

Copyright © IJCESEN

International Journal of Computational and Experimental

Science and ENgineering

(IJCESEN)

Vol. 11-No.1 (2025) pp. 1395-1401
http://www.ijcesen.com

ISSN: 2149-9144

 Research Article

Enhanced Hybrid Adaptive DNA Compression: Accelerating Genomic Data

Compression through Parallel Processing

Rajesh Thammuluri1,*, Gottala Surendra Kumar2, Bellamgubba Anoch3, Ramesh Babu

Mallela4, Anuj Rapaka5, Veera V. Rama Rao M.6

1Department of Computer Science and Engineering, Shri Vishnu Engineering College for Women, Bhimavaram, Andhra

Pradesh, India
* Corresponding Author Email: rajesh.svecw@gmail.com - ORCID:0009-0000-4693-1992

2Department of Computer Science and Engineering, Shri Vishnu Engineering College for Women, Bhimavaram, Andhra

Pradesh, India
Email: surendrakeys@gmail.com - ORCID:0000-0001-6882-8160

3Department of Computer Science and Engineering, Shri Vishnu Engineering College for Women, Bhimavaram, Andhra

Pradesh, India
Email: anoch508@gmail.com - ORCID: 0009-0007-9090-8870

4Department of Computer Science and Engineering, Shri Vishnu Engineering College for Women, Bhimavaram, Andhra

Pradesh, India
Email: ramesh.mrb551@gmail.com - ORCID: 0000-0002-1212-1526

5Department of Computer Science and Engineering, Shri Vishnu Engineering College for Women Bhimavaram, Andhra

Pradesh, India
Email: anuj.rapaka24@gmail.com - ORCID: 0000-0002-5240-0693

6Department of Computer Science and Engineering, Shri Vishnu Engineering College for Women Bhimavaram, Andhra

Pradesh, India
Email: ramaraocse@svecw.edu.in - ORCID: 0000-0002-7501-2538

Article Info:

DOI: 10.22399/ijcesen.943

Received : 05 November 2024

Accepted : 26 January 2025

Keywords :

DNA compression,

genomic data,

multithreading,

hybrid adaptive compression,

scalable algorithms.

Abstract:

The exponential growth in genomic data due to advancements in sequencing

technologies has necessitated the development of efficient compression algorithms

tailored to the unique characteristics of DNA sequences. This paper presents an

enhanced version of the Hybrid Adaptive DNA Compression (HADC) algorithm. The

enhanced HADC leverages parallel processing techniques, including multithreading, to

optimize computationally intensive tasks such as k-mer hash table construction and

action sequence generation. Experimental results demonstrate significant

improvements, including a 30% reduction in compression time for datasets such as HS8

and TAIR10, while maintaining the original algorithm's high compression ratio. These

improvements ensure scalability and computational efficiency, addressing the growing

demands of genomic data compression. The proposed enhancements, validated through

quantitative analysis across diverse datasets, confirm the robustness of the improved

HADC algorithm in processing large-scale genomic data, making it a valuable tool for

bioinformatics applications.

1. Introduction

The rapid advancements in genomic sequencing

technologies, particularly Next-Generation

Sequencing (NGS), have revolutionized the field of

genomics, generating vast volumes of data that

demand efficient storage and processing solutions.

The repetitive and low-entropy nature of DNA

sequences, coupled with their biological

significance, presents unique challenges for

traditional compression algorithms such as gzip and

bzip2, which are not optimized for genomic data [2-

5]. To address these challenges, specialized DNA

compression algorithms have been developed,

leveraging bioinformatics features and hybrid

methodologies.

http://dergipark.org.tr/en/pub/ijcesen
http://www.ijcesen.com
mailto:rajesh.svecw@gmail.comOrcid:0009-0000-4693-1992
mailto:surendrakeys@gmail.comOrcid:0000-0001-6882-8160

 Rajesh Thammuluri, Gottala Surendra Kumar, Bellamgubba Anoch, Ramesh Babu Mallela, Anuj Rapaka, Veera V. Rama Rao M./ IJCESEN 11-1(2025)1395-1401

1396

Among these, the Hybrid Adaptive DNA

Compression (HADC) algorithm proposed by

Elnady et al. [1] integrates reference-based

compression with generalpurpose methods to

achieve high compression ratios for datasets such as

Escherichia coli and A. thaliana. However, despite

its effectiveness, the original HADC algorithm

faces significant computational bottlenecks when

processing large-scale genomic datasets,

particularly in tasks such as k-mer hash table

construction and action sequence generation.

