not even work for an 

traditional SQL relational type setup.  

5. Challenges in Precise medicine 

development 
 

This section lists some of the major challenges that 

Precision Medicine faces, especially with Machine 

Intelligence and Big Data. Data Storage Costs Big 

data creation and accessing generate major 

constsaint for storage [12], transfer and security of 

information.  

Now, its is less expensive to generate when 

comapred to stroring that data. For example, the 

NCBI, a forerunner of Big Data application in 

biomedical science since 1988, couldn’t be able to 

arrive at a comprehensive, safe and less cost solution 

to the data storing constraint.  

Adoption of Big Data Techniques 

There exists a difference among the implementation 

and envisioning of Big data in Data sciences. 

To achieve a proper solution, the Big data problems 

need to be converted to reduced dimensions and 

achievable data problems [12]. The major constraint 

inn adopting the Big data is the cost-to-benefit 

analysis, that highlights and converts a workable 

solution to a business problem and commercializes 

with a quantifiable Rol churn.  

Large Initial Investment 

It require huge captial investment for Big data 

management, which may be not possible for small 

organizations or laboratories [12]. It is one of the 

limitation for conducting vide biomedical research 

with big data.  

Big Data Transfer 

One of the biggest problems is  data transfer design. 

It is expensive and complex to design the big data 

transfer protocols and real-time execution. 

Currently, the data transfer is managed with physical 

external hard disks, which is indeed not a good 

option for future analysis. An alternative solution is 

to use Biotorrents of data transfer, which were 

initially developed for facilitating large data transfer 

through the internet for biomedical research.  

Security & Privacy 

Retaining the confidentiality of the data is an ethical 

concern [12]. Solving this problem is an expensive 

matter. Advanced cryptographic algorithms for 

encryption of the data is an essential step to preserve 

security and privacy. Sophisticated distributed data 

systems like Blockchain [86] are required and may 

be used in the future [82-87].  

 

6. Conclusion and Future Scope:  

The future of Precision medicine lies in the hands of 

Big data analytics that can hold a grip on managing 

structured as well as unstructured data sources and 

will play a vital role in how the healthcare sector will 

be practiced [82].  For prediction and decision 

making some analytics are already in practice by 

some healthcare professionals and organizations. 

The major focus I in three areas as Physiological 

signal processing, Image analysis and Genomic data 

processing.  As medical data including genomic data 

is growing exponentially, which mandating the 

computational scientists to proceed with innovative 

solutions to analyze huge volumes of data in as much 

time as possible. Such trend adoption of big data 

practice is being observed from the healthcare 

professionals, this adoption is growing steadily with 

h development of very imaginative and incredible 

systems that produce precision medicine that is 

saving many peoples life. It is not exaggerating that 

Precision medicine gives a second life for the critical 

staged patients. By combining physiological data 

with high-throughput "-omics" techniques, we can 

create a detailed model of the human body that can 

improve both contribute to the creation of blood-

based diagnostic tools and further our understanding 

of illness states [83–85]. Medical image analysis, 

signal processing, and the integration of 

physiological and "-omics" data provide comparable 
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potential and obstacles when using diverse organised 

and unstructured big data sources. Big data 

Analytics is used for different application [88,89]. 
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