Recent advancements in genomic data compression

have explored novel techniques to improve

efficiency. Neural network-based models [4] and

signal processing methods [3] have shown promise

in addressing the computational challenges posed

by large datasets. Parallel processing techniques,

including multithreading, offer a scalable solution

to enhance the efficiency of computationally

intensive tasks. Building on these advancements,

this study introduces an enhanced version of the

HADC algorithm, incorporating parallel processing

to improve computational efficiency while

maintaining high compression performance.

The proposed algorithm achieves significant

reductions in compression time, with up to a 30%

improvement observed across diverse datasets such

as HS8 and TAIR10. This enhancement ensures

scalability and robustness, making the improved

HADC algorithm a valuable tool for modern

bioinformatics applications where rapid and

efficient data compression is essential.

2. Literature Review

The increasing volume of genomic data generated

by next-generation sequencing (NGS) technologies

has raised significant challenges in terms of

storage, transmission, and processing. DNA

sequence data, characterized by long repetitive

sequences and a limited set of characters (A, C, G,

T), presents unique challenges that traditional data

compression algorithms like gzip or bzip2 are not

designed to handle. Over the past two decades,

numerous specialized DNA sequence compression

algorithms have been proposed to address these

challenges, falling into three primary categories:

reference-based compression, reference-free

compression, and hybrid approaches. This section

reviews the key developments in these areas.

2.1 Reference-Based DNA Compression

Reference-based DNA compression techniques

leverage a pre-existing reference genome to store

only the differences between the target sequence

and the reference. This method is efficient when

there is a high degree of similarity between the

reference and target sequences. FastqZip achieves

high compression ratios by focusing on the

differences between the target sequence and the

reference, but its performance is limited by the

availability and quality of the reference genome.

For genomes that differ significantly from the

reference, or for organisms without a reference

genome, reference-based methods may fail to

achieve optimal compression.

2.2 Reference-Free DNA Compression

Unlike reference-based methods, reference-free

DNA compression techniques do not require a

reference genome and instead rely on inherent

patterns within the sequence data itself. These

methods are crucial when working with genomes

that have no known reference or when analyzing

highly variable populations. A key advantage of

reference-free compression is its general

applicability across diverse datasets.

The reference-free methods generally do not

achieve the same compression ratios as reference

based methods when a suitable reference genome is

available. Despite this, they offer the advantage of

broader applicability and flexibility, particularly in

cases where the genome under study is highly

divergent or novel.

2.3 Hybrid DNA Compression Approaches

Hybrid compression techniques combine elements

from both reference-based and reference-free

methods, aiming to capitalize on the strengths of

each while mitigating their respective weaknesses.

One such method is the Hybrid Adaptive DNA

Compression (HADC) algorithm introduced by

Elnady et al. [1]. HADC integrates reference-based

compression with general-purpose compression

techniques such as gzip, achieving high

compression ratios for genomes such as Escherichia

coli and Arabidopsis thaliana. The strength of

HADC lies in its ability to adapt to varying

genomic data types, balancing between the use of a

reference genome and the application of

compression methods that do not rely on a

reference. While HADC demonstrates robust

compression performance, it faces computational

bottlenecks during certain tasks such as k-mer hash

table construction and action sequence generation.

This limitation restricts its scalability, particularly

for large-scale genomic datasets. To address these

bottlenecks, several recent studies have focused on

enhancing the computational efficiency of such

hybrid approaches.

 Rajesh Thammuluri, Gottala Surendra Kumar, Bellamgubba Anoch, Ramesh Babu Mallela, Anuj Rapaka, Veera V. Rama Rao M./ IJCESEN 11-1(2025)1395-1401

1397

2.4 Neural Network-Based Compression

Methods

Recent advancements in genomic data compression

have incorporated machine learning, particularly

neural networks, to further enhance compression

efficiency. The method leverages neural networks

to optimize the compression process by learning the

underlying patterns in the sequence, significantly

improving the performance of traditional

compression techniques. Although promising, these

approaches often come with high computational

costs, which could limit their practicality for large-

scale genomic data.

2.5 Signal Processing Approaches

Signal processing techniques have also been

employed in the domain of DNA sequence

compression. By applying signal processing

techniques, compression algorithms can better

handle the high redundancy present in genomic

data, achieving improved performance over

traditional methods.

2.6 Compression Frameworks with Parallel

Processing

Given the ever-increasing size of genomic datasets,

there has been a significant push towards

integrating parallel processing and distributed

computing frameworks into genomic data

compression algorithms. Lan et al. [5] introduced

Genozip, an extensible framework designed to

efficiently compress diverse genomic datasets.

Genozip combines reference-based compression

with parallel processing capabilities, enabling it to

handle large datasets more efficiently than

traditional compression methods. This approach

reduces the time required for compression, making

it suitable for high-throughput sequencing

applications. These frameworks show significant

promise, there is still room for improvement in

terms of achieving optimal scalability for extremely

large datasets. Future developments in distributed

computing and cloud-based solutions may further

enhance the capabilities of genomic data

compression algorithms.

2.7 Challenges and Future Directions

Despite the advancements in genomic data

compression, several challenges remain. One of the

primary challenges is the scalability of existing

algorithms. As sequencing technologies continue to

improve, the size and complexity of genomic

datasets are expected to grow exponentially. This

growth necessitates the development of

compression algorithms that can handle terabyte-

scale datasets efficiently. Furthermore, while

reference-based methods are highly effective when

a suitable reference genome is available, they are

less effective when dealing with highly divergent

genomes or novel species. Thus, more research is

needed to develop hybrid or reference-free methods

that offer high compression ratios without the need

for a reference genome. Additionally, the

integration of machine learning and signal

processing techniques holds great potential for

future developments in genomic data compression.

Neural networks, for example, could be trained to

recognize complex patterns in genomic data, further

enhancing the compression process. However, these

techniques often come with high computational

costs and may not be practical for large-scale

datasets without further optimization.

2.8 Conclusion

The field of genomic data compression has

witnessed significant advancements over the past

few decades, with various methods developed to

address the challenges posed by large-scale

sequencing data. Reference-based compression

methods remain highly effective when a suitable

reference genome is available, while reference-free

methods offer broader applicability for divergent

genomes. Hybrid approaches, such as HADC,

combine the best of both worlds but still face

scalability issues for large datasets. Advancements

in neural network-based and signal processing

approaches offer promising avenues for improving

compression performance, while parallel processing

techniques provide the computational efficiency

needed for handling increasingly larger datasets.

The future of genomic data compression lies in the

development of algorithms that combine these

various techniques to achieve both high

compression ratios and scalability for ultra-large

datasets.

3. Materials and Methods

This section outlines the comprehensive

enhancements made to the Hybrid Adaptive DNA

Compression (HADC) algorithm, its

implementation methodology, and the experimental

setup. and reproducibility. Table 1 is block division

of sequences.

3.1 Enhanced HADC Algorithm

The enhanced HADC algorithm incorporates three

core phases, leveraging parallel processing to

 Rajesh Thammuluri, Gottala Surendra Kumar, Bellamgubba Anoch, Ramesh Babu Mallela, Anuj Rapaka, Veera V. Rama Rao M./ IJCESEN 11-1(2025)1395-1401

1398

overcome computational bottlenecks in the original

implementation [1]:

 Preprocessing and Sequence Preparation: Input

sequences are standardized to uppercase and

validated for DNA base integrity (A, C, G, T ,

and N). The sequences are divided into

fixedsize blocks for independent processing,

ensuring efficient multithreading.

 Parallelized Action Sequence Generation: Using

multithreading, a k-mer hash table 2 is

constructed for each reference block, facilitating

rapid matching with corresponding target

blocks. Matches, substitutions, insertions, and

deletions are encoded into compact action

sequences.

 Final Compression: Action sequences generated

from all threads are aggregated and compressed

using gzip, taking advantage of the repetitive

nature of genomic data.

 This improved methodology significantly

reduces computation time while maintaining the

compression ratio. Figure 1 shows the enhanced

process.

Detailed pseudocode for the compression and

decompression algorithms, illustrative examples,

tables (table 3-6) are provided to ensure clarity.

3.2 Algorithm Details

Compression Algorithm

The enhanced compression algorithm is presented

in Algorithm 1.

Decompression Algorithm

The corresponding decompression process is shown

in Algorithm 2.

3.3 Illustrative Example

Consider the following example demonstrating the

enhanced algorithm:

• Reference Sequence: ACGTACG-

TACGTNNACGTACGTACGTA

CGTACGTACGTNNACGTACGTACGTACG

T

• Target Sequence: ACGTTG

CAACGTNNACGTACGTACGTA

CGTCGTACGTNNACGTACGTTGCAACGT

AC

The sequences are divided into blocks: Each block

is processed independently. The k-mer hash table

for Block 1 is constructed as follows: The Action

Sequence Generator (ASG) outputs the following

sequence for Block 1:

M3, C4TGCA, M8

Where 𝐌 M indicates a match, and C 𝐌 represents a

substitution.

Figure 1. Flowchart of the Proposed Enhanced HADC

Algorithm

 Rajesh Thammuluri, Gottala Surendra Kumar, Bellamgubba Anoch, Ramesh Babu Mallela, Anuj Rapaka, Veera V. Rama Rao M./ IJCESEN 11-1(2025)1395-1401

1399

Table 1. Block Division of Sequences

Block Number Block Content

1 ACGTACGTACGTNNACGTAC

2 GTACGTACGTACGTACGTAC

3 TNNACGTACGTACGTACGTA

4 CGTACGTACGTACGTACGTN

5 NACGTACGTACGTACGTACG

Table 2. K-mer Hash Table for Block 1

K-mer Positions

ACG 1,9

CGT 2,10

GTN 11

3.4 Datasets

The following datasets were used for evaluation:

 HS8: Highly repetitive sequences.

 TAIR10: Arabidopsis thaliana genomic

data.

 HS16: Large datasets with significant

variability.

 SACcer3: Compact yeast genome data.

 NC_017652.1: Bacterial genome data.

3.5 Experimental Setup

The experiments were performed on a system

equipped with an Intel Core i7-9700K processor, 16

GB RAM, and Ubuntu 20.04 OS. Python 3.9 was

used for implementation, with gzip compression

provided by the zlib library.

3.6 Evaluation Metrics

Performance was evaluated based on:

 Compression Ratio: Compressed size

relative to original size.

 Compression Time: Time required to

compress each dataset.

 Scalability: Ability to handle increasing

dataset sizes efficiently.

4. Results and Analysis

This section presents the performance metrics for

each dataset, highlighting the improvements

achieved through the enhanced Hybrid Adaptive

Figure 2. Compression Time Comparison Between

Original and Enhanced HADC.

DNA Compression (HADC) algorithm. The

comparison between the original and enhanced

versions of HADC is based on key performance

metrics such as compression time, compression

ratio, and resource utilization. Figure 2. Shows

compression time comparison between original and

enhanced HADC. The results demonstrate

significant improvements in terms of both time and

efficiency. The enhanced HADC algorithm reduced

compression times by an average of 28.5% across

all datasets, while maintaining similar compression

ratios to the original algorithm. The compression

ratio across datasets demonstrates consistency in

reducing storage requirements without sacrificing

data integrity. The ratios are comparable to state-of-

the-art methods, offering a significant reduction in

computational time. Specifically, for datasets like

TAIR10 and HS8, the enhanced algorithm achieved

compression ratios of 1.9:1 and 1.85:1,

respectively, indicating high efficiency in the

compression process. The compression ratios

remained almost identical between the original and

enhanced HADC, confirming that the performance

improvements stem from enhanced computational

efficiency rather than changes to the compression

algorithm itself. The enhanced HADC algorithm

exhibits robust scalability, handling datasets of

varying sizes and complexities with minimal

performance degradation. Larger datasets such as

HS16 and NC_017652.1 benefit significantly from

parallelized action sequence generation. This

results in faster processing times without

compromising compression performance. The

HS16 dataset, for example, showed a 28.2%

reduction in compression time due to the parallel

processing optimizations. Analysis of CPU and

memory usage indicates efficient resource

utilization, with multithreading effectively

balancing computational load across cores. The

average CPU utilization during compression was

85%, ensuring optimal performance. Additionally,

 Rajesh Thammuluri, Gottala Surendra Kumar, Bellamgubba Anoch, Ramesh Babu Mallela, Anuj Rapaka, Veera V. Rama Rao M./ IJCESEN 11-1(2025)1395-1401

1400

the enhanced algorithm demonstrated minimal

memory usage, confirming its suitability for

resourceconstrained environments. The data

indicates that the enhanced HADC algorithm

utilizes system resources efficiently, allowing it to

process large genomic datasets with minimal

computational overhead.

4.1 Discussion

The results validate the effectiveness of the

enhanced HADC algorithm in addressing the

computational bottlenecks of the original

implementation. By integrating parallel processing

techniques, the algorithm achieves substantial

improvements in compression time while

maintaining competitive compression ratios. This

makes the enhanced HADC algorithm particularly

suitable for large-scale genomic datasets, where

traditional methods struggle with scalability and

resource efficiency.

Key observations from the analysis include:

Efficiency Gains: The enhanced algorithm

consistently reduced compression times across all

datasets, with improvements ranging from 20% to

30%.

Competitive Advantage: The enhanced HADC

outperformed the original algorithm in terms of

time efficiency while maintaining the compression

ratio.

Scalability and Resource Utilization: The algorithm

scaled efficiently with larger datasets, and resource

utilization remained optimal, ensuring the

algorithm is well-suited for highperformance

computing environments.

Applications: The enhanced algorithm can be

deployed for large-scale genomic data compression,

offering both speed and efficiency.

In the future, further optimization can be explored

by implementing dynamic thread management and

distributed computing techniques to improve

scalability and adaptability to even larger datasets.

Additionally, adaptive block sizes based on

sequence complexity could be implemented to

optimize the performance further, ensuring that the

algorithm remains efficient as genomic datasets

continue to grow in size.

4. Conclusions

Our proposed Improved Hybrid Adaptive DNA

Compression (HADC) algorithm effectively

integrates parallel processing techniques to

optimize the compression process, especially in the

construction of k -mer hash tables and action

sequence generation. By leveraging multi-

threading, we achieve significant improvements

Table 3. Performance Metrics for Enhanced HADC

Dataset

Origi

nal

Time

(min)

Enhan

ced

Time

(min)

Compres

sion

Ratio

Improve

ment (%)

HS8 8.0 5.6 1.85: 1 30

TAIR10 0.3 0.21 1.9: 1 30

HS16 8.5 6.1 1.82: 1 28.2

SACcer3 0.1 0.08 1.87: 1 20

NC_0176

52.1
0.11 0.077 1.88: 1 30

Table 4. Compression Ratios for Original and Enhanced

HADC

Dataset

Original

Compression

Ratio

Enhanced

Compression

Ratio

HS8 1.85: 1 1.85: 1

TAIR10 1.9: 1 1.9: 1

HS16 1.82: 1 1.82: 1

SACcer3 1.87: 1 1.87: 1

NC_017652.1 1.88: 1 1.88: 1

Table 5. Scalability Performance for Larger Datasets

Dataset
Original Time

(min)

Enhanced Time

(min)

HS16 8.5 6.1

SACcer3 0.1 0.08

NC_017652.1 0.11 0.077

Table 6. Resource Utilization During Compression

Dataset Average CPU Utilization (%)

HS8 85

TAIR10 80

HS16 87

SACcer3 75

NC_017652.1 82

in compression time, approximately 30%. These

enhancements were consistently observed across a

variety of datasets, demonstrating the method's

ability to efficiently process both small and large

genomic sequences.

The results show that the enhanced algorithm

significantly improves speed while maintaining the

compression efficiency of the original HADC

method, making it more suitable for large-scale

 Rajesh Thammuluri, Gottala Surendra Kumar, Bellamgubba Anoch, Ramesh Babu Mallela, Anuj Rapaka, Veera V. Rama Rao M./ IJCESEN 11-1(2025)1395-1401

1401

genomic data processing. The balance between time

reduction and compression ratio makes this

algorithm a valuable tool in bioinformatics for fast

and efficient data storage and transmission.

In the future, further optimization can be explored

by implementing dynamic thread management and

distributed computing techniques to improve

scalability and adaptability to even larger datasets.

These improvements ensure that the improved

HADC algorithm will remain the leading genomic

data compression solution, even in the face of

increasing computational demands.

Author Statements:

 Ethical approval: The conducted research is

not related to either human or animal use.

 Conflict of interest: The authors declare that

they have no known competing financial

interests or personal relationships that could

have appeared to influence the work reported in

this paper

 Acknowledgement: The authors declare that

they have nobody or no-company to

acknowledge.

 Author contributions: The authors declare that

they have equal right on this paper.

 Funding information: The authors declare that

there is no funding to be acknowledged.

 Data availability statement: The data that

support the findings of this study are available

on request from the corresponding author. The

data are not publicly available due to privacy or

ethical restrictions.

References

[1]Elnady, S., Sayed, S., & Salah, A. (2022). HADC: A

hybrid compression approach for DNA sequences.

Journal of Software Engineering and Applications.

doi: 10.1109/ACCESS.2022.3212523

[2]Wei, D., & Jiang, M. (2021). A fast image encryption

algorithm based on parallel compressive sensing

and DNA sequence. Optik, 238, 166748.

[3]Cao, Y., Tan, L., Xu, X., & Li, B. (2024). A universal

image compression sensing–encryption algorithm

based on DNA-triploid mutation. Mathematics,

12(13), 1990.

[4]Cao, Y., Tan, L., Xu, X., & Li, B. (2024). A universal

image compression sensing–encryption algorithm

based on DNA-triploid mutation. Mathematics,

12(13), 1990.

[5]Lan, D., Tobler, R., Souilmi, Y., & Llamas, B.

(2021). Genozip: A universal extensible genomic

data compressor. Bioinformatics, 37(16), 2225–

2230.

http://dx.doi.org/10.1109/ACCESS.2022.3212523

